

IDU-450 Version 8.0F Pilot Guide (Rotorcraft)

Pilot Operating Guide and Reference

(Rotorcraft) EFIS Software Version 8.0F Document 64-000102-080F

© 2018

Genesys Aerosystems

All Rights Reserved

No part of this document may be reproduced in any form, or by any means, without prior written consent of Genesys Aerosystems.

FlightLogic and Virtual VFR are trademarks of Genesys Aerosystems.

All other brand names and trademarks are the property of their respective holders.

One S-TEC Way, Municipal Airport, Mineral Wells TX 76067

Phone: (800) 872-7832 Fax: (940) 325-3904

www.genesys-aerosystems.com

Revision Record

Rev		s changed, addec urrent revision	l, or	Date	Author
A	Corrected ty	pographical erro original documen	rs in t.	03/2018	G. Schmidt
Retair insert	h this record in changes and c	front of manual. complete table bel	Upon r ow.	eceipt of a	revision,
Revis	ion Number	Revision Date		tion Date/	Initials

Table of Contents

Section 1	Introduction1	-1
1.1.	Introduction1	-1
1.2.	EFIS/FMS Description1	-1
1.3.	About This Guide1	-3
Section 2	System Overview2	-1
2.1.	Abbreviations and Acronyms2	-1
2.2.	System Overview2-	12
2.2.1	. Functional Integration and Display Redundancy	
2.2.2		14
2.3.	General Arrangement2-2	21
2.3.1	. Data Source Monitors2-2	21
2.3.2	IDU Intra-System Communications2-2	22
2.3.3	GPS Aiding Limitation2-2	22
2.4.	Color Conventions2-2	23
2.5.	Warning/Caution/Advisory System2-2	24
2.5.1	. Time-Critical Warning and Caution Alerts2-2	25
2.5.2	2. Warning Alerts2-2	29
2.5.3	Caution Alerts2-3	31
2.5.4	Side-Specific Caution Alerts2-4	40
2.5.5	Advisory Alerts2-4	40
2.5.6	5. Side-Specific Advisory Alerts2-4	42
2.5.7	Audio-Only Caution and Advisory Alerts2-4	45
2.5.8	Voice Alerts and Muting2-4	47
2.5.9	. Visual Alert Prioritization and Declutter2-4	47
2.6.	Database and Software Updates2-4	48
2.6.1	. Navigation and Obstruction Databases2-4	48
2.6.2	2. Update Requirements2-	50
2.6.3	Software and Terrain Database Update2-	52

2.7. Demonstrator	2-52
2.8. EFIS Training Tool	2-53
2.9. Application Software Air Mode and	d Ground Mode 2-53
Section 3 Display Symbology	3-1
3.1. Introduction	3-1
3.1.1. PFD (PFI) Symbology	3-1
3.1.2. Basic Mode	
3.2. Menu Functions	
3.2.1. Altitude Display and Altime	eter Setting3-3
3.2.2. Selected Altitude Sub-Mod	e (Target Altitude)3-4
3.2.3. VNAV Sub-Mode	3-5
3.2.4. Altitude Display (VNAV Tile	e)3-6
3.2.5. Altitude Display (Metric Un	its)3-7
3.3. PFD Symbology	3-7
3.3.1. Minimum Altitude	
3.3.2. Vertical Speed Indicator	
3.3.3. Normal AGL Indication	
3.3.4. Analog AGL Indication	3-10
3.3.5. Decision Height	3-11
3.3.6. Airspeed Display	3-12
3.3.7. Airspeed Display (With EF	IS-Coupled)3-14
3.3.8. Heading Display	3-14
3.3.9. Pitch Scale	3-16
3.3.10. Turn Rate Indicator	3-17
3.3.11. Landing Gear Indication	3-17
3.3.12. Unusual Attitude Mode	
3.3.13. PFD Background	
3.3.14. Flight Path Marker (Velocit	y Vector)3-23
3.3.15. Hover Vector	3-25
3.3.16. Bank Angle Scale	3-27

	3.3.17.	Turn Indication	.3-27
	3.3.18.	Timer Indication	.3-28
	3.3.19.	Marker Beacon Symbology	.3-28
	3.3.20.	Flight Director Symbology	.3-28
	3.3.21.	Course Deviation Indicator (CDI)	.3-29
	3.3.22.	OBS Setting of CDI	.3-31
	3.3.23.	Heading/Roll-Steering Sub-Mode	.3-32
	3.3.24.	Heading Bug Sub-Mode	.3-32
	3.3.25. Deviation In	No Autopilot or Fully-Integrated Autopilot Co	
	3.3.26.	Vertical Deviation Indicator	.3-33
	3.3.27.	Vertical Deviation Indicator (EFIS Coupled)	.3-36
	3.3.28.	Highway in the Sky/Skyway	.3-36
	3.3.29.	Active Waypoint and Waypoint Identifier	.3-37
	3.3.30.	Mini Map	.3-38
	3.3.31.	Runways	.3-38
	3.3.32.	Heliports	.3-40
3.4	4. MFD S	ymbology	.3-40
	3.4.1.	Ownship Symbology	.3-41
	3.4.2.	Moving Map	.3-41
	3.4.3.	Compass Rose/ND Boundary Circle Symbol	.3-44
	3.4.4.	Clock/Options	.3-44
	3.4.5.	Air Data and Groundspeed	.3-45
	3.4.6. Functions	Fuel Totalizer/Waypoint Bearing and Dist	
	3.4.7.	Navigation Data	.3-47
	3.4.8.	Analog Navigation Symbology	.3-49
	3.4.9.	Borders	.3-51
	3.4.10.	Terrain/Obstructions	.3-52
	3.4.11.	Pan Mode	.3-54
	3.4.12.	Start Point	.3-55

3.4.13.	Direct Point	3-55
3.4.14.	Altitude Capture Predictor/Top of Descer	nt3-55
3.4.15.	Projected Path	3-56
3.4.16.	Active Flight Plan Path/Manual Course/R	
3.4.17.	Field of View Indication	3-58
3.4.18.	Range	3-59
3.5. HSI Se	creen	3-59
3.5.1.	Conventional HSI/PTR Format	3-60
3.5.2.	Analog Navigation Symbology	3-62
3.5.3.	Compass Rose Symbols	3-63
3.5.4.	Air Data and Groundspeed	3-64
3.5.5.	Clock/Options	3-65
3.5.6. Functions	Fuel Totalizer/Waypoint Bearing and	
3.6. Naviga	ation Log	3-65
3.6.1.	Clock and Groundspeed	3-66
3.6.2.	Fuel Remaining and Fuel Flow Data	3-66
3.6.3.	Waypoint Identifier Column	3-66
3.6.4.	VNAV and VNAV Offset Column	3-67
3.6.5.	Path Column	3-67
3.6.6.	Distance Column	3-68
3.6.7.	Estimated Time Enroute Column	3-68
3.6.8.	Estimated Time of Arrival Column	3-68
3.6.9.	Fuel Remaining Column	3-68
3.7. Hover	Screen	3-69
3.7.1.	Hover Screen Range	3-69
3.7.2.	Hover Vector	3-70
3.7.3.	Compass Rose Symbols	3-71
3.7.4.	Active Flight Plan Path/Manual Course	3-71
3.7.5.	Navigation Data	3-72

3.7.6		Projected Path	3-73
3.7.7		Air Data and Groundspeed	3-74
3.7.8		Clock	3-74
3.7.9		AGL Indication	3-74
3.7.1	0.	Decision Height Indication	3-75
Section 4	Rev	ersionary Modes	4-1
4.1.	Revers	sionary Modes	4-1
4.1.1		Oat Sensor Failure Mode	4-5
4.1.2		Heading Failure Mode	4-5
4.1.3		PFD Screen Auto Reversion	4-6
4.1.4		GPS Failure	4-6
4.2.	PFD a	nd MFD Failure Mode Examples	4-8
4.3.	PFD F	ailure Mode 0	4-9
4.3.1		MFD Failure Mode 0 (Normal Mode)	4-9
4.4.	PFD F	ailure Mode 1	4-10
4.4.1		MFD Failure Mode 1	4-10
4.5.	PFD F	ailure Mode 2 (Normal Mode)	4-11
4.5.1		MFD Failure Mode 2	4-11
4.6.	PFD F	ailure Mode 3	4-12
4.6.1		MFD Failure Mode 3	4-12
4.7.	PFD F	ailure Mode 4	4-13
4.7.1		MFD Failure Mode 4	4-13
4.8.	PFD F	ailure Mode 5	4-14
4.8.1		MFD Failure Mode 5	4-14
4.9.	PFD F	ailure Mode 6	4-15
4.9.1		MFD Failure Mode 6	4-15
4.10.	PFD F	ailure Mode 7	4-16
4.10.	1.	MFD Failure Mode 7	4-16
Section 5	Mer	u Function s and Step-By-Step Proced	ures5-1
5.1.	Menu	Function s	5-1

5.1.1	1. N	lenu Philosophy	5-2
5.1.2	2. A	voidance of Autonomous Behavior	5-3
5.2.	Menu Sy	nchronization	5-3
5.3.	Menu Fu	nction Types	5-6
5.4.	Top-Leve	el Menu	5-6
5.4.1	1. T	op-Level Menu Option Descriptions	5-6
5.4.2 Dese		op-Level Menu Automatic Pop-up I	
5.5.	First Pag	je (PFD)	5-10
5.5.1	1. F	PFD Page First-Level Option Descriptions	5-10
5.5.2	2. F	PFD Screen First Soft Menu Level	5-12
5.5.3	3. F	ïrst-Level (MFD)	5-13
5.6.	Lower-Le	evel Menus (Below First-Level)	5-14
5.7.	Flight Pla	an (FPL) Menu	5-15
5.7.2	1. F	light Planner Page	5-15
5.7.2	2. F	PFD Page Shown	5-16
5.7.3	3. N	IFD Page Shown on IDU	5-16
5.7.4	4. C	create an Overfly User Waypoint	5-16
5.7.5		light Plan (FPL) Menu Selecting (Step-E	
5.7.6 (Ste	6. F	light Plan (FPL)Menu Create-Edit (MF)	D Only)
5.7.7		ctivate Flight Plan (MFD Only) (Step-By-	
5.7.8		dit Flight Plan (MFD Only) (Step-By-Step	
5.7.9		Reverse Flight Plan (MFD Only) (Step-By	
5.7.′		elete Flight Plan (MFD Only) (Step-By-S	
5.7.´ (Ste		Create User Waypoint (LAT-LON) (MF)	
5.7. ⁻ (Ste		Create User Waypoint (RAD-DST) (MF)	

	3.	Edit User Waypoint (MFD Only) (Step-By-Step	
5.7.1	4.	Delete User Waypoint (MFD Only) (Step-By-S	step)
5.7.1	5.	RAIM Prediction	5-24
5.8.	Active	Flight Plan (ACTV) Menu	5-26
5.8.1		Main Menu	5-26
5.8.2	2.	Active Flight Plan (ACTV) Menu Options	5-27
5.8.3 Step		Active Flight Plan (ACTV) Menu Options (Step	
5.8.4	ŀ.	Active Flight Plan (ACTV) Menu (Step-By-Ste	
5.8.5 Optio		Active Flight Plan (ACTV) Options NRST M p-By-Step)	
5.9.	Informa	ation (INFO) Menu	5-33
5.9.1		Information (INFO) Menu (Step-By-Step)	5-36
5.10.	Omnib	earing Selector (OBS) Menu	5-36
5.10 Step		Omnibearing Selector (OBS) Menu (Step	
Siep)		5-38
5.11.	,	ng Bug (HDG) Menu	
•	, Headir .1.		5-38 -By-
5.11. 5.11.	, Headir .1.)	ng Bug (HDG) Menu Heading Bug (HDG) Menu (PFD Only) (Step	5-38 -By- 5-39
5.11. 5.11. Step	, Headir .1.) Neares	ng Bug (HDG) Menu Heading Bug (HDG) Menu (PFD Only) (Step	5-38 -By- 5-39 5-39
5.11. 5.11. Step 5.12.	Headir .1.) Neares Neares	ng Bug (HDG) Menu Heading Bug (HDG) Menu (PFD Only) (Step st (NRST) Menu	5-38 -By- 5-39 5-39 5-41
5.11. 5.11. Step 5.12. 5.13.	, Headir .1.) Neares Neares .1.	ng Bug (HDG) Menu Heading Bug (HDG) Menu (PFD Only) (Step st (NRST) Menu st (NRST) Menu (Step-By-Step)	5-38 -By- 5-39 5-39 5-41 5-41
5.11. 5.11. Step 5.12. 5.13. 5.13.	Headir .1.) Neares Neares .1. Direct	ng Bug (HDG) Menu Heading Bug (HDG) Menu (PFD Only) (Step st (NRST) Menu st (NRST) Menu (Step-By-Step) Nearest ILS (NRST) Menu (Step-By-Step)	5-38 -By- 5-39 5-39 5-41 5-41 5-42
5.11. 5.11. Step 5.12. 5.13. 5.13. 5.14. 5.14.	, Headir .1.) Neares .1. Direct .1.	ng Bug (HDG) Menu Heading Bug (HDG) Menu (PFD Only) (Step st (NRST) Menu st (NRST) Menu (Step-By-Step) Nearest ILS (NRST) Menu (Step-By-Step)	5-38 -By- 5-39 5-39 5-41 5-41 5-42 5-43
5.11. 5.11. Step 5.12. 5.13. 5.13. 5.14. 5.14.	Headir .1. Neares Neares .1. Direct I .1. Time (ng Bug (HDG) Menu Heading Bug (HDG) Menu (PFD Only) (Step st (NRST) Menu st (NRST) Menu (Step-By-Step) Nearest ILS (NRST) Menu (Step-By-Step) Menu Direct Menu (Step-By-Step)	5-38 -By- 5-39 5-39 5-41 5-41 5-42 5-43 5-43
5.11. 5.11. Step 5.12. 5.13. 5.13. 5.14. 5.14. 5.15.	, Headir ,1.) Neares ,1. Direct .1. Time (` .1.	ng Bug (HDG) Menu Heading Bug (HDG) Menu (PFD Only) (Step st (NRST) Menu st (NRST) Menu (Step-By-Step) Nearest ILS (NRST) Menu (Step-By-Step) Menu Direct Menu (Step-By-Step)	5-38 -By- 5-39 5-39 5-41 5-41 5-42 5-43 5-43 5-44
5.11. 5.11. Step 5.12. 5.13. 5.13. 5.14. 5.14. 5.15. 5.15.	, Headir .1. Neares .1. Direct I .1. Time (.1. PFD S .1.	ng Bug (HDG) Menu Heading Bug (HDG) Menu (PFD Only) (Step st (NRST) Menu st (NRST) Menu (Step-By-Step) Nearest ILS (NRST) Menu (Step-By-Step) Menu Direct Menu (Step-By-Step) TIME) Menu	5-38 -By- 5-39 5-39 5-41 5-41 5-42 5-43 5-43 5-44 5-45 5-46 -By-

5.17.	.1. PFD Bugs (BUGS) Menu (Step-By-Step)	5-50
5.18.	PFD Declutter (DCLTR) Menu	5-52
5.18.	1. PFD Declutter (DCLTR) Menu (Step-By-Step	,
5.19.	PFD Altimeter Menu	5-55
5.19.	1. PFD Altimeter Menu (Step-By-Step)	5-56
5.20.	MFD Fault Display (FAULTS) Menu	5-57
5.20. Step		
5.21.	MFD Fuel Totalizer Quantity Setting (SET FUEL) Me	
5.22.	MFD Page (PAGE) Menu	5-61
5.22.	1. MFD Page (PAGE) Menu (Step-By-Step)	5-62
5.23.	MFD NAV Log Page	5-62
5.24.	MFD ND Page Format (FORMAT) Menu	5-63
5.24. By-S	\mathbf{J}	•
5.24.	2. MFD HSI Page	5-66
5.25.	MFD HSI Page	5-67
5.26.	MFD HSI Declutter (DCLTR) Menu	5-67
Section 6	Quick Start Tutorial	6-1
Section 7	IFR Procedures	7-1
7.1.	Active Flight Plan	7-1
7.2.	IFR Procedures	7-4
7.3.	Overview of Procedures and Instrument Approaches	.7-4
7.3.1	. Highway in the Sky (Skyway)	7-7
7.3.2	2. Waypoint Sequencing	7-11
7.3.3	B. Fly-Over Waypoints	7-12
7.3.4	Fly-By Waypoints	7-14
7.3.5	5. Direct-To	7-18
7.4.	Discontinuities	7-19

7.4.1.	Manual Termination Legs7-19
7.5. Magr	netic Course7-20
7.5.1.	AHRS Modes for Heading Source7-20
7.5.2.	GPS Altitude7-21
7.5.3.	Dead Reckoning7-21
7.5.4.	Parallel Offsets7-21
7.6. Defa	ult GPS/SBAS Navigation Modes7-24
7.7. GPS/	SBAS CDI Scale
7.8. Appro	bach Type Selection7-27
7.8.1.	Approach Path Definition as VTF IFR Approach
7.8.2.	VTF VFR Approach7-29
7.8.3.	Missed Approach and Departure Path Definition
7.9. Loss	of Navigation Monitoring7-31
7.10. Selec	tion of an Instrument Procedure7-31
7.10.1. By-Step)	Standard Terminal Arrival Route (STAR) (Step-
7.10.2.	ILS Instrument Approach (Step-By-Step)7-35
7.10.3. MAP (Step	ILS Approach with Manual Termination Leg in p-By-Step)7-39
7.10.4. Step)	LOC Back Course Instrument Approach (Step-By-
7.10.5. (Step-By-S	RNAV (GPS) Instrument Approach to LPV Minima Step)7-48
7.10.6.	NRST ILS Instrument Approach (Step-By-Step) 7-52
7.10.7.	VOR/DME Instrument Approach (Step-By-Step)
7.10.8. Missed Ap	ILS or LOC RWY 1 Instrument Approach with proach Flown to Alternate fix (Step-By-Step)7-63
	rrain Awareness Warning System Enhanced TAWS8-1

8.1. Warnir	Enhanced HTAWS and HTAWS (Terrain Awareness og System) Functions8-1
8.2.	Terrain Display8-2
8.3.	Forward Looking Terrain Alert Function8-2
8.3.1	I. FLTA Modes8-3
8.3.2	2. GPS/SBAS Navigation Mode Slaving
8.3.3	3. Default FLTA Mode8-3
8.3.4	I. FLTA Search Envelope8-5
8.3.5	5. FLTA Alerts and Automatic Popup8-6
8.4.	Excessive Rate of Descent (GPWS Mode 1)8-8
8.5.	Excessive Closure Rate to Terrain (GPWS Mode 2)8-9
8.6. 3)	Sink Rate after Takeoff or Missed Approach (GPWS Mode
8.7. (GPW\$	Flight into Terrain when not in Landing Configuration 8 Mode 4)
8.8. (GPW\$	Excessive Downward Deviation from an ILS Glideslope S Mode 5)
8.9.	External Sensors and Switches
8.10.	TAWS Basic Parameter Determination8-15
8.11.	TAWS Automatic Inhibit Functions (Normal Operation)
8.11 Ope	.1. TAWS Automatic Inhibit Functions (Abnormal ration)
8.11	.2. TAWS Manual Inhibit Functions
8.12.	TAWS Selections on PFD
Section 9	9-1 Appendix
9.1.	Appendix9-1
9.2.	Operating Tips9-1
9.3.	Domestic or International Flight Planning9-1
9.4.	Descent Planning9-1
9.5.	Terrain Clearance9-1
9.6.	Departure Airport Information9-2

9.	7.	Unique Names for Flight Plans	9-2
9.	8.	Altimeter Settings	9-2
9.	9.	Warnings, Cautions, and Advisories	9-2
9.	10.	Magnetic vs. True North Modes of Operation	9-3
9.	11.	Altitude Miscompare Threshold	9-4
9.	12.	Airspeed Miscompare Threshold	9-5
9.	13.	Jeppesen NavData Chart Compatibility	9-6
9.	14.	ARINC-424 Path-Terminator Leg Types	9-7
9.	15.	Data Logging and Retrieval	9-7
	9.15	1. Delete LOG Files Delete LOG Files	9-7
	9.15	2. Logged Flags and Custom CAS Messages	9-8
9.	16.	Routes and Waypoints	9-8
	9.16	1. VFR Flight Planning	9-8
	9.16	2. Download Routes and User Waypoints	9-9
	9.16	3. Upload Routes and User Waypoints	9-9
	9.16	4. Delete Routes/User Waypoints	9-9
9.	17.	EFIS Training Tool (ETT)	9-9
9.	18.	USB Flash Drive Limitations	9-10
9.	19.	Certification Basis	9-11
9.	20.	Environmental Requirements	9-12
Т	1.	Traffic Symbology	T-1
Т	2.	Traffic Thumbnail	T-1
Т	3.	Traffic Display Definitions	T-1
	T 3.1	. Traffic Rendering Rules	T-2
Т	4.	Dedicated Traffic Page	T-3
	T 4.1	. Traffic Display Format	T-3
	T 4.2	2. Traffic Page Screen Range	T-4
	T 4.3	3. Compass Rose Symbols	T-4
	T 4.4	Active Flight Plan Path/Manual Course/Rur	
	T 4.5		
Rev A	A Mar,	2018 IDU-450 EFIS Software Version 8.0F (Rotorcraft)	TOC-11

T 4.6. Functio	Fuel Totalizer/Waypoint Bearing and Distance
T 5. N	IFD Traffic Format (FORMAT) MenuT-7
	IFD Fault Display (FAULTS) MenuT-8
T 7. N	lenu SynchronizationT-8
RBP 1.	Remote BUGs Panel RBP-1
RBP 1	1. Multifunction Encoder RBP-3
RBP 2.	Menu Synchronization RBP-5
S1. W	/X-500 Data S-1
S 2. S	trikes Page Screen Range S-2
S 3. A	ir Data and Groundspeed S-2
S 4. C	lock and Options S-3
S 5. A	ctive Flight Plan Path/Manual Course/Runways S-4
	uel Totalizer/Waypoint Bearing and Distance Functions S-4
	IFD Strikes Format (FORMAT) Menu S-5
S8. N	IFD Page First-Level Option Descriptions
S 9. N	IFD Page (PAGE) Menu S-6
S 10.	MFD Fault Display (FAULTS) Menu S-6
S 11.	Menu Synchronization S-6
D 1. D	atalink SymbologyD-1
D 1.1.	Ownship Symbol D-4
D 1.2.	Datalink Page Legend D-4
D 1.3.	Air Data and GroundspeedD-5
D 1.4.	Clock/Options D-5
D 1.5.	Datalink Page Screen Range D-7
D 1.6.	Boundary Circle Symbols D-7
D 1.7.	Active Flight Plan Path/Manual Course/Runways. D-8
D 1.8.	BordersD-9
D 1.9.	Pan ModeD-9
	IFD Datalink Format (FORMAT) Menu D-9
TOC-12 IDU	J-450 EFIS Software Version 8.0F (Rotorcraft) Rev A Mar, 2018

D 2.1.	MFD DATALINK Page (Step-By-Step)D-10
D 3. 1	op-Level Auto Pop-Up Function DescriptionsD-11
D 4. A	ctive Flight Plan (ACTV) Menu OptionsD-12
D 5. N	/IFD Fault Display MenuD-12
D6. N	Ienu SynchronizationD-12
WX 1.	Weather RadarWX-1
WX 2.	Weather Radar Page Format (FORMAT) MenuWX-2
WX 2.	1. Weather Page Screen RangeWX-4
WX 2.	2. Track LineWX-5
WX 2.	 Active Flight Plan Path/ Manual Course/Runways WX-5
WX 2.	4. Weather Radar Return DataWX-6
WX 2.	5. Air Data and GroundspeedWX-7
WX 2.	6. Clock/OptionsWX-7
WX 2. Functi	
Functi	
WX 3.	MFD Fault Display (FAULTS) MenuWX-10
WX 3. WX 4.	MFD Fault Display (FAULTS) MenuWX-10
WX 3. WX 4.	MFD Fault Display (FAULTS) MenuWX-10 Menu SynchronizationWX-11
WX 3. WX 4. V 1. \	MFD Fault Display (FAULTS) MenuWX-10 Menu SynchronizationWX-11 /ideo Input PageV-1
WX 3. WX 4. V 1. V V 1.1. V 1.2.	MFD Fault Display (FAULTS) MenuWX-10 Menu SynchronizationWX-11 /ideo Input PageV-1 ZOOM LevelV-1
WX 3. WX 4. V 1. \ V 1.1. V 1.2. V 2. \	MFD Fault Display (FAULTS) MenuWX-10 Menu SynchronizationWX-11 /ideo Input PageV-1 ZOOM LevelV-1 Pan ModeV-2
WX 3. WX 4. V 1. \ V 1.1. V 1.2. V 2. \ V 3. M	MFD Fault Display (FAULTS) MenuWX-10 Menu SynchronizationWX-11 /ideo Input PageV-1 ZOOM LevelV-1 Pan ModeV-2 /ideo Input Status DisplayV-2
WX 3. WX 4. V 1. \ V 1.1. V 1.2. V 2. \ V 3. M	MFD Fault Display (FAULTS) MenuWX-10 Menu SynchronizationWX-11 /ideo Input PageV-1 ZOOM LevelV-1 Pan ModeV-2 /ideo Input Status DisplayV-2 /IFD Video Input Format (FORMAT) MenuV-3
WX 3. WX 4. V 1. \ V 1.1. V 1.2. V 2. \ V 3. M V 4. M	MFD Fault Display (FAULTS) MenuWX-10 Menu SynchronizationWX-11 /ideo Input PageV-1 ZOOM LevelV-1 Pan ModeV-2 /ideo Input Status DisplayV-2 /IFD Video Input Format (FORMAT) MenuV-3 /Ienu SynchronizationV-5
WX 3. WX 4. V 1. \ V 1.1. V 1.2. V 2. \ V 3. M V 4. M RD 1.	MFD Fault Display (FAULTS) MenuWX-10 Menu SynchronizationWX-11 /ideo Input PageV-1 ZOOM LevelV-1 Pan ModeV-2 /ideo Input Status DisplayV-2 /IFD Video Input Format (FORMAT) MenuV-3 /Ienu SynchronizationV-5 Airspeed DisplayRD-1
WX 3. WX 4. V 1. \ V 1.1. V 1.2. V 2. \ V 3. M V 4. M RD 1. RD 2.	MFD Fault Display (FAULTS) MenuWX-10 Menu SynchronizationWX-11 /ideo Input PageV-1 ZOOM LevelV-1 Pan ModeV-2 /ideo Input Status DisplayV-2 /iDV Video Input Format (FORMAT) MenuV-3 /IFD Video Input Format (FORMAT) MenuV-3 /Ienu SynchronizationV-5 Airspeed DisplayRD-1 Round Dials PFDRD-2
WX 3. WX 4. V 1. \ V 1.1. V 1.2. V 2. \ V 3. M V 4. M RD 1. RD 2. RD 3.	MFD Fault Display (FAULTS) Menu WX-10 Menu Synchronization WX-11 /ideo Input Page V-1 ZOOM Level V-1 Pan Mode V-2 /ideo Input Status Display V-2 MFD Video Input Format (FORMAT) Menu V-3 Menu Synchronization V-5 Airspeed Display RD-1 Round Dials PFD RD-2 Round Dials PFI Configuration RD-2
WX 3. WX 4. V 1. \ V 1.1. V 1.2. V 2. \ V 3. M V 4. M RD 1. RD 2. RD 2. RD 3. RD 4.	MFD Fault Display (FAULTS) MenuWX-10 Menu SynchronizationWX-11 /ideo Input PageV-1 ZOOM LevelV-1 Pan ModeV-2 /ideo Input Status DisplayV-2 /iFD Video Input Format (FORMAT) MenuV-3 /IFD Video Input Format (FORMAT) MenuV-3 /Ienu SynchronizationV-5 Airspeed DisplayRD-1 Round Dials PFDRD-2 Round Dials PFI ConfigurationRD-2 Altitude DisplayRD-3

INDEX

GLOSSARY

List of Figures and Tables

FIGURE 1-1: IDU-450 INPUT IDENTIFICATION	1-2
FIGURE 2-1: IDU-450 PRIMARY FLIGHT DISPLAY	2-13
FIGURE 2-2: IDU-450 MULTIFUNCTION FLIGHT DISPLAY	2-13
FIGURE 2-3: SYSTEM DIAGRAM	
TABLE 2-1: IDU SOFTWARE VERSION AND PART NUMBER	2-15
FIGURE 2-4: IDU-450 INITIALIZATION SCREEN	
TABLE 2-2: CPU NUMBER DESIGNATION	
FIGURE 2-5: LOGO SCREEN WITH "TESTING"	
FIGURE 2-6: CRC SCREEN	2-18
FIGURE 2-7: TWO-MINUTE COUNTDOWN SCREEN	
FIGURE 2-8: QUICK START SCREEN	
FIGURE 2-9: TIME-CRITICAL WARNING ALERT	
FIGURE 2-10: TIME-CRITICAL CAUTION ALERT	
TABLE 2-3: TIME-CRITICAL WARNING AND CAUTION ALERTS IN PR	
FIELD OF VIEW	
TABLE 2-4: TIME-CRITICAL WARNING AND CAUTION ALERTS	
TABLE 2-5: TIME-CRITICAL WARNING AND CAUTION ALERTS PRIO	
FIGURE 2-11: WARNING ALERTS	
TABLE 2-6: WARNING ALERT ELEMENTS	
TABLE 2-7: WARNING ALERTS	
FIGURE 2-12: CAUTION ALERTS	
TABLE 2-8: CAUTION ALERT ELEMENTS	
TABLE 2-9: CAUTION ALERTS	
TABLE 2-10: SIDE-SPECIFIC CAUTION ALERTS	
FIGURE 2-13: ADVISORY ALERTS.	
TABLE 2-11: ADVISORY ALERT ELEMENTS	
TABLE 2-12: ADVISORY ALERTS	
TABLE 2-13: SIDE-SPECIFIC ADVISORY ALERTS	
TABLE 2-14: AUDIO-ONLY CAUTION AND ADVISORY ALERTS TABLE 2-15: ANNUNCIATIONS PRIORITY	
FIGURE 2-14: GROUND MAINTENANCE PAGE	
FIGURE 3-1: PFD, PURE DIGITAL CONFIGURATION	
FIGURE 3-3: PFD IN BASIC MODE ROLLING DIGITAL	
FIGURE 3-3. PFD IN BASIC MODE ROLLING DIGITAL	
FIGURE 3-4. FFD BANK SCALE FIGURE 3-5: MENU FUNCTIONS	
FIGURE 3-6: ALTIMETER SETTING	
FIGURE 3-7: ALTIMETER SETTING	
FIGURE 3-8: TARGET ALTITUDE BUG (VERTICALLY INTEGRATED) .	
FIGURE 3-9: TARGET ALTITUDE BUG (VERTICALLY INTEGRATED)	
TIGURE 5-9. TARGET ALTITUDE DUG (NOT VERTICALLT INTEGRAT	,

FIGURE 3-10: VNAV SUB-MODE (NOT VERTICALLY INTEGRATED)	3-6
FIGURE 3-11: VNAV SUB-MODE (VERTICALLY INTEGRATED)	3-6
FIGURE 3-12: ALTITUDE DISPLAY (VNAV TILE)	3-7
FIGURE 3-13: ALTITUDE DISPLAY (METRIC UNITS)	3-7
FIGURE 3-14: PFD SYMBOLOGY	
FIGURE 3-15: MINIMUM ALTITUDE	
FIGURE 3-16: VSI	
TABLE 3-1: SCALE GRADUATIONS AND DISPLAY	3-9
FIGURE 3-17: VSI BUG	3-9
FIGURE 3-18: VSI BUG (VERTICALLY INTEGRATED)	
FIGURE 3-19: NORMAL AGL INDICATION	
TABLE 3-2: AGL INDICATION	
FIGURE 3-20: ANALOG AGL INDICATION	
TABLE 3-3: ANALOG AGL INDICATOR	3-11
TABLE 3-4: ANALOG AGL INDICATOR MARKINGS	
FIGURE 3-21: DECISION HEIGHT	
FIGURE 3-22: AIRSPEED DISPLAY	
FIGURE 3-23: AIRSPEED TREND	
FIGURE 3-24: AIRSPEED SCALE FAR PART 27/29	3-13
FIGURE 3-25: AIRSPEED SCALE BUG	
TABLE 3-5: AIRSPEED BUG LIMITS	3-13
TABLE 3-6: AIRSPEED BUG SETTING ANNUNCIATION AND BUG CO	LORS
FIGURE 3-26: AIRSPEED DISPLAY (WITH EFIS-COUPLED)	3-14
FIGURE 3-27: HEADING DISPLAY	.3-14
FIGURE 3-28: DG INDICATED WHEN AHRS IN DG MODE	.3-15
FIGURE 3-29: SLIP/SKID INDICATOR	.3-15
FIGURE 3-30: DISPLACED HEADING BUG	.3-16
FIGURE 3-31: PITCH SCALE	.3-16
FIGURE 3-32: PITCH SCALE ZENITH AND NADIR SYMBOLS	3-17
FIGURE 3-33: TURN RATE INDICATOR	.3-17
FIGURE 3-34: LANDING GEAR INDICATION	
FIGURE 3-35: UNUSUAL ATTITUDE MODE	
FIGURE 3-36: PFD TERRAIN AND OBSTRUCTIONS	3-19
TABLE 3-7: LAT-LON RESOLUTION BOUNDARIES	3-20
TABLE 3-8: TERRAIN AND OBSTRUCTION RENDERING LEVELS	3-20
FIGURE 3-37: TERRAIN DESELECTED ON PFD BUT SELECTED ON	MFD
	3-22
FIGURE 3-38: PFD WITH OBSTRUCTIONS	3-23
FIGURE 3-39: FLIGHT PATH MARKER	
FIGURE 3-40: FLIGHT PATH MARKER VIEWS	3-24
FIGURE 3-41: FPM ABSENT (UNUSUAL ATTITUDE MODE)	3-24
FIGURE 3-42: PFD WITH FPM REMOVED	3-25
FIGURE 3-43: PFD WITH GPS FAILURE AFTER 1 MINUTE	
LOFT-2 IDU-450 EFIS Software Version 8.0F (Rotorcraft) Rev A Mar	, 2018

FIGURE 3-44: PFD HOVER VECTOR SYMBOLOGY	3-26
FIGURE 3-45: BANK ANGLE	
FIGURE 3-46: TURN INDICATOR	3-27
FIGURE 3-47: TIMER	3-28
FIGURE 3-48: MARKER BEACONS	3-28
FIGURE 3-49: FLIGHT DIRECTOR	
FIGURE 3-50: FLIGHT DIRECTOR (BASIC MODE)	3-29
FIGURE 3-51: COURSE DEVIATION INDICATOR	3-29
TABLE 3-9: CDI BEHAVIOR AND COLOR	3-30
FIGURE 3-52: HEADING BUG	
FIGURE 3-53: LNAV ARMED MODE	
FIGURE 3-54: CDI NO AUTOPILOT OR FULLY-INTEGRATED AUTO	OPILOT
FIGURE 3-55: VERTICAL DEVIATION INDICATOR	3-33
TABLE 3-10: VERTICAL DEVIATION INDICATOR BEHAVIOR	
FIGURE 3-56: VERTICAL DEVIATION INDICATOR COLOR	
GPS/SBAS LON OR VLON	
FIGURE 3-57: EFIS COUPLED VERTICALLY WITH GLIDESLOP	
ENGAGED	
FIGURE 3-58: HIGHWAY IN THE SKY	
FIGURE 3-59: ACTIVE WAYPOINT	
FIGURE 3-60: MINI MAP	3-38
FIGURE 3-61: MINI MAP VOR SYMBOLOGY	
FIGURE 3-62: RUNWAYS	
TABLE 3-11: RUNWAY DRAWING CRITERIA	
FIGURE 3-63: HELIPADS	
FIGURE 3-64: OWNSHIP SYMBOLOGY	
FIGURE 3-65: BASIC MOVING MAP	
FIGURE 3-66: LATITUDE/LONGITUDE DISPLAY COMPASS F	
BOUNDARY CIRCLE SYMBOL	
FIGURE 3-67: MOVING MAP WITH INSTRUMENT APPROACH	-
FIGURE 3-68: NORTH-UP ARC MODE	
FIGURE 3-69: NORTH-UP CENTERED MODE	
FIGURE 3-70: HEADING-UP CENTERED MODE	
FIGURE 3-71: COMPASS ROSE/ND BOUNDARY CIRCLE SYMBOL	
FIGURE 3-72: CLOCK/OPTIONS	
TABLE 3-12: CLOCK OPTIONS	
FIGURE 3-73: AIR DATA AND GROUNDSPEED	
FIGURE 3-74: FUEL TOTALIZER/WAYPOINT BEARING AND D	
FUNCTIONS TABLE 3-13: FUEL TOTALIZER/WAYPOINT BEARING AND D	
TABLE 3-13: FUEL TOTALIZER/WAYPOINT BEARING AND L FUNCTIONS	
FUNCTIONS FIGURE 3-75: NAVIGATION DATA AND AIRSPACE DEPICTION	
TABLE 3-14: NAVIGATION DATA AND AIRSPACE DEPICTION	
Rev A Mar, 2018 IDU-450 EFIS Software Version 8.0F (Rotorcraft)	
Rev A Mar, 2018 IDU-450 EFIS Software Version 8.0F (Rotorcraft)	LOFT-3

TABLE 3-15: AIRSPACE DEPICTION	3-49
FIGURE 3-76: ANALOG NAVIGATION SYMBOLOGY HSI IN ARC MOD	E
FIGURE 3-77: ANALOG NAVIGATION SYMBOLOGY HSI IN CENT	ERED
Mode	
FIGURE 3-78: BORDERS	3-51
FIGURE 3-79: TERRAIN/OBSTRUCTIONS PFD	3-52
FIGURE 3-80: TERRAIN/OBSTRUCTIONS MFD	
TABLE 3-16: TERRAIN COLOR	
TABLE 3-17: OBSTRUCTIONS	3-53
FIGURE 3-81: PAN MODE	
FIGURE 3-82: START POINT	
FIGURE 3-83: DIRECT POINT	
FIGURE 3-84: TOP OF DESCENT OR TOP-OF-CLIMB	
FIGURE 3-85: PROJECTED PATH	
FIGURE 3-86: PARALLEL TRACK	
FIGURE 3-80: FARALLEL TRACK	
FIGURE 3-88: FIELD OF VIEW	
FIGURE 3-66. FIELD OF VIEW	
FIGURE 3-90: HSI SCREEN	
FIGURE 3-91: HSI POINTER COLOR FIGURE 3-92: CONVENTIONAL HSI/PTR FORMAT: HSI WITH VD	
GLIDESLOPE FIGURE 3-93: CONVENTIONAL HSI/PTR FORMAT WITH LOSS	.3-01
NAVIGATION CONDITION	
FIGURE 3-94: ANALOG NAVIGATION DISPLAY VOR1 AND VOR2	
FIGURE 3-95: HSI BEARING DISTANCE READOUT WITH DME IN H	
FIGURE 3-96: HSI WITH MARKER BEACON DISPLAYED	
FIGURE 3-97: COMPASS ROSE	
FIGURE 3-98: HSI DISPLAY AIR DATA AND GROUNDSPEED	
FIGURE 3-99: HSI CLOCK	3-65
FIGURE 3-100: HSI FUEL TOTALIZER/WAYPOINT BEARING	
FIGURE 3-101: NAVIGATION LOG	
FIGURE 3-102: HOVER SCREEN ORIENTATION	
FIGURE 3-103: HOVER VECTOR SYMBOLOGY	
FIGURE 3-104: HOVER VECTOR COMPASS ROSE	
FIGURE 3-105: HOVER VECTOR ACTIVE FLIGHT PLAN PATH/MA	NUAL
Course	
FIGURE 3-106: HOVER VECTOR ACTIVE FLIGHT PLAN PATH/PARA	ALLEL
Course	.3-72
FIGURE 3-107: HOVER VECTOR PROJECTED PATH	3-73
FIGURE 3-108: HOVER VECTOR AGL INDICATION	3-74
TABLE 3-18: ANALOG AGL INDICATION DESIGNED PARAMETERS	
LOFT-4 IDU-450 EFIS Software Version 8.0F (Rotorcraft) Rev A Mar	

TABLE 4-1: REVERSIONARY MODE STATUS (PFD)	.4-2
TABLE 4-2: REVERSIONARY MODE STATUS (ND)	.4-3
TABLE 4-3: REVERSIONARY MODE STATUS (OUTPUT FUNCTIONS)	.4-3
FIGURE 4-1: GPS TRK	.4-6
FIGURE 4-2: LOI CAUTION	
FIGURE 4-3: FAULTS PAGE ON MFD	
FIGURE 4-4: LOSS OF VERTICAL NAVIGATION (VLON)	.4-8
FIGURE 4-5: PFD FAILURE MODE 0 GPS, ADC, AND AHRS NORMA	
	.4-9
FIGURE 4-6: MFD FAILURE MODE 0 (NORMAL MODE) GPS, ADC,	
AHRS NORMAL	.4-9
FIGURE 4-7: PFD FAILURE MODE 1 GPS/SBAS FAILED; ADC	AND
AHRS NORMAL	I-10
FIGURE 4-8: MFD FAILURE MODE 1 GPS/SBAS FAILED; ADC	
AHRS NORMAL	1-10
FIGURE 4-9: PFD FAILURE MODE 2 (NORMAL MODE) ADC FAIL	
GPS/SBAS AND AHRS NORMAL	
FIGURE 4-10: MFD FAILURE MODE 2 ADC FAILED; GPS/SBAS	
AHRS NORMAL	
ADC NORMAL	
FIGURE 4-12: MFD FAILURE MODE 3 AHRS FAILED; GPS/SBAS	
ADC NORMAL	
FIGURE 4-13: PFD FAILURE MODE 4 GPS/SBAS AND ADC FAIL	
AHRS Normal	
FIGURE 4-14: MFD FAILURE MODE 4 GPS/SBAS AND ADC FAIL	ED.
AHRS Normal	I-13
FIGURE 4-15: PFD FAILURE MODE 5 GPS/SBAS AND AHRS FAIL	FD:
ADC NORMAL	
FIGURE 4-16: MFD FAILURE MODE 5 GPS/SBAS AND AHRS FAIL	LED:
	1_14
FIGURE 4-17: PFD FAILURE MODE 6 ADC AND AHRS FAIL	ED:
GPS/SBAS NORMAL	I-15
GPS/SBAS NORMAL	LED;
GPS/SBAS NORMAL	1-15
FIGURE 4-19: PFD FAILURE MODE 7 GPS/SBAS, ADC, AND AH	
Failed	I-16
FIGURE 4-20: MFD FAILURE MODE 7 GPS/SBAS, ADC, AND AF	
Failed	1-16
FIGURE 5-1: IDU-450 INPUT CONTROLS	
TABLE 5-1: ENCODER FUNCTIONS FOR ALL PAGES	
FIGURE 5-2: IDU-450 INPUT CONTROLS	
TABLE 5-2: MENU SYNCHRONIZATION	
FIGURE 5-3: PFD TOP-LEVEL MENU	
Rev A Mar, 2018 IDU-450 EFIS Software Version 8.0F (Rotorcraft) LO	FT-5

TABLE 5-3: TOP-LEVEL MENU AUTOMATIC FUNCTION DESCRIP	
PRECEDENCE, TILE LEGEND, AND ACTION	
FIGURE 5-4: FIRST PAGE PFD	. 5-11
TABLE 5-4: CROSSFILL INHIBIT/ARM/SYNC FUNCTION	
FIGURE 5-5: FIRST-LEVEL MFD	. 5-14
FIGURE 5-6: EXPAND CAS MENU	
FIGURE 5-7: FLIGHT PLAN MENU	. 5-16
FIGURE 5-8: CREATION OF OVERFLY USER WAYPOINT	
FIGURE 5-9: ACTIVE FLIGHT PLAN MAIN MENU	
FIGURE 5-10: ACTIVE FLIGHT PLAN MENU OPTIONS	
FIGURE 5-11: INFORMATION MENU	
TABLE 5-5: INFO MENU INFORMATION	
TABLE 5-6: INFO MENU*	
FIGURE 5-12: CRS SYNC	
FIGURE 5-13: OMNIBEARING SELECTOR (OBS) MENU	
FIGURE 5-14: HEADING BUG (HDG) MENU	. 5-39
FIGURE 5-15: NEAREST (NRST) MENU	. 5-40
FIGURE 5-16: DIRECT MENU	
FIGURE 5-17: TIME MENU	
FIGURE 5-18: PFD SOURCE MENU	. 5-47
FIGURE 5-19: PFD BUGS (BUGS) MENU	. 5-50
FIGURE 5-20: PFD BUGS (BUGS) MENU (CONTINUED)	. 5-51
FIGURE 5-21: PFD DECLUTTER (DCLTR) MENU	. 5-53
TABLE 5-7: PFD DECLUTTER OPTIONS AND FEATURES	
FIGURE 5-22: PFD ALTIMETER MENU	. 5-56
FIGURE 5-23: MFD FAULT DISPLAY MENU	
FIGURE 5-24: MFD FUEL TOTALIZER QUANTITY MENU	
FIGURE 5-25: MFD PAGE (PAGE) MENU	. 5-62
FIGURE 5-26: MFD SYMBOL DECLUTTER	
FIGURE 5-27: MFD ND PAGE FORMAT MENU	
FIGURE 5-28: MFD HSI DECLUTTER (DCLTR) MENU	
FIGURE 7-1: VERTICAL DEVIATION INDICATOR LINEAR DEVIATION	
TABLE 7-1: HIGHWAY IN THE SKY CONFIGURATION	
FIGURE 7-2: HIGHWAY IN THE SKY (AIRCRAFT REFERENCED)	
FIGURE 7-3: HIGHWAY IN THE SKY (GEO-REFERENCED BACKWARD	
FIGURE 7-4: HIGHWAY IN THE SKY (GEO-REFERENCED FORWARD)	
TABLE 7-2: FINAL SEGMENT OF IFR APPROACH, DESCENT ANGL	
VNAV WAYPOINT	.7-10
FIGURE 7-5: HIGHWAY IN THE SKY FINAL APPROACH SEGMENTS	
FIGURE 7-6: FLY-OVER WAYPOINTS	
TABLE 7-3: RNAV PATH TERMINATOR LEG TYPE	
FIGURE 7-7: FLY-BY WAYPOINTS	.7-14
TABLE 7-4: LEG SEGMENTS FOR PATHS CONSTRUCTED BY THE EF	
	.7-15

FIGURE 7-8: UNNAMED WAYPOINTS	7-18
FIGURE 7-9: PARALLEL OFFSET PTK-/PTK ENDING	7-22
TABLE 7-5: PARALLEL OFFSETS SYMBOLS AND DESCRIPTION	7-23
TABLE 7-6: DEFAULT GPS/SBAS NAVIGATION MODES	7-24
TABLE 7-7: DEFAULT NAVIGATION MODES BASED UPON RE	GION OF
OPERATION	7-25
TABLE 7-8: SUMMARY OF CHANGES IN CROSS-TRACK FSD	
FIGURE 7-10: GPS MODE (LNAV APPR)	7-27
FIGURE 7-11: NAVIGATING TO FAF ON VTF VFR APPROACH	7-29
FIGURE 7-12: MISSED APPROACH AND DEPARTURE PATH	
FIGURE 7-13: STANDARD TERMINAL ARRIVAL ROUTE (STAR)	
FIGURE 7-14: ILS INSTRUMENT APPROACH (EDJA)	
FIGURE 7-15: ILS APPROACH (EGYD)	
FIGURE 7-16: LOC BACK COURSE APPROACH	
FIGURE 7-17: RNAV (GPS) INSTRUMENT APPROACH TO LPV I	Minima
FIGURE 7-18: NRST ILS INSTRUMENT APPROACH	
FIGURE 7-19: STANDARD INSTRUMENT DEPARTURE PROCEDUR	
FIGURE 7-20: KEMPTON THREE ALPHA (KPT 3A) SID	
FIGURE 7-21: VOR/DME INSTRUMENT APPROACH	
FIGURE 7-22: ILS OR LOC RWY 1 INSTRUMENT APPROA	
Missed Approach Flown to Alternate Fix (Step-By-	
TABLE 8-1: TAWS FUNCTIONS PROVIDED BY THE FEIS	8-1
TABLE 8-1: TAWS FUNCTIONS PROVIDED BY THE EFIS	
FIGURE 8-1: TERRAIN DISPLAY	8-2
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT	8-2 8-2
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT	8-2 8-2 8-4
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS	8-2 8-2 8-4 8-4
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS	8-2 8-2 8-4 8-4 8-5
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE	8-2 8-2 8-4 8-4 8-5 8-7
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE	8-2 8-2 8-4 8-5 8-5 8-7 8-8
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1	
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES	
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES TABLE 8-5: HTAWS GPWS MODE 2A ENVELOPES (NOT IN	
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES TABLE 8-5: HTAWS GPWS MODE 2A ENVELOPES (NOT IN CONFIGURATION)	
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-5: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES TABLE 8-5: HTAWS GPWS MODE 2A ENVELOPES (NOT IN CONFIGURATION) TABLE 8-6: HTAWS GPWS MODE 2B ENVELOPES (
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES TABLE 8-5: HTAWS GPWS MODE 2A ENVELOPES (NOT IN CONFIGURATION) TABLE 8-6: HTAWS GPWS MODE 2B ENVELOPES (CONFIGURATION)	
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES. TABLE 8-5: HTAWS GPWS MODE 2A ENVELOPES (NOT IN CONFIGURATION) TABLE 8-6: HTAWS GPWS MODE 2B ENVELOPES (CONFIGURATION) FIGURE 8-7: ROTORCRAFT GPWS MODE 2	
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES. TABLE 8-5: HTAWS GPWS MODE 2A ENVELOPES (NOT IN CONFIGURATION) TABLE 8-6: HTAWS GPWS MODE 2B ENVELOPES (CONFIGURATION) FIGURE 8-7: ROTORCRAFT GPWS MODE 2 FIGURE 8-8: ROTORCRAFT GPWS MODE 2 FIGURE 8-8: ROTORCRAFT GPWS MODE 2 FIGURE 8-8: ROTORCRAFT GPWS MODE 3 	
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES TABLE 8-5: HTAWS GPWS MODE 2A ENVELOPES (NOT IN CONFIGURATION) TABLE 8-6: HTAWS GPWS MODE 2B ENVELOPES (CONFIGURATION) FIGURE 8-7: ROTORCRAFT GPWS MODE 2 FIGURE 8-8: ROTORCRAFT GPWS MODE 2 FIGURE 8-7: HTAWS GPWS MODE 3 TABLE 8-7: HTAWS GPWS MODE 4 ENVELOPES	
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES TABLE 8-5: HTAWS GPWS MODE 2A ENVELOPES (NOT IN CONFIGURATION) TABLE 8-6: HTAWS GPWS MODE 2B ENVELOPES (CONFIGURATION) FIGURE 8-6: HTAWS GPWS MODE 2 FIGURE 8-7: ROTORCRAFT GPWS MODE 2 FIGURE 8-7: ROTORCRAFT GPWS MODE 3 TABLE 8-7: HTAWS GPWS MODE 4 ENVELOPES TABLE 8-8: HTAWS GPWS MODE 4 ALERTING CRITERIA	
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES TABLE 8-5: HTAWS GPWS MODE 2A ENVELOPES (NOT IN CONFIGURATION) TABLE 8-6: HTAWS GPWS MODE 2B ENVELOPES (CONFIGURATION) FIGURE 8-7: ROTORCRAFT GPWS MODE 2 FIGURE 8-7: ROTORCRAFT GPWS MODE 2 FIGURE 8-7: ROTORCRAFT GPWS MODE 3 TABLE 8-7: HTAWS GPWS MODE 4 ENVELOPES TABLE 8-8: HTAWS GPWS MODE 4 ALERTING CRITERIA TABLE 8-9: HTAWS GPWS MODE 4A ENVELOPES	
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES TABLE 8-5: HTAWS GPWS MODE 2A ENVELOPES (NOT IN CONFIGURATION) TABLE 8-6: HTAWS GPWS MODE 2B ENVELOPES (CONFIGURATION) FIGURE 8-7: ROTORCRAFT GPWS MODE 2 FIGURE 8-7: HTAWS GPWS MODE 2 FIGURE 8-7: HTAWS GPWS MODE 3 TABLE 8-7: HTAWS GPWS MODE 4 ENVELOPES TABLE 8-8: HTAWS GPWS MODE 4 ALERTING CRITERIA TABLE 8-9: HTAWS GPWS MODE 4A ENVELOPES FIGURE 8-9: ROTORCRAFT GPWS MODE 4A ENVELOPES FIGURE 8-9:	
FIGURE 8-1: TERRAIN DISPLAY FIGURE 8-2: FLTA INHBT FIGURE 8-3: DEFAULT FLTA INHBT FIGURE 8-4: FLTA INHBT MODE AREAS TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS FIGURE 8-5: POPUP MODE TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE FIGURE 8-6: ROTORCRAFT GPWS MODE 1 TABLE 8-4: HTAWS GPWS MODE 2 ENVELOPES TABLE 8-5: HTAWS GPWS MODE 2A ENVELOPES (NOT IN CONFIGURATION) TABLE 8-6: HTAWS GPWS MODE 2B ENVELOPES (CONFIGURATION) FIGURE 8-7: ROTORCRAFT GPWS MODE 2 FIGURE 8-7: ROTORCRAFT GPWS MODE 2 FIGURE 8-7: ROTORCRAFT GPWS MODE 3 TABLE 8-7: HTAWS GPWS MODE 4 ENVELOPES TABLE 8-8: HTAWS GPWS MODE 4 ALERTING CRITERIA TABLE 8-9: HTAWS GPWS MODE 4A ENVELOPES	

FIGURE 8-10: ROTORCRAFT GPWS MODE 5	8-13
TABLE 8-11: EXTERNAL SENSORS AND SWITCHES (APPLICABLE	TAWS)
	8-15
TABLE 8-12: HTAWS BASIC PARAMETERS DETERMINATION	8-15
TABLE 8-13: TAWS AUTOMATIC INHIBIT FUNCTIONS	8-20
FIGURE 8-11: TERRAIN DISPLAY FUNCTIONALITY	
FIGURE 8-12: PFD SVS BASIC OPTION	8-23
FIGURE 8-13: PFD SVS TAWS OPTION	
FIGURE 8-14: PFD SVS TAWS OPTION AND OBSTRUCTIONS	8-24
FIGURE 8-15: PFD OBSTRUCTION CAUTION	8-24
FIGURE 8-16: PFD OBSTRUCTION WARNING	8-25
FIGURE 8-17: AUTOMATIC PFD TERRAIN WARNING	8-25
FIGURE 9-1: US/UK WORLD MAGNETIC MODEL	9-3
TABLE 9-1: ALLOWABLE INSTRUMENT ERROR	9-4
TABLE 9-2: REGULATORY REFERENCE	
TABLE 9-3: AIRSPEED ERROR	
TABLE 9-4: AIRSPEED REGULATORY REFERENCE	9-6
TABLE 9-5: LOG FILE VALUES	9-8
FIGURE 9-2: VFR WAYPOINT	
FIGURE T-1: TRAFFIC SYMBOLOGY	T-1
FIGURE T-2: TRAFFIC THUMBNAIL	T-1
TABLE T-1: TRAFFIC SYMBOLOGY	T-2
TABLE T-2: TRAFFIC RENDERING RULES	
TABLE T-3: PILOT SELECTED OT AND PA TRAFFIC ALTITUDE-FI	
FIGURE T-3: TRAFFIC DISPLAY FORMAT	
FIGURE T-4: TRAFFIC SCREEN RANGE COMPASS ROSE SYMBO	
TABLE T-4: ADS-B AND TIS-B TRAFFIC SYMBOLS	T-5
FIGURE T-5: CLOCK AND OPTIONS	T-6
TABLE T-5: CLOCK AND OPTIONS	T-6
FIGURE T-6: FUEL TOTALIZER/WAYPOINT BEARING AND E	
FUNCTIONS	
FIGURE T-7: MFD TRAFFIC FORMAT (FORMAT) MENU	
TABLE T-6: MENU SYNCHRONIZATION	
FIGURE RBP-1: REMOTE BUGS PANEL	RBP-1
TABLE RBP-1: REMOTE BUGS PANEL (RBP)	RBP-1
TABLE RBP-2: MENU SYNCHRONIZATION	RBP-5
FIGURE S-1: STRIKES PAGE	
TABLE S-1: LIGHTNING STRIKES	
FIGURE S-2: LIGHTNING SYMBOLS	
FIGURE S-3: AIR DATA AND GROUNDSPEED IN UPPER LEFT CO	
FIGURE S-4: CLOCK AND OPTIONS	
TABLE S-2: WX-500 STATUS	S-3

FIGURE S-5: ACTIVE FLIGHT PLAN PATH/MANUAL COURSE/RU	NWAYS
	S-4
FIGURE S-6: FUEL TOTALIZER/WAYPOINT BEARING AND I	
FUNCTIONS	S-4
FIGURE S-7: MFD STRIKES FORMAT (FORMAT) MENU	
TABLE S-3: MENU SYNCHRONIZATION	
FIGURE D-1: DATALINK SYMBOLOGY WITH G METAR ON	
FIGURE D-2: DATALINK SYMBOLOGY WITH NEXRAD ON	
TABLE D-1: ADS-B DATA	D-2
TABLE D-2: DATALINK NEXRAD DATA	
TABLE D-3: GRAPHICAL METARS (GMETARS) SCREEN RAN	GE D-2
FIGURE D-3: NRST AIRPORT INFO	D-3
TABLE D-4: GRAPHICAL METAR SYMBOLS	
TABLE D-5: DATALINK GRAPHICAL METAR PRECIPITATION	
FIGURE D-4: METAR AND TAF REPORT FOR KPHX	
FIGURE D-5: DATALINK SYMBOLOGY ROTORCRAFT OWNSHIP	
FIGURE D-6: ADS-B DATALINK PAGE LEGEND	
FIGURE D-7: CLOCK/OPTIONS	
TABLE D-6: DATALINK NEXRAD STATUS	
FIGURE D-8: DATALINK PAGE SCREEN RANGE	
TABLE D-7: DATALINK PAGE SCREEN RANGES	
FIGURE D-9: BOUNDARY CIRCLE SYMBOL	
FIGURE D-10: MFD DATALINK FORMAT (FORMAT) MENU	D-10
TABLE D-8: TOP-LEVEL AUTO POP-UP FUNCTION DESCRIPTIO	
TABLE D-9: MENU SYNCHRONIZATION	
FIGURE WX-1: WEATHER RADAR IMAGE ON ND	
TABLE WX-1: WEATHER RADAR INHIBITED CONDITIONS	
FIGURE WX-2: MFD WX RDR FORMAT (FORMAT) MENU	
FIGURE WX-3: RADAR IMAGE IN ARCED FORMAT	
FIGURE WX-4: RADAR IMAGE IN PROFILE DEPICTION	
FIGURE WX-5: RADAR TRACK LINE	
FIGURE WX-6: RADAR ACTIVE FLIGHT PLAN TABLE WX-2: WEATHER RADAR RETURN DATA	
FIGURE WX-7: RADAR RETURN DATA FIGURE WX-8: RADAR CLOCK/OPTIONS	
TABLE WX-3: RDR 2100 APPLICABILITY TABLE WX-4: RDR 2100 MODE ANNUNCIATION	
TABLE WX-4. RDR 2 100 MODE ANNUNCIATION TABLE WX-5: MENU SYNCHRONIZATION	
FIGURE V-1: ENCODER FUNCTIONS FOR MFD VIDEO PAGE	
FIGURE V-1. ENCODER FUNCTIONS FOR MIPD VIDEO PAGE FIGURE V-2: VIDEO PAN VIEW	
TABLE V-2. VIDEO PAN VIEW TABLE V-1: TOP-LEVEL AUTO POP-UP FUNCTION DESCRIPTION	V-Z
PAN MODE ENABLED	
FAN WODE ENABLED FIGURE V-3: VIDEO STATUS	
Rev A Mar, 2018 IDU-450 EFIS Software Version 8.0F (Rotorcraft)	
Rev A Mar, 2018 IDU-450 EFIS Software Version 8.0F (Rotorcraft)	LOF I-9

TABLE V-2: VIDEO INPUT CONTROLS	V-3
FIGURE V-4: MFD VIDEO INPUT FORMAT (FORMAT) MENU	V-4
TABLE V-3: MENU SYNCHRONIZATION	
FIGURE RD-1: ROUND DIALS AIRSPEED DISPLAY	RD-1
FIGURE RD-2: ROUND DIALS AIRSPEED DISPLAY LIMITS	RD-1
FIGURE RD-3: ROUND DIALS PFI AREA (QNH)	RD-2
FIGURE RD-4: ALTIMETER QNH	RD-3
FIGURE RD-5: ALTIMETER QFE	RD-3
FIGURE RD-6: ALTITUDE DISPLAY	RD-3
FIGURE RD-7: ALTITUDE DISPLAY (WHEN BELOW SEA LEVEL)	RD-4
FIGURE RD-8: AIRSPEED AND ALTITUDE WITH LOSS OF ADC	RD-4
FIGURE RD-9: TARGET ALTITUDE BUG	RD-4
FIGURE RD-10: VNAV SUB-MODE	RD-5
FIGURE RD-11: METRIC ALTITUDE	RD-5
FIGURE RD-12: VERTICAL SPEED INDICATOR	RD-5
FIGURE RD-13: VSI BUGS	RD-6
FIGURE RD-14: HEADING DISPLAY	RD-6
FIGURE RD-15: TURN RATE INDICATOR	RD-7
TABLE RD-1: PFD DECLUTTER OPTIONS AND FEATURES	RD-7

Section 1 Introduction

1.1. Introduction

Aviation has become more complex with sophisticated "automation centered" systems, which minimize pilot involvement and automate control of the aircraft and its systems, thereby relegating the pilot to the role of manager and emergency backup.

The Genesys Aerosystems Electronic Flight Instrument System (EFIS) is designed as a "pilot-centered" system. While still highly automated, it presents the pilot with information necessary to make decisions and take appropriate actions. For example, the Highway-in-the-Sky (HITS) allows for highly automated approaches, but its predictive nature provides the pilot awareness of upcoming maneuvers. Instead of overloading the pilot with information and options, the Genesys Aerosystems EFIS presents only necessary information to reduce workload, decrease task complexity, and minimize confusion, which results in safer flying with less stress and fatigue.

The Genesys Aerosystems EFIS goal is IFR-VFR equivalence with HUD symbology overlaying real-time 3-D virtual view of the outside world. This "synthetic vision" provides the pilot in IMC with simple visual clues for navigation and aircraft control as those used in VFR conditions. The "virtual VFR" eliminates the need to scan multiple instruments for aircraft control or interpret complicated enroute and approach procedures. As experience is gained with this integrated system, the pilot will fly with more precision, awareness, and confidence.

1.2. EFIS/FMS Description

The integrated display unit (IDU) has eight pushbuttons along the vertical sides referenced as L1 through L4 starting at the top left corner of the display moving down and R1 through R4 from the top right corner moving down the display from a pilot's perspective.

There are two encoders along the bottom with the left encoder only controlling the backlighting intensity left-hand encoder (@). References throughout this guide refer to the right-hand encoder (①) and when to push and/or scroll for desired outcomes.

Figure 1-1: IDU-450 Input Identification

On the bezel between the two encoders, a slip indicator or blank housing acts as the USB memory door. When lifted prior to powerup, the ground maintenance mode is initiated after power-up. If a limits change, software, or database update is planned, the USB drive must be inserted prior to power-up.

A sensor on the face of the IDU bezel measures ambient light levels. Use the left encoder to control the brightness of the panel lighting or display lighting. Panel lighting refers to the illumination of legends, encoders, and buttons (push and scroll clockwise to increase or counter clockwise to decrease). Display lighting refers to the illumination of the LCD display (without pushing, scroll as described with panel lighting). Lighting may be controlled locally or remotely with a default state being with the local control.

NOTE:

If entering ground maintenance mode with bright light shining or reflecting directly into the display, shield the light sensor to avoid the IDU from going directly into the flight mode.

1.3. About This Guide

Operation of the Genesys Aerosystems EFIS is described in detail and divided into sections as follows:

TABLE OF CONTENTS: Locate areas by topic

INTRODUCTION (Section 1): Basic explanation of the pilot guide.

SYSTEM OVERVIEW (Section 2): Description of system and hardware; IDU behavior during initialization; warning alerts, timecritical warning alerts, master visual and aural alerts caution alerts, and advisory alerts with conditions; coloring conventions; abbreviations and acronyms; and database update procedures.

DISPLAY SYMBOLOGY (Section 3): Identification of each screen element of the PFD/MFD, and explanation of symbology.

REVERSIONARY MODES (Section 4): Views of displays with various sensor failed conditions and resulting symbology, as well as, examples of various configurations and display formats used with specific tables showing affected functions. Explanation of what to expect when a particular sensor fails and what changes on the display immediately or after a specified amount of time.

MENU FUNCTIONS AND STEP-BY-STEP PROCEDURES (Section 5): Menu structure of each feature and step-by-step procedures for operation of each task. Basic description of all encoder and button functions with menu tile definitions.

QUICK START TUTORIAL (Section 6): Basics necessary for flying a flight with this system. Includes simple steps to manage displays for existing flight conditions to quickly gain familiarity with where to locate controls to manipulate the system for each operation.

IFR PROCEDURES (Section 7): Detailed information and instruction about selecting and flying instrument procedures with examples of the most popular published procedures with views of referenced published procedures. Includes descriptions of selection of departure, published instrument approach, standard terminal arrival procedures, as well as, how the active flight plan quickly reflects changes to ATC clearances.

TERRAIN AWARENESS WARNING SYSTEM (Section 8): Description of Enhanced HTAWS and HTAWS functionality for this

aircraft with all configurations. Defines the various parameters, which automatically apply to each mode of flight.

APPENDIX (Section 9): Contains support material and other useful information about system operation, guidance from Jeppesen, and supplemental information such as flight planning; magnetic vs. true north modes; airspeed/altitude miscompare thresholds; EFIS Training Tool; and downloading routes / user waypoints.

APPENDICES: Traffic, Remote Bugs Panel, WX-500 Lightning Strikes, Datalink, Weather Radar, and Video. Sections on equipment and features not installed in every aircraft and may be removed at the discretion of the end-user.

INDEX: Alphabetical listing of terms or keywords with corresponding page numbers.

GLOSSARY: Alphabetical listing of definitions for terms.

This pilot guide must be carried in the aircraft and made available to the pilot at all times. It can only be used in conjunction with the Federal Aviation Administration (FAA) approved Rotorcraft Flight Manual (RFM). Refer to the applicable AFM for aircraft specific information, such as unique ground tests, limitations, and emergency procedures.

Genesys Aerosystems is committed to producing the highest quality product possible and welcomes feedback concerning this publication. Please e-mail comments and suggestions to genesys-support@genesys-aerosystems.com

If you encounter problems with the operation of your Genesys Aerosystems EFIS, please contact your display dealer for service and repairs or visit <u>www.genesys-aerosystems.com</u>.

Section 2 System Overview

2.1. Abbreviations and Acronyms

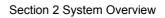
µm Hg	Micrometer of Mercury
0R	No Radius
3-D	Three-Dimensional
AC	Advisory Circular
ACTV	Active
ADAHRS	Air Data Attitude Heading Reference System
ADC	Air Data Computer
ADF	Automatic Direction Finder
ADS-B	Automatic Dependent Surveillance-Broadcast
AFCS	Automatic Flight Control System
AFM	Aircraft Flight Manual
AGL	Above Ground Level
AHRS	Attitude Heading Reference System
AIRAC	Aeronautical Information Regulation and Control
AIRMET	Airmen's Meteorological Information
ALT	Pressure Altitude
ALT SEL	Altitude Selection
AMLCD	Active Matrix Liquid Crystal Display
ANP	Actual Navigation Performance
ANT	Antenna
AP	Autopilot
APP	Waypoint is part of an Instrument Approach Procedure
APPR	Approach
APT	Airport
APV	Approach with Vertical Guidance
AOA	Angle of Attack
ARINC	Aeronautical Radio, Inc.
ARTCC	Air Route Traffic Control Center
AS	SAE Aerospace Standard

-	
ASEL	Aircraft Selected Altitude
ATC	Air Traffic Control
ATT	Attitude
Baro	Barometric setting
Baro-VN	AV Barometric Vertical Navigation
BC	Backcourse navigation
BFO	Beat Frequency Oscillator
BRT	Brightness
BTM	Bottom
С	Celsius
CA	Course to Altitude (ARINC-424 Leg)
CALC	as in RAIM (R2)
CAS	Crew Alerting System
CD	Course to DME Distance (ARINC-424 Leg)
CCW	Counter Clockwise
CDA	Continuous Descent Approach
CDI	Course Deviation Indicator
CF	Course to Fix (ARINC-424 Leg)
CI	Course to Intercept (ARINC-424 Leg)
CLR	Clear
CNX	Cancel
COM	Communication
CONT	Continue
CPLT	Co-Pilot
CPM	Computer Processor Module
CPU	Central Processing Unit
CR	Course to Radial Termination (ARINC-424 Leg)
CRC	Cyclic Redundancy Check
CRS	Course
CSA	Conflict Situation Awareness (ADS-B)
CTRST	Contrast
CW	Clockwise
dBZ	Decibel relative to radar reflectivity (Z)
2-2	IDU-450 EFIS Software Version 8.0F (Rotorcraft) Rev A Mar, 2018

DCLTR	Declutter
DCND	Descend
DEC HT	Decision Height Bug
DEL	Delete
DESIG	Designate
DF	Direct to Fix (ARINC-424 Leg)
DFCS	Digital Flight Control System
DFLT	Default
DG	Directional Gyro
DH	Decision Height
DLNK	Datalink
DME	Distance Measuring Equipment
DO	RTCA Document
DOD	Department of Defense
DP	Departure Procedure
DR	Dead Reckoning
EFIS	Electronic Flight Instrument System
EGM	Earth Gravity Model
EGNOS	European Geostationary Navigation Overlay Service
EGPWS	Enhanced Ground Proximity Warning System
EQPMNT	Equipment
ESSNTL	Essential
ETA	Estimated Time of Arrival
ETE	Estimated Time Enroute
ETT	EFIS Training Tool
EXCD	Exceedance
EXPND	Expand (also EXP)
F	Fahrenheit
FA	Course from a Fix to Altitude (ARINC-424 Leg)
FAA	Federal Aviation Administration
FAF	Final Approach Fix
FAR	Federal Aviation Regulation
FAWP	Final Approach Waypoint (same as FAF)

FC	Course Fix to along Track Distance (ARINC-424 Leg)
FD	Course from a Fix to DME Distance (ARINC-424 Leg); Flight Director
FDE	Fault Detection and Exclusion
FG	Fixed Gear
FG + F	Fixed Gear with Defined Landing Flaps Position
FIS	Flight Information Service
FIS-B	Flight Information Service-Broadcast
FL	Flight Level
FLTA	Forward Looking Terrain Awareness
FM	Course from Fix to Manual termination (ARINC-424 Leg)
FMS	Flight Management System
FOV	Field of View
FPL	Flight Plan
fpm	Feet per minute
FPM	Flight Path Marker
FPNM	Feet Per Nautical Mile
FSD	Full Scale Deflection
FT	Feet
FTE	Flight Technical Error
FTP	Fictitious Threshold Point
FNCT	Function
GAGAN	India's GPS and GEO-Augmented Navigation System
GARP	GNSS Azimuth Reference Point
GBAS	Australia's Ground Based Augmentation System
GLS	GNSS Landing System
GMETAR	Graphical METAR (also GMTR)
GMF	Ground Maintenance Function
GN	Gain
GND	Ground
GNSS	Global Navigation Satellite System
GPI	Glidepath Intercept

GPIP	Glide Path Intercept Point
GPS	Global Positioning System
GPSV	Global Positioning System Vertical Navigation
GPWS	Ground Proximity Warning System
GRD	Grid; Ground
GS	Glideslope
Н	Hold
HA	Terminates at an altitude (ARINC-424 Leg)
HF	Holding, Pattern to Fix (ARINC-424 Leg)
HM	Altitude or Manual Termination (ARINC-424 Leg)
HAL	Horizontal Alert Limit
HAT	Height Above Threshold
HDG	Heading
HFOM	Horizontal Figure of Merit
hh:mm:ss	Hours: Minutes: Seconds
HITS	Highway in the Sky
HLTH	Health
HORIZ	Horizontal
HOTAS	Hands on Throttle and Stick
hPa	Hectopascal
HPL	Horizontal Protection Level
HRZ SYNC	Horizon Synchronization
HSI	Horizontal Situation Indicator
HUD	Head Up Display
IAP	Instrument Approach Procedure; Initial Approach Point
IAS	Indicated Airspeed
IAWP	Initial Approach Waypoint (same as IAP)
ICAO	International Civil Aviation Organization
ID	Identity or Identification
IDENT	Identification (Transponder Ident)
IDU	Integrated Display Unit
IF	Initial Fix leg
IFR	Instrument Flight Rules



-				
ILS	Instrument Landing System			
IM	Inner Marker			
INFO	Information			
INHBT	Inhibit			
inHg	Inches of Mercury			
INIT	Initialize			
Ю	Input/Output			
IP	Initial Point			
IPV	Instrument Procedure with Vertical Guidance			
ISA	International Standard Atmosphere			
IVSI	Instantaneous Vertical Speed Indicator			
IWP	Intermediate Approach Waypoint			
К	Kilo=1000			
KB	Kilobyte			
kHz	Kilohertz			
KIAS	Knots Indicated Airspeed			
KT	Knot - Nautical Mile per Hour			
KTAS	Knots True Airspeed			
LAT	Latitude			
LCD	Liquid Crystal Display			
LCL	Local			
LDA	Localizer-type Directional Aid			
LED	Light Emitting Diode			
LGND	Legend			
LIFR	Low IFR conditions (Ceiling < 100' or visibility < 1 mile)			
LNAV	Lateral Navigation			
LOC	Localizer			
LOI	Loss of Integrity			
LON	Loss of Navigation; Longitude			
LP	Localizer Performance			
LPV	Localizer Performance with Vertical Guidance			
LTP	Landing Threshold Point			
LVL	Level			
2-6	IDU-450 EFIS Software Version 8.0F (Rotorcraft) Rev A Mar, 2018			

Section 2 System Overview

MA	Waypoint is part of the missed approach segment of an Instrument Approach Procedure		
MAGVAR	Magnetic Declination (Variation)		
MAHP	Missed Approach Holding Point		
MAHWP	Missed Approach Holding Waypoint (same as MAHP)		
MAN	Manual		
MAP	Missed Approach Point; Missed Approach Procedure		
MASPS	Minimum Aviation System Performance Standard		
MAWP	Missed Approach Waypoint (also MAWPT)		
mbar	Millibars		
MDA	Minimum Descent Altitude		
MESO	Mesocyclonic		
METAR	Routine hourly weather report		
MFD	Multifunction Display		
MIN	Minimum		
MM	Middle Marker		
MOA	Military Operations Area		
MOT	Mark On Target		
MSAS	Japan's MTSAT-based Satellite Augmentation System		
MSG	Message		
MSL	Mean Sea Level		
MVFR	Marginal Visual Flight Rules		
NAS	U.S. National Airspace System		
NAV	Navigation		
NAVAID	Device or system providing navigational assistance		
ND	Navigation Display		
NDB	Nondirectional Beacon		
NEXRAD	(Next-Generation Radar) network of weather radars operated by the National Weather Service (NWS) (also NXRD)		
NIMA	National Imagery and Mapping Agency		
NM	Nautical Mile		
NRST	Nearest		

nT	Nanoteslas (ref. World magnetic Model)		
NTSC	National Television System Committee standard analog video system (30 frames per second) used in North America and most of South America		
NWS	National Weather Service		
OASIS	Open Architecture Systems Integration Symbology		
OAT	Outside Air Temperature		
OBS	Omnibearing Selector		
ODP	Obstacle Departure Procedure		
OF	Over-fly		
OM	Outer Marker		
OT	Other Traffic (Traffic Function)		
PA	Proximate Advisory (Traffic Function)		
PAL	Predominant analog video system (25 frames per second) used outside North America and South America.		
PDA	Premature Descent Alert		
PFD	Primary Flight Display (also refers to the primary IDU with software that only shows primary flight instrumentation)		
PFI	Primary Flight Information		
PI	Procedure Turn (ARINC-424 Leg)		
PLI	Pitch Limit Indicator		
PLT	Pilot		
PM	Personality Module		
PN	Part Number; Pan		
PROC	Procedure		
PRN	Pseudo-Random-Noise (Satellite communications)		
PRS	Press		
PRV	Previous		
PSH	Push		
PTK	Parallel offset (Parallel Track)		
PTRS	Pointers		
PWR	Power		

QFE	Altimeter setting provides height above reference point		
QNE	Altimeter setting provides pressure altitude readout		
QNH	Altimeter setting provides MSL altitude at a reporting point		
RA	Resolution Advisory (Traffic Function)		
RADALT	Radar Altimeter (also RALT)		
RAD-DST	Radial and Distance		
RAIM	Receiver Autonomous Integrity Monitoring		
RBP	Remote Bug Panel		
RCP	Radar Control Panel		
RDR	Radar		
REC	ADF receiver in BFO or test mode		
RF	Precision Arc to Fix (ARINC-424 Leg)		
RFP	Radio Frequency Panel		
RG	Retractable Gear		
RG + F	Retractable Gear with Defined Landing Flaps Position		
RHT	Radar Height		
RMI	Radio Magnetic Indicator		
RNAV	Area Navigation		
RNP	Required Navigation Performance		
RTC	Real Time Computing		
RTCA	Radio Technical Commission for Aeronautics		
RTD	Resistive Thermal Detector		
RW	Runway		
Rx	Receive		
SAE	Society of Automotive Engineers		
SAT	Saturation		
SATLT	Satellite		
SBAS	Satellite-Based Augmentation System		
SCC	System Configuration Card (personality module)		
SECAM	Analog color television system used in France		
SIC	Side-in-Command		
SID	Standard Instrument Departure		

SIGMET	Significant Meteorological Advisory			
SLCT	Select			
SSM	Sign Status Matrix			
STAB	Stability			
STAR	Standard Terminal Arrival Routes			
STBY	Stand-by			
STD	Standard			
STRKS	Strikes (Lightning detection)			
SVS	Synthetic Vision System			
SYMB	Symbol			
SYNC	Synchronize			
SYRD	System Requirements Document			
TA	Traffic Advisory (Traffic Function)			
TACAN	Ultra-High Frequency Tactical Air Navigational Aid			
TAFs	Terminal Aerodrome Forecasts			
TAS	Traffic Advisory System; True Airspeed			
TAWS	Terrain Awareness and Warning System			
TCA	Terminal Control Areas			
TCAD	Traffic Collision Alert Device			
TCAS	Traffic Collision Alert System			
TD	Terrain Data			
T/D	Top of Descent			
TERPS	Terminal Instrument Procedures			
TF	Track to a Fix; Track from Fix to New Fix (ARINC-424 Leg)			
TFR	Temporary Flight Restriction			
TGT	Target			
THLD	Threshold			
TIS	Traffic Information Service			
TIS-B	Traffic information Service-Broadcast			
TLT	Tilt			
TRANS	Transition			
TRK	Track			
2-10	IDU-450 EFIS Software Version 8.0F (Rotorcraft) Rev A Mar, 2018			

TRNDO	Tornadic		
TSO	Technical Standard Order		
TTA	Time to Alert		
TURB	Turbulence		
Тх	Transmit		
USB	Universal Serial Bus, data storage device		
USR	User Waypoint		
UTC	Universal Time Coordinated		
VA	Heading to Altitude (ARINC-424 Leg)		
VA	Speed above which it is unwise to make full application of any single flight control		
VAL	Vertical Alert Limit		
VAPP	Target approach airspeed		
VD	Heading to DME Distance (ARINC-424 Leg)		
VDI	Vertical Deviation Indicator		
VERT	Vertical		
VFE	Maximum flap extended speed		
VFOM	Vertical Figure of Merit		
VFR	Visual Flight Rules		
VHF	Very High Frequency		
VI	Heading to Intercept (ARINC-424 Leg)		
VLOC	VOR/Localizer		
VLON	Vertical Loss of Navigation		
VM	Heading to Manual Termination (ARINC-424 Leg)		
V _{MO}	Maximum operating limit speed		
VNAV	Vertical Navigation (also VNV)		
V _{NE}	Never exceed speed		
V_{NO}	Maximum structural cruising speed or maximum speed for normal operations		
VOR	VHF Omnidirectional Radio		
VORTAC	Collocated VOR and TACAN		
VOX	Voice		
VP	VFR waypoints (five digits beginning with "VP")		

VPL	Vertical Protection Level		
VPROC	Procedure Speed		
VR	Rotation speed		
VR	Heading to Radial Termination (ARINC-424 Leg)		
VREF	Landing reference speed or threshold crossing speed		
VS	Vertical Speed		
VSI	Vertical Speed Indicator		
VTF	Vectors to Final		
V _{TOS}	Minimum speed for a positive rate of climb with one engine inoperative		
WAAS	Wide Area Augmentation System		
WGS84	World Geodetic System 1984		
WPT	Waypoint		
WX	Weather		
XFILL	Crossfill		

2.2. System Overview

The IDU-450 EFIS is a complete flight and navigation instrumentation system intuitively providing information via computer-generated displays. The displays include 3-D, enhanced situational awareness primary flight display (PFD) and multi-function display (MFD), which may be configured to show a moving map, an HSI, terrain, traffic, datalink weather, radar, or video.

At any given time, each system only has one IDU transmit enabled to send RS-232 and RS-422 system transmissions. By default, the PFD is transmit enabled and, if it subsequently fails, the respective MFD becomes transmit enabled.

Figure 2-1: IDU-450 Primary Flight Display

Figure 2-2: IDU-450 Multifunction Flight Display

2.2.1. Functional Integration and Display Redundancy

IDUs incorporate a high-brightness AMLCD screen; bezel pushbuttons; encoders and enter switches; central processing unit; numerous RS-232, RS-422, and ARINC 429 receive and transmit ports; and discrete IO ports. Hardware and software are identical for all IDUs, and functionality is determined by configuration settings setup during installation. The IDUs are independently connected to all external sensors and independently perform all integrated functions (e.g., TAWS, FMS, EICAS, ADS-B In, weather radar,

traffic, strikes, video, or OASIS). This provides an exceptional level of redundancy as compared to traditional display architectures where most of these functions were performed by external line replaceable units.

Figure 2-3 depicts a typical architecture used by IDUs. The IDUs depend upon intra-system (between IDUs on a side – depicted as "Sync") and inter-system (between IDUs on opposite sides – depicted as "Crosslink") to achieve synchronization of the integrated functions. The IDUs also depend upon intra-system communications to determine which IDU on a side takes over "talker" responsibilities. The "talker" IDU is the IDU providing data to external sensors and generating aural alerts.

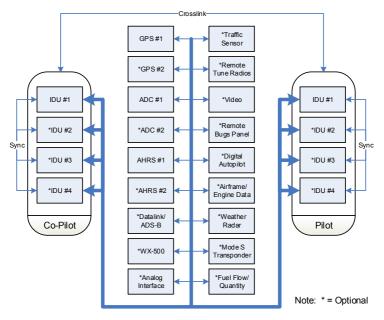


Figure 2-3: System Diagram

2.2.2. IDU Initialization

Upon power-up, the hardware, including file system, IO, and graphics, is initialized. Immediately after graphics initialization, a logo screen with "INITIALIZING" is displayed with the Genesys Aerosystems logo, software version number, and part number. The software version number delineates: (1) major revision number (i.e., "8.0"), and (2) minor revision letter (i.e., "F").

Table 2-1: IDU Software Version and Part Number

Version Number	Part Number
Rev 8.0F	25-EFIS80F-SW-0002

Figure 2-4: IDU-450 Initialization Screen

Aircraft configurations are initially read from flash drive storage to provide IDUs with a default configuration setup in the event of personality module failure.

The personality module contains the CPU number (Table 2-2) and system designation (pilot or co-pilot). The CPU number is identified below the part number on the initialization screen (Figure 2-4).

Table 2-2: CPU Number Designation			
CPU Number/IDU#	Definition		
"1"	IDU only shows pilot PFD (configured for PFD) on right side and co-pilot PFD (configured for optional co-pilot PFD) on left side.		
"2"	MFD on pilot and or co-pilot sides.		
"3"	Additional MFD on pilot and or co-pilot sides.		
"4"	Additional MFD on pilot and or co-pilot sides.		

Aircraft parameters (latitude, longitude, altitude), as they existed prior to the last system shutdown, are read for a good system initialization, even if system sensors are failed or not yet initialized. For future updates (i.e., updating software version 8.0G to 8.0H), all aircraft settings re-initialize to default values. Otherwise, aircraft settings, as they existed prior to the last system shutdown, are used to initialize the system except for the following default values:

- 1) Selected sensors are initialized to default values.
- 2) Active flight plan structure and associated values are cleared.
- ADAHRS set to slaved mode, and slewing value is initialized to zero.
- 4) Timers are turned off.
- 5) Map panning modes are set to off.
- 6) Fuel caution and alarm thresholds are set to default values.
- 7) Heading bug is set to 360°.
- 8) Heading mode is turned off.
- 9) HSI navigation source is set to FMS.
- 10) Horizon Synchronization status is set to disabled.
- 11) Minimum altitude setting is turned off.
- 12) FMS OBS setting is set to automatic.
- 13) VOR/LOC 1 OBS setting is set to 360°.
- 14) VOR/LOC 2 OBS setting is set to 360°.
- 15) Parallel offset is set to 0 NM.
- 16) PFD zoom mode is set to off.
- 17) Manual RNP is set to off.
- 18) PFD skyway is set to on.
- 19) Airspeed bug is turned off.
- 20) Target and preselected altitude bugs are turned off
- 21) True North mode is turned off.

- 22) Vertical speed bug is turned off.
- 23) Crosslink is initialized to on.
- 24) Map modes are set to allowed values.
- 25) RDR-2000/2100 mode is set to off, vertical profile is set to off and scale is initialized to 80NM.

The following, are read from the flash drive storage and CRC-32 checked:

- 1) OASIS configuration
- 2) Magnetic variation coefficients database

Based upon the air/ground mode parameter value from the last system shutdown, the IDU decides whether it is booting on the ground or in flight.

If booting on the ground, the following actions happen:

1) A logo screen with "**TESTING**" is displayed for a number of seconds while the various hardware subsystems are initialized.

Figure 2-5: Logo Screen with "TESTING"

 CRC-32 values for application executable, limitations files, NavData® files, obstruction files, sounds database, and terrain header files are checked.

During this action, "**PRESS ANY BUTTON TO QUICK START**" is displayed below "**TESTING**." Press any button to stop the ground booting and execute the flight booting.

- 3) If the BIT (built-in-test) check fails, the program exits with an error message and creates a BIT result file indicating failure.
- 4) If the BIT check passes, the program continues to initialize and creates a BIT result file indicating passage.
- 5) If "Baro Auto-Setting on Startup Flag" is enabled in EFIS limits, the application auto-sets the altimeter based upon the terrain elevation at the startup point (only applicable at surveyed airports).
- 6) A CRC screen displaying:

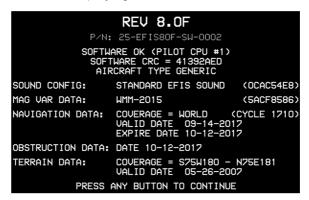
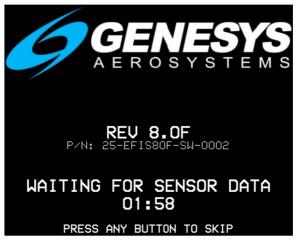



Figure 2-6: CRC Screen

- a) Software CRC-32;
- b) Aircraft type;
- c) OASIS configuration name and CRC-32;
- d) Sounds database name and CRC-32;
- e) Magnetic variation coefficients version and CRC-32; and
- f) Database versions and validity dates are displayed along with "**PRESS ANY BUTTON TO CONTINUE**."

- After a button is pressed, if all critical sensors (GPS, ADC, and AHRS) are in normal condition, the display screens are shown immediately. IDU #1 initializes to the PFD screen.
- After a button is pressed, if any critical sensor is not in normal condition, a logo screen with a two-minute countdown timer is displayed along with "PRESS ANY BUTTON TO SKIP."

Figure 2-7: Two-Minute Countdown Screen

The display screens initialize at the earliest of:

- a) when two minutes have elapsed;
- b) when the pilot presses any button to escape the startup countdown; or
- c) when all critical sensors are in normal condition.
- 9) The display screen is shown at the earliest of:
 - a) IDU #1: PFD screen
 - b) IDU #2 or other CPUs: If OASIS is configured, CPU #2 initializes to the OASIS EICAS function. If OASIS is not configured, CPU #2 initializes to the MFD Screen. All other CPUs initialize to the MFD screen.

10) On the IDU #0 or #2 with fuel totalizer functions enabled, the fuel set menu is activated to remind the pilot to set the fuel totalizer quantity.

If booting in the air, the following actions happen:

1) A logo screen with "QUICK START" is displayed.

Figure 2-8: QUICK START Screen

- 2) BIT result file created during the last ground boot is checked.
 - a) **Failure** = indicates a failure, program exits with an error message.
 - b) **Passage** = program continues.
- 3) The display screens initialize immediately.
- 4) Display screens initialize as follows:
 - a) IDU #1: PFD Screen
 - b) Other CPUs: If OASIS is configured, CPU #2 initializes to the Essential EICAS screen. If OASIS is not configured, CPU #2 initializes to the MFD Screen. All other CPUs initialize to the MFD screen.

NOTE:

After IDU initialization, if any menu is active, press **EXIT (R1)** on each display and wait at least 20 seconds to allow PFD(s) to synchronize with MFD, and to allow pilot and co-pilot sides to synchronize. If any IDU menu is active, intra-system and intersystem synchronization messages are paused.

2.3. General Arrangement

The IDU-450 is 6.375" W x 5.65" H x 4.75" D and weighs less than 7.5 lbs. The IDU-450 has the capacity to accommodate integrated peripherals mechanically attached to the CPU but have electrical isolation and redundancy. These modules may include:

- 1) Integrated ADAHRS sensor module
- 2) Integrated GPS/SBAS sensor module
- 3) Serial protocol converters
- 4) Video format converters
- 5) Weather radar module

Data storage is sufficiently sized to hold world terrain, navigation, and obstruction databases. Because the receive ports are connected to the digital sensor modules in parallel, each IDU is independent from all others.

2.3.1. Data Source Monitors

IDUs continuously monitor the ADC, AHRS, and GPS sensors to detect disagreements:

- 1) Airspeed
- 2) Altitude
- 3) Attitude
- 4) Barometric setting (pilot vs. co-pilot sides)
- 5) GPS position, track, and groundspeed
- 6) Heading
- 7) Localizer and glideslope deviations
- 8) Radar altitude

2.3.2. IDU Intra-System Communications

Communication between IDUs installed on the same side is referred to as intra-system communications. In this dual system (pilot and copilot) configuration, the crosslink side-to-side communications is referred to as inter-system communications. IDUs on a system side (pilot side and co-pilot side individually) monitor each other using intra-system communications and perform the following checks:

- 1) Intra-system communications freshness
- 2) Screen counter incrementing (i.e., screen not frozen)
- 3) Airspeed agreement
- 4) Altitude agreement
- 5) Attitude agreement
- 6) Barometric setting agreement
- 7) GPS position, track, and groundspeed agreement
- 8) Heading agreement
- 9) Localizer and glideslope deviation agreement
- 10) Radar altitude agreement

2.3.3. GPS Aiding Limitation

To prevent gyro drift in the roll attitude solution, continuous corrections to roll attitude are made based upon speed, accelerations, and rates. The preferred correction speed source is airspeed from the air data computer (ADC). However, airspeed data becomes noisy and inaccurate as the aircraft slows, and the system automatically transitions to GPS groundspeed (at approximately 55 KIAS) under these conditions.

When flying in a GPS-denied environment, be aware that flight below 55 KIAS could result in a degraded roll attitude solution. Therefore, avoid IMC conditions and crosscheck other attitude instruments when flying below 55 KIAS and transition to flight above 55 KIAS as soon as practicable.

NOTE:

Not applicable for rotorcraft with other AHRS than Genesys ADAHRS installed.

2.4. Color Conventions

The EFIS uses a consistent set of colors to display information. Any color representation may not be identical as it appears on the IDU.

WHITE for items set by pilot and held by the EFIS or items where device feedback is not expected; marker beacon receiver high/low sensitivity modes; scales, associated labels and figures; pilot action; or data entry. Examples:

- Scales markings (airspeed, altitude, heading, VSI, pitch, map ranges, etc.)
- Pilot-selected values (airspeed, heading, altitude)
- Secondary flight data (TAS, wind, OAT, timers, etc.)

When used for an analog bar indication, light gray (lowintensity white) is used instead as a large white area on the screen may become overwhelming.

CYAN for IFR navigation dataset items (airports with instrument approach procedures, VORs, and intersections) and VOR #1.

MAGENTA (light magenta for visibility) indicates calculated or derived data and certain navigation database items. Examples:

- Active waypoint related symbols
- Course data (desired track, CDI)
- VFR airports, NDBs
- VNAV altitudes

GRAY as background for airspeed and altitude readout and for conformal runway depiction (light gray for usable portion of active runway, dark gray for other runway surfaces).

GREEN (light green for visibility) for VOR #2 and to indicate normal or valid operation (airspeed, altitude tape coloring, status indication, engine, etc.). Examples:

- Aircraft ground track
- Skyway symbology
- Airspeeds in green arc

DARK GREEN for terrain indication on moving map. The slope between adjacent terrain determines the shade used.

AMBER (YELLOW) identifies conditions requiring immediate pilot awareness and possible subsequent action.

OLIVE in various shades shows terrain within 2000' and below aircraft altitude.

BROWN in a variety of shades indicates earth/terrain portion of PFD or when above 100 feet less than aircraft altitude on MFD.

BLUE in a variety of shades indicates sky portion of PFD, bodies of water on moving map, and advisory text on black background.

RED indicates aircraft limitations or conditions, which require immediate pilot action, or a device failure (red "X").

BLACK for field of view angle lines on moving map, figures on a gray background, and outlining borders and certain figures/elements on backgrounds with minimal contrast, e.g., airspeed, altitude, and menu tiles on the PFD/MFD.

2.5. Warning/Caution/Advisory System

The IDU has an integrated audio/visual warning system, which monitors a wide variety of parameters and provides alerts for conditions that demand pilot action or awareness.

Each transmit enabled IDU provides the following alerts:

- 1) Warning Alerts
- 2) Time-Critical Warning Alerts
- 3) Master Visual and Aural Alerts
- 4) Caution Alerts
- 5) Advisory Alerts

All warnings, including time-critical warnings, also activate the warning (red) light and master caution light discrete outputs. Once acknowledged, the flashing behavior stops, the repeating audio alert is interrupted, and the discrete outputs are deactivated.

All cautions, including time-critical cautions, also activate the caution (yellow) light and master caution light discrete outputs. Once acknowledged, the flashing behavior stops, the audio alert is interrupted, and the discrete outputs are deactivated.

2.5.1. Time-Critical Warning and Caution Alerts

Time-critical warning and caution alerts trigger the following elements (Table 2-3) and display in the pilot's primary field of view with a shaded background (Figure 2-9 and Figure 2-10). EFIS limits have enabled the option for time-critical alerts by pressing the master warning or the master caution lights.

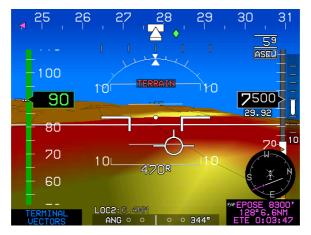


Figure 2-9: Time-Critical Warning Alert

Figure 2-10: Time-Critical Caution Alert

NOTE:

In the following tables, examples show shaded backgrounds on sky and terrain backgrounds for readability.

Table 2-3: Time-Critical Warning and Caution Alerts inPrimary Field of View			
Alert Type	Text Color	Flash Rate	Audio Alert at Full Volume
WARNING WARNING	Red	2 Hz	Repeated until acknowledged by pressing warning/caution acknowledge switch.
CAUTION CAUTION	Amber (Yellow)	1 Hz	Plays only once

Table 2-4: Time-Critical Warning and Caution Alerts			
Visual Alert	Voice Alert "" No Voice Alert	Condition ** No time delay	
OBSTRUCTION OBSTRUCTION	"Warning Obstruction, Warning Obstruction"	Obstruction within TAWS FLTA warning envelope. Half-second time delay.	

Table 2-4: Time-Critical Warning and Caution Alerts			
Visual Alert	Voice Alert "" No Voice Alert	Condition ** No time delay	
TERRAIN TERRAIN	"Warning, Terrain, Warning Terrain"	Terrain cell within HTAWS FLTA warning envelope. Half-second time delay.	
PULL UP	"Terrain, Terrain, Pull Up, Pull Up"	Terrain cell within TAWS FLTA warning envelope. Half-second time delay.	
PULL UP	"Pull Up, Pull Up"	Within GPWS Mode 1 warning envelope. Half-second time delay.	
CHECK GEAR CHECK GEAR	"Check Gear, Check Gear"	Activates if aircraft is below 150' AGL, is descending, and any landing gear is not down. 2-second time delay.	
TERRAIN TERRAIN	"Caution Terrain, Caution Terrain"	Terrain cell within TAWS FLTA caution envelope. Half-second time delay.	
SINK RATE	"Sink Rate, Sink Rate"	Within GPWS Mode 1 caution envelope. Half-second time delay.	
TOO LOW	"Too Low Terrain, Too Low Terrain"	Within GPWS Mode 3 envelope. Half-second time delay. Within GPWS Mode 4-1 "Too Low Terrain" envelope. Half-second time delay. Within GPWS Mode 4-2 "Too Low Gear" envelope. Half-second time delay.	
GLIDESLOPE GLIDESLOPE	"Glideslope, Glideslope"	Within GPWS Mode 5 caution envelope. Half- second time delay.	
OBSTRUCTION OBSTRUCTION	"Caution Obstruction, Caution Obstruction"	Obstruction within TAWS FLTA caution envelope. Half-second time delay.	

Table 2-4: Time-Critical Warning and Caution Alerts			
Visual Alert	Voice Alert "" No Voice Alert	Condition ** No time delay	
TRAFFIC TRAFFIC	"Traffic, Traffic"	Not given if own aircraft below 400' AGL nor if target is below 200'AGL (ground target). **	
HRZ SYNC HRZ SYNC		Annunciates horizon synchronization function is engaged. Annunciation does not flash nor illuminate a master visual alert, because it is not really a caution but instead is a pilot selection annunciation.	

Time-critical warning and caution alerts are prioritized so only one alert at a time is active:

Table 2-5: Time-Critical Warning and Caution Alerts Priority
1) GPWS Mode 1 Warning
2) GPWS Mode 2 Warning
3) TAWS FLTA Warning
4) Obstruction Warning
5) TAWS FLTA Caution
6) Obstruction Caution
7) GPWS Mode 4-1
8) GPWS Mode 4-2
9) GPWS Mode 4-3
10) GPWS Mode 1 Caution
11) GPWS Mode 2 Caution
12) GPWS Mode 3
13) GPWS Mode 5 Warning
14) GPWS Mode 5 Caution
15) Check Gear
16) Traffic Warning (Resolution Advisory)
17) Traffic Caution (Traffic Advisory)
18) Horizon Synchronization Caution

2-28

2.5.2. Warning Alerts

Figure 2-11: Warning Alerts

Table 2-6: Warning Alert Elements			
Type Alert	Location	Flash Rate	Audio Alert at Full Volume
WARNING WARNING	PFD lower left corner of transmit enabled IDU	2 Hz	Repeated until acknowledged by pressing warning/caution acknowledge switch.

Table 2-7: Warning Alerts			
Visual Alert	Voice Alert Condition ** No time delay		
LOW FUEL	"Fuel Low, Fuel Low"	One of the following conditions is true:	
		 A low fuel warning discrete input is active 	
		 A sensed fuel tank quantity is below its low fuel warning threshold 	
		 Total aircraft fuel is below the pilot-set emergency fuel threshold. 	
		1-minute time delay.	

Table 2-7: Warning Alerts			
Visual Alert	Voice Alert	Condition ** No time delay	
OBSTRUCTION	"Warning Obstruction, Warning Obstruction"	Obstruction within TAWS FLTA warning envelope. (Used on CPU #0 only.) Half- second time delay.	
TERRAIN	"Warning, Terrain, Warning Terrain"	Terrain cell within HTAWS FLTA warning envelope. (Used on CPU #0 only.) Half-second time delay.	
PULL UP	"Pull Up, Pull Up"	Within GPWS Mode 1 warning envelope. (Used on CPU #0 only.) Half-second time delay.	
PULL UP	"Terrain, Terrain, Pull Up, Pull Up"	Within GPWS Mode 2 warning envelope. (Used on CPU #0 only.) Half-second time delay.	
GLIDESLOPE	"Glideslope, Glideslope"	Within GPWS Mode 5 warning envelope. (Used on CPU #0 only.) Half-second time delay.	
TRAFFIC	"Traffic, Traffic"	Resolution advisory. Not given if own aircraft at or below 400' AGL. Not given if target is at or below 200' AGL (ground target). Audio not generated with TCAS-II system. (Used on CPU #0 only.) **	

2-30

2.5.3. Caution Alerts

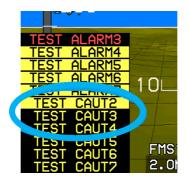


Figure 2-12: Caution Alerts

Table 2-8: Caution Alert Elements			
Type Alert	Location	Flash Rate	Audio Alert
CAUTION CAUTION	PFD lower left corner of transmit enabled IDU	1 Hz	Single alert played at full volume.

Table 2-9: Caution Alerts		
Visual Alert	Voice Alert/ Alert Tone	Condition ** No time delay
ADC1 FAIL ADC2 FAIL ADC1/2 FAIL	Alert Tone	Indicates no valid IAS, pressure altitude, nor VSI received from numbered ADC(s) for more than 1 second. **
ADS-B FAIL	Alert Tone	Enabled by ADS-B out fail warning limits setting. Mode- S transponder indicates bad ADS-B out status. Also, set by audio/radio interface with NGT-9000R transponder. 2-second time delay.

Table 2-9: Caution Alerts			
Visual Alert	Voice Alert/ Alert Tone	Condition ** No time delay	
AHRS1 FAIL AHRS2 FAIL AHRS1/2 FAIL	Alert Tone	Indicates no valid bank, pitch, nor heading received from enumerated AHRS(s) for more than 1 second. Inhibited during and for 10 seconds after unusual attitude mode.**	
AUX SENSOR	"Auxiliary Sensor Failure, Auxiliary Sensor Failure"	No valid message or bad status received from installed optional sensors. Sensor status displayed in faults menu.	
		5-second time delay. Inhibited during and for 10 seconds after unusual attitude mode. Applies to the following optional sensors:	
		 1) RS-232 TAS 2) ADS-B system 	
		 WX-500 Lightning system Analog interface system Weather Radar Weather Radar control panel 	
PLT1_OVRTMP PLT2_OVRTMP PLT3_OVRTMP PLT4_OVRTMP CPLT1_OVRTMP CPLT2_OVRTMP CPLT3_OVRTMP CPLT4_OVRTMP	Alert Tone	IDU core temperature greater than 95°C. 2-second time delay.	

2-32

Table 2-9: Caution Alerts		
Visual Alert	Voice Alert/ Alert Tone	Condition ** No time delay
PLT MISCOMP CPLT MISCOMP	Alert Tone	 Only when fresh intra-system monitor messages are received. Indicates critical parameters used by displays on the indicated side exceed miscompare thresholds. Compares the following critical parameters: 1) Attitude (pitch and roll) 2) Heading 3) Pressure altitude 4) Indicated airspeed 5) Localizer (both inputs) 7) Glideslope (both inputs) 8) Radar altitude 9) Latitude 10) Longitude 11) Track 12) Groundspeed 1-second time delay. Inhibited during and for 10 seconds after unusual attitude mode.
ALT MISCOMP	Alert Tone	With neither ADC failed, indicates pressure altitude difference between ADCs is beyond limits. 10-second time delay. Inhibit for 5 minutes after startup.
ATT MISCOMP	Alert Tone	With neither AHRS failed, indicates pitch or roll difference between AHRS is beyond limits (6°). 10-second time delay. Inhibit for 5 minutes after startup.

Table 2-9: Caution Alerts			
Visual Alert	Voice Alert/ Alert Tone	Condition ** No time delay	
		Based upon flight plan in use on the indicated side, less than 30 minutes buffer (at current groundspeed) between calculated range and distance to: 1) last waypoint if it is	
PLT RANGE CPLT RANGE	"Check Range, Check Range"	active; orairport if on a missed approach; or	
		 along-route distance to destination. 	
		Not activated in climbing flight nor if below 60 kts groundspeed.	
		5-minute time delay.	
PLT1 SCC PLT2 SCC PLT3 SCC PLT4 SCC CPLT1 SCC CPLT2 SCC CPLT3 SCC CPLT3 SCC CPLT4 SCC	Alert Tone	Indicates personality module for designated IDU (side and CPU #) could not be read upon power-up. Internal limits are in use by the system. Only active on the ground.	
PLT1 TAWS PLT2 TAWS PLT3 TAWS PLT4 TAWS CPLT1 TAWS CPLT2 TAWS CPLT3 TAWS CPLT4 TAWS	Alert Tone	Indicates on the designated IDU (side and CPU #), aircraft is currently beyond extent of terrain database or a failure condition is preventing TAWS FLTA function from operating. Half-second time delay. Inhibited during and for 10 seconds after unusual attitude mode.	

Table 2-9: Caution Alerts			
Visual Alert	Voice Alert/ Alert Tone	Condition ** No time delay	
COOLING FAN	Alert Tone	Triggered when external cooling fan is commanded on by discrete output, but the cooling fan status discrete input indicates the cooling fan is not rotating. 1-minute time delay.	
FUEL SPLIT	Alert Tone	Compares the volume of fuel designated left wing tank fuel vs. volume of fuel designated right wing tank fuel to the fuel split caution threshold. Issues a caution if the difference exceeds the fuel split caution threshold. Only performed if the fuel split caution threshold is non-zero and both left and right wing tank fuel is monitored and valid. 1-minute time delay.	
LOW FUEL	"Fuel Low, Fuel Low"	 A low fuel warning is not active and one of the following conditions is true: 1) One of the low fuel caution discrete inputs is active 2) One of the sensed fuel tank quantities is below its low fuel caution threshold 3) Total aircraft fuel is below the pilot-set minimum fuel threshold. 1-minute time delay. 	

Table 2-9: Caution Alerts		
Visual Alert	Voice Alert/ Alert Tone	Condition ** No time delay
GPS MISCOMP	Alert Tone	Neither GPS/SBAS failed. Indicates position, track, or groundspeed difference be- tween GPS/SBAS units is beyond the following limits: Position: Enroute Mode 4NM Terminal Mode 2NM Departure Mode .6NM IFR Approach Mode .6NM VFR Approach Mode .6NM Track : If groundspeed is greater than 30 kts, miscompare if difference is more than 4°. Groundspeed : If difference between GPS#1 and GPS#2 miscompare is more than 10 kts. 10-second time delay.
		Inhibited during and for 10 seconds after unusual attitude mode.
GS MISCOMP	Alert Tone	Indicates at least one glideslope is receiving a signal within 1 dot of center and difference between glideslope signals is beyond limits (0.25 dots). 10-second time delay.

Table 2-9: Caution Alerts		
Visual Alert	Voice Alert/ Alert Tone	Condition ** No time delay
HDG MISCOMP	Alert Tone	With neither AHRS failed nor in DG mode. Indicates heading difference between AHRS is beyond the heading miscompare threshold limit. 10-second delay. Inhibited during and for 10 seconds after unusual attitude mode. Inhibit for 5 minutes after startup.
IAS MISCOMP	Alert Tone	Neither ADC failed. Indicates IAS difference between ADCs is beyond limits. 10-second time delay. Inhibit for 5 minutes after startup.
LOC MISCOMP	Alert Tone	Only active when two valid localizers are received. Indicates at least one lo- calizer is receiving a signal within 1 dot of center and difference between localizer signals is beyond limits (0.25 dots). 10-second time delay.
RALT MISCOMP	Alert Tone	With neither radar altimeter in failure condition. Indicates that radar altitude difference between radar altimeters is beyond limits. 10 second time delay. Limits are as follows: >= 500'AGL Δ14% 100 – 500'AGL Δ10% < 100'AGL Δ10'
OAT FAIL OAT1 FAIL OAT2 FAIL OAT1/2 FAIL	Alert Tone	Applicable to dual ADC installation. Indicates OAT indication is invalid but other air data parameters are normal (i.e., air data not red- X'd). Half-second time delay.

Table 2-9: Caution Alerts			
Visual Alert	Voice Alert/ Alert Tone	Condition ** No time delay	
RALT FAIL <u>1 RALT FAIL</u> <u>2 RALT FAIL</u> 1-2 RALT FAIL	Alert Tone	For analog radar altimeter, indicates the aircraft is below 2000' AGL in air mode without a valid radar altimeter reading. For ARINC 429 radar altimeter, indicates an SSM of failure warning is transmitting. 2-second time delay.	
SAME ADC	Alert Tone	With good inter-system communications, and neither ADC failed, indicates both sides are operating from same ADC source. **	
SAME AHRS	Alert Tone	With good inter-system communications, and neither AHRS failed, indicates both sides are operating from same AHRS source. **	
SAME EICAS	Alert Tone	If EICAS configured, with good inter-system communications. Indicates both sides are operating from the same data source. **	
SAME GPS	Alert Tone	With good inter-system communications, and neither GPS/SBAS failed, indicates both sides are operating from same GPS/SBAS source. **	
Same Nav	Alert Tone	With good inter-system com- munications, indicates both sides are operating from same navigation source. **	

Table 2-9: Caution Alerts			
Visual Alert	Voice Alert/ Alert Tone	Condition ** No time delay	
SAME RADALT	Alert Tone	With good inter-system communications and neither radar altimeter in failure condition, indicates both sides are operating from same radar altimeter source.	
TAWS AUTOROT	Alert Tone	TAWS autorotation mode activated through use of discrete input. **	
TCAS FAIL	Alert Tone	TAS indicates lack of communications with system or failure indication from system. **	
TOTALZR OTY	Alert Tone	 Compares the volume of sensed fuel to the fuel totalizer calculation. Issues a caution if the difference exceeds the totalizer mismatch caution threshold. Only performed if: Totalizer mismatch caution threshold is non- zero; Fuel totalizer is enabled; Unmonitored fuel flag is false; Fuel totalizer has a valid value; and Fuel levels are valid. minute time delay. 	
XFILL FAIL	Alert Tone	1-minute time delay. Indicates lack of inter-system communications. 2-second time delay. Inhibit for 30 seconds after startup.	

Table 2-9: Caution Alerts		
Visual Alert	Voice Alert/ Alert Tone	Condition ** No time delay
GPS1 FAIL GPS2 FAIL GPS1/2 FAIL	Alert Tone	Indicates no valid message received from numbered GPS/SBAS for more than 5 seconds. Inhibited during and for 10 seconds after unusual attitude mode. **

2.5.4. Side-Specific Caution Alerts

Side-specific caution alerts are displayed on all IDUs on a side that detect a failure on an IDU on that side.

Table 2-10: Side-Specific Caution Alerts		
Visual Alert	Alert Tone	Condition ** No time delay
CHECK IDU 1 CHECK IDU 2 CHECK IDU 3 CHECK IDU 4	Alert Tone	IDU status has not been received from another same- side IDU in the last second ± 0.1 seconds. # indicates which IDU is failing the check. **

2.5.5. Advisory Alerts

Figure 2-13: Advisory Alerts

Table 2-11: Advisory Alert Elements			
Type Alert	Location	Appearance	Audio Alert
ADVISORY	PFD lower left corner*	While condition persists	A single advisory chime is played at 80% volume
* In the lower-left corner of transmit enabled IDU.			

Table 2-12: Advisory Alerts		
Visual Alert	Alert Tone	Condition ** No time delay
ADC1 INIT ADC2 INIT ADC1/2 INIT	Chime	Indicates ADC# not at full accuracy during warm-up. **
AHRS1 DG AHRS2 DG AHRS1/2 DG	Chime	Indicates numbered AHRS in DG mode. **
CREW CALL	Chime	Only active with EFIS control of an audio controller and call notice is received from the controller.
PLT1 PWR PLT2 PWR PLT3 PWR PLT4 PWR CPLT1 PWR CPLT2 PWR CPLT3 PWR CPLT3 PWR CPLT4 PWR	Chime	Indicates a dual redundant power supply within the designated IDU (side and CPU #) is not functioning correctly. Only active on the ground. 1-minute time delay.
FPM INHBT	Chime	Flight path marker inhibit function activated through use of momentary discrete input. **
BARO MISCOMP	Chime	Indicates mismatch of altimeter settings or altimeter modes between systems. 10-second time delay.
TAS INHBT	Chime	TAS aural inhibited through activation of TCAS/TAS audio inhibit input. **

Table 2-12: Advisory Alerts						
Visual Alert	Visual Alert Alert Tone Condition ** No time delay					
TAWS GS CNX	Chime	TAWS glideslope cancel (GPWS Mode 5) activated through use of discrete input. Enhanced HTAWS only. **				
TAWS INHBT	Chime	TAWS inhibited through discrete input. **				
TAWS LOW ALT	Chime	TAWS low altitude mode activated through use of discrete input. **				
TCAS STBY	Chime	Indicates system is either: (1) in standby; or (2) executing functional test in flight. **				
TA ONLY	Chime	Indicates TCAS-II system is unable to display resolution advisories. **				
TCAS TEST	Chime	Indicates system is in functional test on ground. **				
XFILL ARM	Chime	Only active with good inter- system communications and crossfill not inhibited. Indicates systems are not synchronized and synchronized function is available. **				
XFILL INHBT	Chime	Only with good inter-system communications, indicates crossfill is inhibited through discrete input. **				

2.5.6. Side-Specific Advisory Alerts

Side-specific advisory alerts have the same characteristics as advisory alerts except, they always appear in the lower-left corner of the transmit enabled IDU screen.

These type of alerts are used where the pilot and copilot systems can generate different alerts, such as when the pilot and co-pilot systems are not crossfilled and are operating on different FMS flight plans.

Table 2-13: Side-Specific Advisory Alerts					
Visual Alert	Visual Alert Alert Tone Condition ** No time delay				
		Ascending through transition level: Altimeter not set to 29.92 inHg or 1013 mbar.			
CHK BARO	Chime	Descending through transition level: Altimeter set to 29.92 inHg or 1013 mbar. Descent warning times out in 10 seconds.			
		Disabled during QFE operation.			
		2-second time delay.			
ANP: 0.01 ANP: 15.0	Chime	GPS/SBAS actual navigation performance in nautical miles based upon current GPS/SBAS HPL. Value ranges from 0.01 to 15.0 NM.			
RNP: 0.10A RNP: 15.0A	Chime	GPS/SBAS automatic required navigation performance in nautical miles as acquired from navigation database. Value ranges from 0.01 to 15.0 NM.			
RNP: 0.10M RNP: 15.0M	Chime	GPS/SBAS manual required navigation performance in nautical miles as set by pilot. Value ranges from 0.01 to 15.0 NM.			
DR 00:00 DR 01:23	Chime	GPS/SBAS in dead reckoning mode with valid ADC and AHRS data. Timer shows time since loss of position (mm:ss) to indicate quality of DR solution. Valid range is from 00:00 to 59:59. Inhibited during and for 10 seconds after unusual attitude mode. **			
lnav appr	Chime	GPS/SBAS in LNAV approach mode. **			

Table 2-13: Side-Specific Advisory Alerts			
Visual Alert	Alert Tone	Condition ** No time delay	
LNV/VNV APPR	Chime	GPS/SBAS in LNAV/VNAV approach mode. **	
LP APPR	Chime	GPS/SBAS in LP approach mode. **	
LPV APPR	Chime	GPS/SBAS in LPV approach mode. **	
MANUAL LEG	Chime	Advises GPS/SBAS is in a condition where a manual termination leg is active.	
		Automatic waypoint sequencing is suspended under any of the following conditions: 1) Pilot has selected a manual GPS/SBAS OBS.	
		 Active waypoint is the missed approach waypoint, and missed approach procedure has not been armed (ARM) nor initiated (MISS). 	
SUSPEND	SUSPEND Chime	 Aircraft is in a published or manually created holding pattern, and pilot has not chosen to continue (CONT) out of the holding pattern. 	
		 Leg following active waypoint is a manual termination leg, and the pilot has not chosen to resume (RESUME) to the waypoint following the manual termination. ** 	
TERMINAL	Chime	GPS/SBAS in terminal mode.	
VFR APPR	Chime	GPS/SBAS in VFR approach mode. **	

2-44

Table 2	-13: Side-Spe	cific Advisory Alerts		
Visual Alert	Alert Tone	Condition ** No time delay		
VECTORS	Chime	GPS/SBAS in vectors to final approach mode prior to sequencing FAWP. **		
PTK = L 1NM PTK = L 20NM PTK = R 1NM PTK = R 20NM PTK ENDING	Chime	GPS/SBAS parallel offset path advisory. ## is nautical miles left (L) or right (R) of main path. "PTK ENDING" if within the parallel offset distance from a parallel offset exit waypoint. **		
FLTA INHBT	Chime	Shown when FLTA function is automatically inhibited during normal operation. TAWS IN- HBT advisory, PLT PFD and CPLT PFD TAWS caution, and FLTA INHBT advisory have priority. **		
TRUE NORTH	Chime	System operating in true north mode. **		

2.5.7. Audio-Only Caution and Advisory Alerts

Table 2-14: Audio-Only Caution and Advisory Alerts			
Caution or Advisory Alert	Voice Alert/ Alert Tone	Condition ** No time delay	
Minimum Altitude Caution Alert	"Minimums, Minimums"	Deviation from above to below minimum altitude bug. Minimum altitude readout turns amber (yellow) and flashes. **	
Selected Altitude Deviation Caution Alert	"Altitude, Altitude"	Deviation greater than 150' from selected altitude after capture (within 100' of altitude). 2-second time delay.	

Table 2-14: Audio-Only Caution and Advisory Alerts

Caution or	Voice Alert/	Condition	
Advisory Alert	Alert Tone	** No time delay	
VNAV Altitude Deviation Caution Alert		If not on a descending VNAV profile, deviation greater than 150' from altitude of the current or prior VNAV waypoint after capture (within 100' of altitude). 2-second time delay.	
Decision Height Caution Alert	"Decision Height"	Deviation from above to below decision height bug. Decision height readout turns amber (yellow) and flashes.**	
GBS/SBAS Failure Caution Alert	Alert Tone	No valid position data available from selected GPS/SBAS for more than 5 seconds and dead reckoning not available. Inhibited during and for 10 seconds after unusual attitude mode. Loss of position data is obvious from symbology changes associated with reversionary modes. **	
GPS/SBAS Loss of Integrity Caution Alert	Alert Tone	GPS/SBAS loss of integrity caution. Inhibited during and for 10 seconds after unusual attitude mode. LOI indication is integrated with lateral deviation indicator. **	
GPS/SBAS Loss of Navigation Caution Alert	Alert Tone	GPS/SBAS loss of navigation caution. Inhibited during and for 10 seconds after unusual attitude mode. LON indication is integrated with lateral deviation indicator. ** FMS LON 2.0NM ○ ○ ▲ ○ ○ 165° A	

2-46

Table 2-14: Audio-Only Caution and Advisory Alerts				
Caution or Advisory Alert	Voice Alert/ Alert Tone	Condition ** No time delay		
Loss of Vertical Navigation Caution Alert	Alert Tone	Loss of vertical navigation caution. Inhibited during and for 10 seconds after unusual attitude mode. VLON indication is integrated with vertical deviation indicator. **		
Countdown Timer Chime	Chime	Sounds when countdown timer reaches 00:00:00. **		
Level-off Advisory Alert	Altitude Alert Tone	Within the greater of 1000' or 50% of VSI from uncaptured selected or VNAV waypoint altitude. Inhibited in approach procedures. **		

2.5.8. Voice Alerts and Muting

Only the highest priority (in criticality and recency), unacknowledged voice alert is played at any given time. Any playing audio message is immediately muted by activating the warning/caution acknowledge switch.

2.5.9. Visual Alert Prioritization and Declutter

Visual alerts are visually prioritized, so warnings are displayed above cautions, which are displayed above advisories. Within categories, visual alerts are stacked in chronological order, so the most recent alert appears on top.

The maximum number of visual alerts that can be simultaneously displayed in the standard location is 11. In the event there are more than 11 visual alerts, **MORE-PRS MENU** appears for guidance in accessing the EXPAND CAS menu.

Only the highest priority (in criticality and recency), unacknowledged aural annunciation is played at a time. In addition, to further minimize cockpit confusion, annunciations are grouped and prioritized so only

one annunciation is active. Annunciations prioritized in this manner are as follows (higher in list = higher priority).

Table 2-15: Annunciations Priority
1) GPWS Mode 1 Warning
2) GPWS Mode 2 Warning
3) TAWS FLTA Warning
4) Obstruction Warning
5) TAWS FLTA Caution
6) Obstruction Caution
7) GPWS Mode 4-1
8) GPWS Mode 4-2
9) GPWS Mode 4-3
10) GPWS Mode 1 Caution
11) GPWS Mode 2 Caution
12) GPWS Mode 3
13) GPWS Mode 5 Warning
14) GPWS Mode 5 Caution
15) Check Gear
16) Traffic Warning (Resolution Advisory)
17) Traffic Caution (Traffic Advisory)
18) Low Fuel Warning
19) Low Fuel Caution
20) Fuel Split Caution
21) Fuel Totalizer Mismatch Caution
22) Check Range

In addition, flags are decluttered from all IDUs, which are not "transmit enabled." Flags only appear on these IDUs if they are IDU-specific (i.e., CHECK IDU #).

2.6. Database and Software Updates

2.6.1. Navigation and Obstruction Databases

The EFIS uses Jeppesen Sanderson NavData® for the navigation database and Jeppesen Sanderson obstacle data for the obstruction database.

Visit <u>www.jeppesen.com</u> to place the order for the correct database.

NOTE:

When ordering, review the EFIS Equipment-Database Compatibility Matrix (document 01-000062) on the Genesys Aerosystems website. This document specifies the compatibility of Genesys Aerosystems EFIS equipment and software versions to navigation database versions.

Three available coverage areas of navigation databases may be used on this EFIS:

Americas - Major airports and navigation for Alaska, Canada, Continental U.S., Hawaii, Puerto Rico, Bahamas, Bermuda, Mexico, Central, and South America.

International - All available coverage except North and South America.

World - Major airports and navigation with the Americas.

The updateable navigation database contains at least the following location and path information, referenced to WGS-84, with a resolution of 0.01 minute (latitude/longitude) and 0.1° (for course information) or better at all of the following for the area(s) in which IFR operations are intended:

- 1) Airports.
- VORs, DMEs (including DMEs collocated with localizers), collocated VOR/DMEs, VORTACs, and NDBs (including NDBs used as locator outer marker).
- 3) All named waypoints and intersections shown on enroute and terminal area charts.
- 4) All airways shown on enroute charts, including all waypoints, intersections, and associated RNP values (if applicable). Airways are retrievable as a group of waypoints (select the airway by name to load the appropriate waypoints and legs between desired entry and exit points into the flight plan).
- 5) RNAV DPs and STARs, including all waypoints, intersections, and associated RNP values (if applicable). DPs and STARs are retrievable as a procedure (select the procedure by name to load the appropriate waypoints and legs into the flight plan).

- 6) LNAV approach procedures in the area(s) in which IFR operation is intended consist of:
 - a) Runway number and label (required for approach identification);
 - b) Initial approach waypoint (IAWP);
 - c) Intermediate approach waypoint(s) (IWP), when applicable;
 - d) Final approach waypoint (FAWP);
 - e) Missed approach waypoint (MAWP);
 - f) Additional missed approach waypoints, when applicable; and
 - g) Missed approach holding waypoint (MAHWP).

The complete sequence of waypoints and associated RNP values (if applicable), in the correct order for each approach, is retrievable as a procedure (select the procedure by name to load the appropriate waypoints and legs into the flight plan). Waypoints utilized as a final approach waypoint (FAWP) or missed approach waypoint (MAWP) in an LNAV approach procedure are uniquely identified as such (when appropriate) to provide proper approach mode operation.

7) LNAV/VNAV procedures in the area(s) where IFR operation is intended. LPV, LP, and/or LNAV/VNAV published procedures are available. Select a procedure by name to load the appropriate waypoints and legs into the active flight plan. Waypoints used as a final approach waypoint (FAWP) and LTP/FTP/MAWP in an LNAV/VNAV procedure are uniquely identified as such to provide proper approach mode operation.

The obstruction database is distributed by a government agency in each country. Not all countries have obstruction databases available.

2.6.2. Update Requirements

Scheduled updates for databases are as follows:

- 1) Navigation Database Every 28 days
- 2) Obstruction Database Every 28 days

 MAGVAR Database - Every 5 years (updated as described in a Genesys Aerosystems Service Bulletin)

CAUTION:

Failure to update the EFIS with the correct navigation database applicable to the IDU software version causes the IDU to remain in continual reboot mode and does not allow any display page to appear.

The EFIS is updated through the ground maintenance function (GMF). To gain access to the GMF, prior to applying power, slide the slip indicator or non-slip blank door cover at the bottom-center of the IDU bezel upward to the first detent position to expose the USB port.

Figure 2-14: Ground Maintenance Page

When an update is performed, the following procedures must be performed separately on every IDU installed in the aircraft.

To update the databases:

- 1) Load the navigation database (navdata.exe) and obstruction database (obst.exe) on USB flash drive.
- 2) Insert the USB flash drive into USB port with the power off.

CAUTION:

Always install a valid USB flash drive in the IDU prior to activating any ground maintenance function. Operation of the GMF without a valid USB flash drive installed may cause erroneous failure indications or corruption of the IDU.

- 3) Turn on power to gain access to the GMF page.
- 4) Scroll **1** to **Update Databases** and push to enter.

- 5) Once each database is loaded, press any button to continue to complete the process.
- 6) Once both databases have been uploaded, power down the IDU, remove the USB flash drive, and lower the USB door.
- 7) Once each IDU has been updated, power up the entire EFIS in normal flight mode and verify each IDU successfully updated with the latest database by noting the new navigation database and obstruction database cycle expiration dates before acknowledging the initialization screen (Figure 2-4). Because the obstruction database is advisory in nature, there technically is no expiration date. The listed date is the effective date of the next available obstruction database.
- 8) A CRC self-test verifies the data at every step of the process, thereby ensuring the data installed into the system has not been corrupted at any point during the process.

2.6.3. Software and Terrain Database Update

Updates and terrain database updates are provided on an asneeded basis and performed as per a service bulletin.

2.7. Demonstrator

The EFIS has a built-in demonstration application to fly anywhere in the world while performing any procedure (except takeoff and landing) based on the current navigation database. Use this feature on the ground in ground mode as follows:

- 1) With power off, lift the USB flash drive door and insert a USB flash drive.
- Power on the system. Scroll ① to RUN DEMONSTRATOR/ TRAINING PROGRAM and push to enter.

Use the demonstrator to gain familiarity of the EFIS menu structure and location of button tiles for each operation. Load an instrument procedure prior to take off to view the expected sequence of events.

The demonstrator begins flying over Reno, Nevada, USA at an altitude of approximately 8000' MSL. Altitude may be changed with altitude bug, VNAV profiles or navigation database procedures. Airspeed remains relatively constant but may be controlled with the airspeed IAS bug in the BUGS menu. The simulated aircraft may be

positioned anywhere in the world, by activating a flight plan stored in the memory.

All appropriate navigation signals are simulated, allowing for precision and non-precision instrument approaches found within the current navigation database. All obstructions in the latest obstruction database and all time-critical warning, caution, and advisory aural and flag annunciations are presented as appropriate during simulated flights.

NOTE:

When operating in Demonstrator mode, the IDU is isolated from all sensors and other IDUs. Flight plans created on an IDU are stored on that IDU alone. To make the flight plan available on all other displays, the following action must be taken.

- 1) While in flight mode, activate the flight plan created in the demonstrator mode.
- With crossfill enabled (in two sided systems), view active flight plan on any other IDU and press SAVE (L1) to save this flight plan on all displays.

2.8. EFIS Training Tool

In addition to the demonstrator program, the EFIS Training Tool (ETT) is available to load on a personal computer. The ETT is compatible with 32- or 64-bit versions of Microsoft Windows®. It serves as a multi-purpose tool for training pilots and provides features to record and capture images. See user guide distributed with the ETT installer for further details.

2.9. Application Software Air Mode and Ground Mode

Numerous symbology elements change behavior depending upon whether the aircraft is on the ground (ground mode) or in flight (air mode). Mode is determined separately from the system initialization modes. This parameter is continuously calculated as follows:

- With a weight on wheels/weight on ground discrete input configured, air or ground mode is determined solely from the discrete input position.
- 2) Otherwise, mode is determined as follows:

- a) If airspeed is valid and AGL altitude is valid, ground mode is set when indicated airspeed is less than 30 knots, and AGL altitude is less than 75 feet.
- b) If airspeed is invalid but AGL altitude is valid, ground mode is set when AGL altitude is less than 75 feet.
- c) Under any other circumstance, air mode is set by default.

Section 3 Display Symbology

3.1. Introduction

This section details the symbology on the pilot and co-pilot PFD and MFD. This section only describes the PFD configured with the airspeed scale digital configuration set to tapes with both "pure" and "rolling" digital configurations.

3.1.1. PFD (PFI) Symbology

Figure 3-1: PFD, Pure Digital Configuration

 Figure 3-2: PFD, Rolling Digital Configuration

 Rev A Mar, 2018
 IDU-450 EFIS Software Version 8.0F (Rotorcraft)

3.1.2. Basic Mode

Figure 3-3: PFD in Basic Mode Rolling Digital

The following are no longer present when Basic mode is displayed:

- 1) Atmospheric perspective
- 2) Terrain rendering
- 3) Obstructions rendering
- 4) Flight path marker

- 5) Roll pointer option
- 6) Bank scale option
- 7) Airport runways

With Bank Scale

Without Bank Scale

Figure 3-4: PFD Bank Scale

3.2. Menu Functions

The top-level menu level corresponds to the permanent IDU pushbutton labels and is active when no soft menu tiles appear next to the appropriate IDU button or encoder (①).

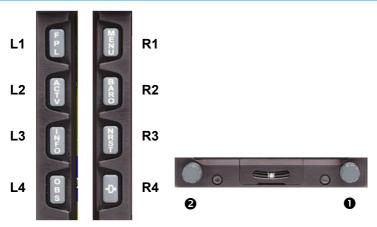


Figure 3-5: Menu Functions

On the PFD, scroll **1** to activate the heading menu. On MFD pages with an adjustable display (e.g., ND, Strikes, Traffic, Datalink, or Weather Radar) scroll **1** CW to increase scale or CCW to decrease scale.

Selection lists too long to be presented in the available space indicate the location within the list. When the menu system is beyond the top-level, **EXIT (R1)** escapes to the top-level. When a menu level is deeper than the first level, **BACK (L1)** regresses one level through the menu system.

3.2.1. Altitude Display and Altimeter Setting

Synthetic Vision

Basic Mode

Press **BARO (R2)** to enter altimeter setting mode and view the altimeter setting in inches of mercury (inHg) or millibars (mbar) value in the lower right corner. Scroll **①** CW to increase or CCW to decrease the QNH. Push **①** to enter the new value. The altimeter setting is immediately below the altitude readout box and digitally displays the altimeter setting in either inches of mercury (inHg) or millibars (mbar) according to the pilot-selected units.

When QFE altimeter setting is selected, QFE is annunciated immediately below the altimeter setting. When QNH altimeter setting is selected, no mode is annunciated below the altimeter setting

QFE: Barometric setting resulting in the altimeter displaying height above a reference elevation (e.g., airport or runway threshold).

QNE: Standard barometric setting (29.92 inHg or 1013 mbar) used to display pressure altitude for flight above the transition altitude.

QNH: Barometric setting resulting in the altimeter displaying altitude above mean sea level at the reporting station.

Synthetic Vision - QNH

Synthetic Vision - QFE

Basic Mode - QNH

Basic Mode - QFE

Figure 3-7: Altimeter Setting

3.2.2. Selected Altitude Sub-Mode (Target Altitude)

When in selected altitude sub-mode, the altitude scale has a pilotsettable target altitude bug geometrically interacting with the altitude box pointer. The target altitude bug value has a resolution of 100 ft., and a range from -1000 ft. to 20,000 ft.

When in altitude hold mode, the target altitude bug setting annunciation is green, while the target altitude bug is filled-white.

When in a climb or descent mode, the target altitude bug setting annunciation is white, and the target altitude bug is hollow-white.

During altitude hold capture, the target altitude bug setting annunciation is green and flashes, while the target altitude bug is filled-white.

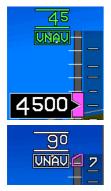
Figure 3-8: Target Altitude Bug (Vertically Integrated)

When not vertically integrated with an autopilot, the target altitude bug setting annunciation is white, and the target altitude bug is filled-white at all times.

Figure 3-9: Target Altitude Bug (Not Vertically Integrated)

3.2.3. VNAV Sub-Mode

When in VNAV sub-mode, the altitude scale shows the active waypoint VNAV altitude (if it exists) with a bug symbol geometrically interacting with the altitude box pointer. The VNAV altitude bug setting is annunciated above the altitude scale with a resolution of 100 feet.



When not vertically integrated with a fullyintegrated digital autopilot, the VNAV altitude bug setting annunciation includes "VNAV" indicating VNAV altitude sub-mode. When verticallv integrated with a fully-integrated digital autopilot, this leaend is not needed, because an equivalent indication appears in the autopilot mode annunciation area.

Figure 3-10: VNAV Sub-Mode (Not Vertically Integrated)

The VNAV altitude bug is a visual reference or, when vertically integrated with an autopilot either fully or partially integrated through the vertical mode discrete input, as a control parameter for climbs or descents.

When vertically integrated with an autopilot:

When in altitude hold mode, the VNAV altitude bug setting annunciation is green, and the VNAV altitude bug is filled-magenta. During altitude hold capture, VNAV altitude bug setting annunciation is green and flashes, while the VNAV altitude bug is filled-magenta.

When in a climb or descent mode, the VNAV altitude bug setting annunciation is white, and the VNAV altitude bug is hollow-magenta.

Figure 3-11: VNAV Sub-Mode (Vertically Integrated)

When the VNAV altitude or target altitude differs from aircraft altitude to the extent the associated bug is off-scale, the associated bug is "parked" in the direction of the difference with half of the associated bug visible as seen in Figure 3-11.

3.2.4. Altitude Display (VNAV Tile)

When enabled for performing VNAV with a manually selected altitude entered, **VNAV (L2)** appears.

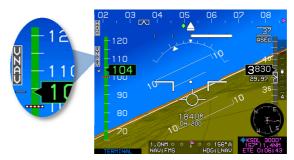


Figure 3-12: Altitude Display (VNAV Tile)

3.2.5. Altitude Display (Metric Units)

Pilot-selectable altitude values are in metric units with a resolution of 10 meters as depicted.

Figure 3-13: Altitude Display (Metric Units)

3.3. PFD Symbology

Figure 3-14: PFD Symbology

The PFD combines pitot-static information, heading, attitude, 3-D navigation data, and more overlaid on a virtual background of the outside world. Other objects in the background, including terrain,

obstructions, traffic, and runways are presented conformally as if seen directly in front of the aircraft while looking outside.

3.3.1. Minimum Altitude

A user-settable minimum altitude bug consists of a bold yellow line on the altitude scale and a yellow region on the altitude scale from the minimum altitude down to ground level. The minimum altitude bug value is displayed above the altitude scale with a resolution of 10 ft. The minimum altitude bug can be used in conjunction with a selected altitude or VNAV bug. When a minimum altitude is set, descending from above to below causes the "Minimums, Minimums" audible alert and the minimum altitude to turn amber (yellow) and flash.

Figure 3-15: Minimum Altitude

3.3.2. Vertical Speed Indicator

Figure 3-16: VSI IDU-450 EFIS Software Version 8.0F (Rotorcraft)

The vertical speed indicator (VSI) is depicted in a "worm" format providing analog and digital representation of VSI in feet per minute (fpm). For example, rate of descent in Figure 3-16 is 700 fpm.

Table 3-1: Scale Graduations and Display				
Type Traffic Scale Limit Scale Graduations and Display				
With TCAS-II	±2,000 FPM	\pm 500, \pm 1,000, and \pm 2,000 Background of the VSI functions as an RA display with green and red colored regions to provide RA maneuver guidance.		
Without TCAS-II	±2,000 FPM	±500, ±1,000, and ±2,000 fpm		

The pilot-selectable VSI bug setting (100 fpm resolution) in this example is set to 1000 fpm descent rate. The vertical speed bug is used either as a visual reference or, when vertically integrated with an autopilot (either fully integrated or partially integrated through use of the vertical mode discrete input), as a control parameter for climbs or descents. It is mutually exclusive with the airspeed bug.

Figure 3-17: VSI Bug

When vertically integrated with an autopilot, the VSI bug-setting annunciation is green with the speed bug filled-white when in VSI climb or descent mode. Otherwise, the VSI bug setting is white, and VSI bug is hollow-white.

Figure 3-18: VSI Bug (Vertically Integrated)

When not vertically integrated with an autopilot, the vertical speed bug setting annunciation is white, and the vertical speed bug is filledwhite at all times.

3.3.3. Normal AGL Indication

AGL altitude is displayed in two formats above the course deviation indicator (normal) and as the (analog) AGL indicator. These are mutually exclusive of each other and driven by the AGL altitude Rev A Mar, 2018 IDU-450 EFIS Software Version 8.0F (Rotorcraft) 3-9

source used for TAWS but not displayed when the source is invalid. Source indication designates the source for either format as follows:

R = Radar altitude

G = GPS/SBAS geodetic height less database ground elevation

B = Barometric altitude less database ground elevation

(SVS Basic) AGL Based on GPS Altitude

(SVS TAWS) AGL Based on Radar Altimeter

Figure 3-19: Normal AGL Indication

AGL altitude is not displayed in either format when it is greater than the radar altimeter maximum valid altitude nor when it is invalid. Additionally, the AGL indication includes the set decision height (see § 3.3.5).

Table 3-2: AGL Indication				
Altitude≥300 Feet≥100 Feet<100				
AGL Indication resolution 10 Feet 5 Feet 1 Foot				

3.3.4. Analog AGL Indication

Pilot-selected analog AGL indication is displayed in the lower right corner of the PFD above the active waypoint identifier with a green circular tape and digital readout in the center. The circular tape has a radial line at its end and disappears above 1000' AGL.

Figure 3-20: Analog AGL Indication

The analog AGL indicator disappears in unusual attitude mode and is mutually exclusive with the mini-map and traffic thumbnail. Likewise, when the analog AGL altitude display is shown, the normal AGL display is removed.

Table 3-3:	Analog	AGL	Indicator
------------	--------	-----	-----------

Analog AGL Indicator Markings 0-1000 Feet		AGL	Scaling (at clock position)
0-100 Feet	100 Feet-1000 Feet	0'	6:00
Linear	Logarithmic	50'	9:00
		100'	12:00
		200'	1:30
		500'	3:00

Table 3-4: Analog AGL Indicator Markings		
	Major Tick Marks	Minor Tick Marks
0'	✓	
10'		✓
20'		✓
30'		✓
40'		✓
50'	\checkmark	
60'		✓
70'		✓
80'		✓
90'		✓
100'	\checkmark	
200'		✓
300'		\checkmark
400'		✓
500'	✓	
1000'	\checkmark	

3.3.5. Decision Height

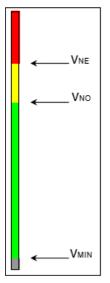
Pilot-settable decision height is displayed above the CDI with the abbreviation DH and by a yellow radial on the analog indicator. When the aircraft descends below decision height, **DH** ### turns amber (yellow) and flashes and the circular tape turns amber (yellow). This is accompanied by "Decision Height" audible alert.

Figure 3-21: Decision Height

3.3.6. Airspeed Display

Airspeed is digitally displayed in same color as airspeed scale in knots, miles, or kilometers per hour with interactive pointer. The airspeed scale is commensurate with the certification category of the aircraft.

The airspeed box pointer interacts with the airspeed scale and has graduations every five measurement units with labels every 10 measurement units with high numbers at the top. The airspeed scale range has at least 40-75 measurement units. During an ADC failure, a red "X" is displayed in place of the airspeed scale.


Figure 3-22: Airspeed Display

The airspeed trend vector is calculated along the rotorcraft longitudinal axis is in a worm format to provide analog representation of IAS achieved in five seconds assuming the instantaneous longitudinal acceleration is maintained.

Figure 3-23: Airspeed Trend

The airspeed scale for Part 27 and Part 29 rotorcraft has additional specific airspeed markings as follows:

A red cross-hatched line at V_{NE} (power-off).

If enabled, a white triangle translational lift reference speed marker.

Figure 3-24: Airspeed Scale FAR Part 27/29

Airspeed bug is parked in the direction of the difference if airspeed off scale.

Figure 3-25: Airspeed Scale Bug

The pilot-settable airspeed bug geometrically interacts with the airspeed box pointer and is colored as per Table 3-6. When the bug setting differs from aircraft speed to the extent the bug is off scale, the bug appears to be parked.

Table 3-5: Airspeed Bug Limits	
Low end	High end
VMIN	Red-line (VNE)

Table 3-6: Airspeed Bug Setting Annunciation and Bug Colors		
	Vertically Integrated Autopilot	
	Without	Without
Airspeed	White at all	Green when in airspeed climb or
Bug Setting	times	descent mode otherwise white
Airspeed Bug	Filled-white at all times	Filled-white when in airspeed climb or descent mode otherwise hollow-white

3.3.7. Airspeed Display (With EFIS-Coupled)

Airspeed descent to 3,500' with green color and filled airspeed

Figure 3-26: Airspeed Display (with EFIS-Coupled)

When the ADC sensor fails, a black circle with red "X" is shown instead of the airspeed readout, dial and pointer.

3.3.8. Heading Display

Basic Mode

Figure 3-27: Heading Display

The PFD heading scale across the top of the display is aligned with magnetic north with graduations every 5° with major graduations and heading labels every 10° . These graduations and digits of the heading scale are equally spaced so, at an aircraft roll angle of zero,

they approximately conform to the 3-D PFD background. The heading scale includes a triangular white heading pointer aligned with the longitudinal axis of the aircraft with a slip indicator.

An integral slip indicator is provided and may replace the mechanical slip indicator mounted in the bezel. The slip indicator is a rectangle just below the heading pointer that moves left and right to indicate the lateral acceleration sensed by the AHRS in the same manner as the ball in a mechanical slip indicator. The integral slip indicator is responsive to lateral (Y-axis) G-force (the slip indicator is the white rectangular part of the heading pointer) and is damped, so it approximately matches a conventional glass vial indicator.

When the AHRS is in DG mode, the DG symbol appears as shown here.

Figure 3-28: DG Indicated when AHRS in DG Mode

Figure 3-29: Slip/Skid Indicator

The heading scale has a green, diamond-shaped track pointer aligned with the aircraft's track across the earth. When the aircraft's track is displaced from aircraft heading beyond the boundaries of the PFD screen, the track pointer is drawn at the limit of the heading scale in the direction of the displacement, and the aircraft track value is displayed in a solid green box above the track pointer as seen in Figure 3-30. The track pointer is not displayed when ground speed is less than 30 knots.

The heading scale has a pilot-settable heading bug symbol geometrically interacting with the heading pointer. When the heading bug is set, the value is displayed in a white bordered black box above the heading bug symbol for a period of five seconds. When the heading bug value is displaced from aircraft heading beyond the boundaries of the PFD screen, the heading bug symbol is drawn halved at the limit of the heading scale in the direction of the displacement, and the heading bug value is displayed in a white bordered black box above the heading bug symbol (Figure 3-30).

Figure 3-30: Displaced Heading Bug

When an active waypoint exists, the heading scale includes a magenta, star-shaped waypoint pointer at a point corresponding with the active waypoint. When the waypoint pointer is displaced from aircraft heading beyond the boundaries of the PFD screen, the waypoint pointer is replaced by a magenta, triangular arrow at either the far-right or far-left limit of the heading scale to indicate the shortest (not necessarily the safest) direction of turn to the active waypoint (Figure 3-30). The waypoint pointer and shortest direction of turn indications turn amber (yellow) in the event of GPS loss of navigation (LON) caution.

3.3.9. Pitch Scale

Figure 3-31: Pitch Scale

The PFD has large aircraft symbol reference marks fixed in the center of the display. Rotation of the background, pitch scale, and background oriented display elements occur relative to the location of the waterline symbol or large aircraft reference marks.

Pitch scale has increments every 5° with major increments and pitch scale labels every 10°. Increments are equally spaced to approximately conform to the 3-D PFD background. Pointer bars at the ends of each major increment indicate direction to the horizon and automatically declutter to present the fewest possible increments needed to unambiguously display pitch attitude. The

pitch scale terminates with a zenith symbol (small white circle) at +90° and a nadir symbol (small white circle with "+") at -90°.

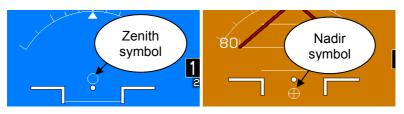


Figure 3-32: Pitch Scale Zenith and Nadir Symbols

3.3.10. Turn Rate Indicator

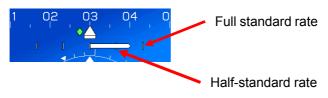
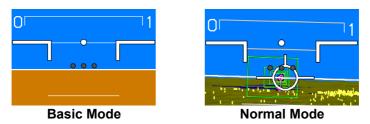
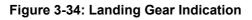
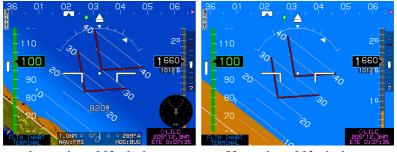




Figure 3-33: Turn Rate Indicator

3.3.11. Landing Gear Indication


If configured, the PFD displays landing gear position as small "tires" below the flight path marker (FPM) or large aircraft symbol reference marks.

3.3.12. Unusual Attitude Mode

Less than 30° pitch up

More than 30° pitch up

Figure 3-35: Unusual Attitude Mode

Unusual attitude mode is enabled when pitch attitude exceeds $+30^{\circ}$ or -30° or bank angle exceeds 50 and remains engaged until pitch attitude returns to within 5° of the horizon and bank attitude returns to within 10° of the horizon. Recovery chevrons tied to the 30° and higher pitch scale indications (both positive and negative) aid in unusual attitude recovery and are a normal part of the pitch scale and are not necessarily tied to unusual attitude mode.

The following features are disabled in unusual attitude mode:

- 1) Terrain and obstruction rendering
- 2) CDI
- 3) VDI
- 4) FPM
- 5) Highway in the Sky boxes
- 6) Atmospheric perspective
- 7) Analog and digital AGL indication

- 8) Active Waypoint symbology
- 9) Mini Map
- 10) Traffic thumbnail
- 11) If in basic mode, PFD reverts to normal mode
- 12) If in zoom mode FOV, PFD reverts to normal FOV
- 13) Runways

3.3.13. PFD Background

Figure 3-36: PFD Terrain and Obstructions

The PFD has a 3-D background generated from terrain elevation and obstruction elevation data stored in electronic memory. The "actual horizon" displayed on the PFD is based upon the higher of terrain within 90NM or a horizon calculated using a visible horizon equation. Thus, the relative elevation of terrain and obstructions with respect to aircraft altitude and performance is observed by reference to the primary flight information pitch ladder and FPM.

The background has two pilot-selectable field of view (FOV) modes, wide FOV mode (approximately 70°) and narrow FOV mode (approximately 35°). In unusual attitude mode, wide FOV mode is automatically selected.

A blended-tone sky is displayed in conjunction with terrain. The sky fades from light blue at the horizon to dark blue at the top of the display to simulate atmospheric perspective and enhance the 3-D presentation. Additionally, the blended sky increases contrast of the directional scale, emphasizes the horizon, and provides a compelling visual cue to a nose-high attitude.

Terrain and obstruction rendering uses hidden surface removal techniques, while terrain/sky rendering uses atmospheric perspective techniques. Terrain with obstruction rendering is collectively pilot-selectable to declutter the display (*independent declutter of obstructions is not possible*). Terrain and obstruction rendering is disabled in basic mode, unusual attitude mode, and

during any reversionary mode. In unusual attitude mode, the bluebrown boundary line of the background decouples from the pitch scale at high pitch angles so a sliver of the blue-brown boundary line always remains visible to give guidance to the horizon.

Terrain ahead of the aircraft is shown conformally with the artificial horizon in the correct scale and perspective for the aircraft's current position and altitude. Worldwide terrain coverage is provided in each IDU and is shown with a resolution as shown in Table 3-7. Terrain is displayed ahead of the aircraft using a grid and simulates "atmospheric perspective" (terrain lines fade into the background "ground" color as they recede into the distance).

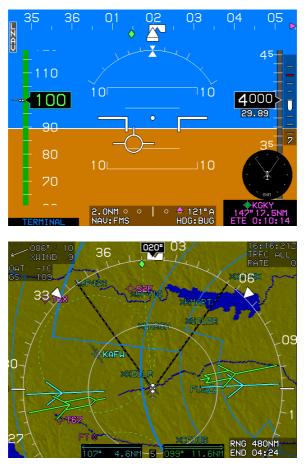
NOTE:

There is a one-degree dead band to prevent grid flicker while flying along one of the boundary latitudes. The grid space switching changes at one degree less latitude when flying towards the Equator than it does when flying toward the Poles.

At latitudes greater than 75°, no grid lines are shown. To keep the grid spacing relatively consistent, at latitudes between 45° and 75°, the longitude spacing is increased according as follows.

Table 3-7: LAT-LON Resolution Boundaries			
Latitude	Longitude Grid	Heading I	Boundary
Range	Spacing	Pole	Equator
0° to 46°	24 arc-seconds		
46° to 62°	48 arc-seconds	46°	45°
62° to 70°	72 arc-seconds	62°	61°
70° to 74°	96 arc-seconds	70°	69°
74° to 75°	120 arc-seconds	74°	73°

Table 3-8: Terrain and Obstruction Rendering Levels		
Feature	Coloring	Notes
SVS BASIC	Shades of brown for non-water terrain.	Amber and red colors not used for normal display of terrain. Deep blue denotes areas of water and takes precedence over the shades of brown.


Table 3-8: Terrain and Obstruction Rendering Levels		
Feature	Coloring	Notes
SVS TAWS	Shades of olive when at or below 100 feet less than aircraft altitude.	Amber and red colors used for normal display of terrain and to show
	Shades of brown when above 100 feet than	terrain areas causing FLTA alerts.
_	aircraft altitude.	Deep blue denotes areas
	TAWS coloring of FLTA alert or warning cells.	of water and takes precedence over other colors.
None	No terrain or obstructions are shown. Neither, SVS BASIC or SVS TAWS is selected.	

WARNING:

DO NOT USE THIS EFIS FOR TERRAIN-FOLLOWING FLIGHT. DO NOT ATTEMPT TO NAVIGATE USING THE TERRAIN DEPICTION. ALWAYS ADHERE TO PUBLISHED NAVIGATIONAL INSTRUMENT PROCEDURES AND NAVIGATIONAL CHARTS IN ALL FLIGHT CONDITIONS.

When terrain and obstruction rendering is deselected or disabled, the PFD background is a conventional blue over brown attitude display presentation without atmospheric perspective. Additionally, terrain may be deselected on the PFD and retained on the ND MAP page as seen in Figure 3-37.

Figure 3-37: Terrain Deselected on PFD but Selected on MFD

Obstructions such as towers, antennas, buildings, and other manmade structures are shown on the PFD display as vertical amber (yellow) lines (see Figure 3-38). They are conformal in location and size and only shown in conjunction with terrain regardless of altitude. Obstructions representing a collision hazard are annunciated aurally and with a caution or warning flag. See Section 2 System Overview for description of alerts when obstructions represent a collision hazard.

WARNING:

MANY TOWERS, ANTENNAS, STRUCTURES, AND OBSTRUCTIONS ARE NOT IN THE DATABASE.

NOTE:

The obstruction data is provided by Jeppesen and must be updated each 28 days to maintain current database information.

Obstructions without Hazardous Condition Obstructions Creating an OBSTRUCTION Warning

Figure 3-38: PFD with Obstructions

3.3.14. Flight Path Marker (Velocity Vector)

Figure 3-39: Flight Path Marker

The FPM appears on the background to coincide with the aircraft's actual flight path as projected on the outside world. The FPM is laterally displaced parallel to the horizon with respect to the center of the display to account for the difference between aircraft track and heading, and is vertically displaced perpendicular to the horizon to account for aircraft climb or descent angle.

Because the FPM is used in conjunction with a 3-D background, the FPM utility normally associated with a HUD is achieved. When the FPM is displaced to the extent it interferes with heading, altitude, or airspeed indications, it is removed from the display as in Figure 3-40.

FPM nearing airspeed tape due to strong crosswind from the right

FPM removed due to excessive crosswinds from the right

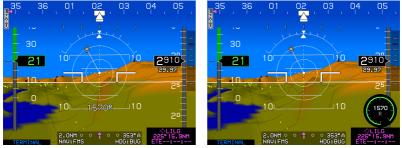
Figure 3-40: Flight Path Marker Views

FPM movement is dampened by reference to aircraft pitch and heading so not to deviate from pitch or heading at a rate greater than 1° /sec.

Figure 3-41: FPM Absent (Unusual Attitude Mode)

Figure 3-42: PFD with FPM Removed

In unusual attitude mode, the FPM disappears to allow the pilot to concentrate on the large aircraft symbol reference marks for unusual attitude recovery. In reversionary mode 1 (GPS failure), the FPM changes to a light gray color after one minute to indicate degraded performance (Figure 3-43).


Figure 3-43: PFD with GPS Failure after 1 Minute

3.3.15. Hover Vector

The FPM is removed at low speed, <30 knots groundspeed, and is replaced with hover vector symbology. The hover vector indicates

direction and groundspeed of drift at low groundspeeds (when lower than 30 kts) consisting of large aircraft symbol reference marks, an inner concentric ring indicating 10 knots groundspeed, an outer concentric ring indicating 20 knots groundspeed, and a vertical and horizontal dashed line passing through the center extending to the outer ring. The white dot of the large aircraft symbol reference marks indicates 0 knots groundspeed and is the center for the concentric rings. A gray dot equal in size to the white dot and connected to the white dot by a white line floats over the concentric ring area to indicate direction and magnitude of drift in a gods-eye view.

AGL Indicator (Normal)

AGL Indicator (Analog)

Figure 3-44: PFD Hover Vector Symbology

A diamond-shaped acceleration cue is centered on the gray dot to indicate direction and magnitude of horizontal acceleration. Deviation of the dot in a straight up direction (12 o'clock position) indicates forward flight while straight down (6 o'clock position) indicates rearward flight. Deviation of the dot laterally indicates lateral drift in that direction. The movement of the dot is constrained to less than five knots per second to prevent jumpiness. The example above shows drift, forward and slightly to the right (1 o'clock position) at 20 knots groundspeed. (See § 3.7.2 for full hover vector symbology with Hover page selected on MFD.)

NOTE:

In the event the bank scale was decluttered, it becomes uncluttered while at low speed <30 knots groundspeed.

3.3.16. Bank Angle Scale

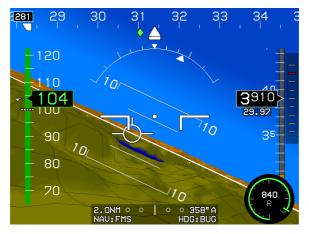


Figure 3-45: Bank Angle

The bank scale and roll pointer are centered upon the large aircraft symbol reference marks in basic or unusual attitude modes. When bank angle scale decluttering is selected, the bank angle scale and sky pointer are displayed when the bank angle exceeds 2.8°. With decluttering selected, appearance of the bank angle scale and roll pointer are dampened based upon magnitude and time to prevent nuisance appearances.

When decluttering is not selected, the bank angle scale and sky pointer appear full time with level, 10°, 20°, 30°, 45°, and 60° marks on left and right sides. The bank angle scale and roll pointer are centered upon the large aircraft symbol reference marks (basic mode or unusual attitude mode).

3.3.17. Turn Indication

Rate of turn is available as an option in the PFD declutter menu to show a worm in the direction of turn with full scale deflection indicating a standard rate of turn and half standard rate indicated at the mid-scale marking.

Figure 3-46: Turn Indicator

3.3.18. Timer Indication

When selected, a countdown or count-up timer is displayed above the FPM or large aircraft symbol reference marks.

Figure 3-47: Timer

3.3.19. Marker Beacon Symbology

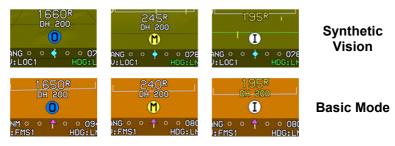


Figure 3-48: Marker Beacons

Marker beacons data acquired from the navigation receiver are displayed on the PFD and disabled when the selected NAV source is FMS. Valid marker beacon signals cause circular indicators with appropriate coloring and markings to display in the lower central portion of the PFD.

3.3.20. Flight Director Symbology

FD1 Single Cue

FD2 Dual Cue

Figure 3-49: Flight Director

Flight director (FD) symbology is controlled on the IDU or integrated autopilot/flight director equipment. When selected, FD symbology

Section 3 Display Symbology

and valid steering commands are received from the FD with one of the following symbols shown in the normal mode. The PFD has a waterline symbol fixed in the center of the display. Rotation of the background, pitch scale, and background oriented display elements occur relative to the location of the waterline symbol or large aircraft reference marks.

FD1 Single Cue

FD2 Dual Cue

Figure 3-50: Flight Director (Basic Mode)

3.3.21. Course Deviation Indicator (CDI)

With Autopilot

Figure 3-51: Course Deviation Indicator

The order of precedence of type accuracy used by the system from highest to lowest is as follows:

- 1) Manual RNP: The pilot may override the automatic accuracy types by setting a manual RNP value.
- Automatic RNP: These are based upon RNP values, which are coded in the navigation database. The EFIS looks at the leg coding on all legs other than those on the final approach

segment. On the final approach segment, the EFIS looks at the "Level of Service" record for those approaches, which have RNP transition legs, and then goes to LP or LPV minima for the final approach.

 Default TSO-C146C operation: As specified as per Table 3-9 for enroute, terminal, and various approach modes according to the "Level of Service" record.

CDI Pointer and Condition	Color or Behavior				
Full Scale Deflection	Flash				
Slaved to GPS/SBAS	Scale is appropriate FSD value for mode of flight:				
	Enroute: ±2NM				
	From Enroute to Terminal: Change from ± 2 NM FSD to ± 1 NM FSD over distance of 1 NM; start transition when entering terminal mode.				
	From Terminal to Enroute: Change from ± 1 NM FSD to ± 2 NM FSD over distance of 1 NM; start transition when entering enroute mode.				
	From Terminal to Approach: If VTF, switch immediately.				
	Otherwise, change from ±1 NM FSD to approach FSD over distance of 2 NM; start transition at 2 NM from FAWP.				
	From Approach to Terminal: Change to ± 1 NM.				
	From Departure to Terminal: If initial leg is aligned with runway, change from ± 0.3 NM FSD to ± 1 NM FSD at the turn initiation				

Table 3-9: CDI Behavior and Color

Table 3-9: CDI Behavior and Color				
CDI Pointer and Condition	Color or Behavior			
	point of the first fix in the			
	departure procedure.			
Slaved to GPS/SBAS (with GPS Loss of Navigation)	Amber (Yellow)			
Normal conditions	Magenta			
In sources other than FMS	Angular scale annunciation			
Navigation source is localizer (Course error exceeds 105°)	Reverse sensing			
Lateral deviations in failed state	Red "X" displayed over CDI			
EFIS not coupled	l with autopilot			
NAV:FMS2 1.0NM ○ ○ ↑ ○ ○ 073°A	Selected NAV source FMS2			
NAV: VOR1 ANG ◆ ○ │ ○ ○ 360"	Selected NAV source VOR1			
NAV: VOR2 ANG • • • • 360"	Selected NAV source VOR2			
EFIS coupled syste	em with autopilot			
2.0NM • • • • 346" A NAV:FMS1 HDG:LVL	Holding the wings level*			
ANG • • • • 344" NAV: BC1 HDG: BUG	Tracking HDG BUG**			
ANG • • • • 344" NAV: BC1 / HDG: LANAV	LNAV in ARM mode**			
ANG o o 344" LNAV captured**				
*No positive autopilot feedback/**	Positive autopilot feedback			

3.3.22. OBS Setting of CDI

In automatic mode, the system controls the scale and OBS setting. The selected navigation source is annunciated below the CDI as follows:

- 1) NAV: FMS1/FMS2
- 2) NAV: VOR1/LOC1

- NAV: BC1/BC2 (annunciated instead of LOC1/2 when course error exceeds 105°)
- 4) NAV: VOR2/LOC2

3.3.23. Heading/Roll-Steering Sub-Mode

Heading/roll-steering sub-mode annunciation appears immediately right of the selected navigation source annunciation and displays:

- 1) HDG: LVL (Wing-Leveling Sub-Mode Guidance)
- 2) HDG: LNAV (LNAV Sub-Mode Guidance)
- 3) HDG: **BUG** (Heading Bug Sub-Mode Guidance)
- 4) HDG: --- (Failure Sub-Mode)

3.3.24. Heading Bug Sub-Mode

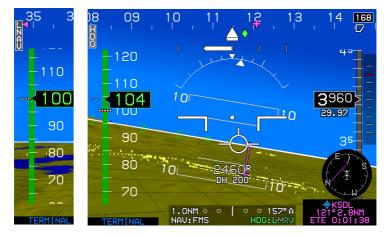


Figure 3-52: Heading Bug

The heading bug sub-mode is active when selected through the menu system and commands roll angles to track the heading bug with aircraft heading (if heading is valid) or aircraft track (if heading is invalid). Figure 3-52 shows this mode with positive feedback from the autopilot (green annunciation and filled heading bug). **LNAV (L1)** is a one-touch method for turning off the HDG bug and engaging in LNAV mode.

Figure 3-53: LNAV Armed Mode

3.3.25. No Autopilot or Fully-Integrated Autopilot Course Deviation Indicator

In an installation without an autopilot or with a fully-integrated autopilot (e.g., HeliSAS-E), the heading/roll-steering sub-mode annunciation is not meaningful and should be decluttered from the CDI display. Therefore, the shaded background of the CDI only falls behind the CDI scale. An abbreviated navigation source annunciation (without "NAV:") appears above the top left corner of the CDI scale. The heading/roll-steering sub-mode annunciation does not appear, as it is not required with autopilot mode annunciations or when an installation does not include an autopilot.

Figure 3-54: CDI No Autopilot or Fully-Integrated Autopilot

3.3.26. Vertical Deviation Indicator

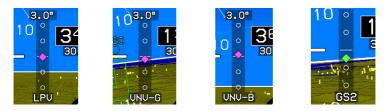


Figure 3-55: Vertical Deviation Indicator

The vertical deviation indicator (VDI) on the right side of the PFD displays vertical deviation for the selected vertical navigation source to display descent profile but disappears in unusual attitude mode.

an a live with an WO and in dianta di Dilat

4.

- LPV Mode and LPV1 or LPV2: When descending on the final approach segment in LPV mode. GPS Altitude utilized to generate VDI; pilot may follow guidance to LPV minima regardless of temperature.
- LNAV Mode and VNAV1-G or VNAV2-G: When descending on the final approach segment in LP, LNAV/VNAV, and LNAV or RNP modes when using GPS VNAV. GPS Altitude utilized to generate VDI; pilot may follow guidance to LNAV minima regardless of temperature.
- LNAV Mode and VNV1-B or VNV2-B: Default FMS barometric VNAV mode. Using barometric altitude to generate the VDI, pilot may follow guidance to LNAV minima as long as the specified temperature is within limits.

4)	GS1 follow						•							inu	Icale	a.	FIIOL
	follow	ls g	Juic	an	cei	o pu	DIISI	leu	Jarc	me	euric	υп	•				
	-		-										-				

Table 3-10: Vertical Deviation Indicator Behavior					
Source (Below VDI)	Behavior/Condition	Pointer Color			
FMS	Conforms to the VDI display	Magenta			
Glideslope	Source must be valid when a valid glideslope is received.	Cyan			
LPV or VNAV mode	 Source is valid if: On VNAV descent segments when approaching the Top of Descent point so as to provide descent anticipation as long as the following are true: 1) On VNAV descent segments; OR 2) If the vertical deviations on VNAV level segments option is enabled, on VNAV level segments; OR 3) If the vertical deviations on VNAV level segments option is disabled, when approaching the Top of Descent point to provide descent anticipation; 	Magenta			

Table 3-10: Vertical Deviation Indicator Behavior					
Source (Below VDI)	Behavior/Condition	Pointer Color			
	Providing:				
	 The aircraft is within 2NM or twice the full scale deflection for the mode of flight (whichever is greater) of the lateral navigation route; AND 				
	 The aircraft is in TO operation relative to the active VNAV waypoint (i.e., taking into account VNAV offsets); AND 				
	 If on the final approach segment, the aircraft is within a 35° lateral wedge of the azimuth reference point (either the GARP or MAWPT + 10,000 ft.). 				
LPV,VNV-G	During GPS LON or GPS VLON	Pointer and Text Color Amber (Yellow)			

Figure 3-56: Vertical Deviation Indicator Color during GPS/SBAS LON or VLON

3.3.27. Vertical Deviation Indicator (EFIS Coupled)

When vertically integrated with an autopilot (either fully integrated or partially integrated) through glideslope mode discrete input with glideslope mode engaged, the selected vertical navigation source is green indicating the autopilot is vertically coupled to the selected vertical navigation source. Otherwise, the selected vertical navigation source is white.

Figure 3-57: EFIS Coupled Vertically with Glideslope Mode Engaged

3.3.28. Highway in the Sky/Skyway

Coupled

Uncoupled

3.3.29. Active Waypoint and Waypoint Identifier

Figure 3-59: Active Waypoint

The PFD displays the active waypoint symbol as a magenta "tethered balloon" consisting of:

- 1) an "X" depicted at the ground location of the active waypoint;
- a hoop or "tethered balloon" (for fly-over waypoints) or "tethered diamond" (for fly-by waypoints) depicted at the VNAV altitude or at aircraft altitude (if there is no VNAV altitude), and
- 3) a line connecting the "X" and the hoop.

The "X" and connecting line are not shown if ground elevation information is not encoded with the NavData waypoint information (e.g., terminal and enroute fixes). The active waypoint symbol is drawn using the hidden surface removal techniques of terrain and obstruction rendering, so an active waypoint behind terrain appears to be so. The active waypoint symbol disappears in unusual attitude mode but turns amber (yellow) in the event of GPS LON caution.

The identifier of the waypoint along with the bearing and distance to the waypoint are displayed in the lower right corner of the PFD in magenta. If a target altitude is not set and the active waypoint has a VNAV altitude associated as in Figure 3-55, the identifier includes a display of the VNAV altitude.

NOTE:

Only the active waypoint is shown on the PFD. Subsequent waypoints in a route are displayed sequentially as the current active waypoint is passed. With terrain turned off, the active waypoint is always visible regardless of distance.

If the active waypoint is beyond the lateral limits of the screen, the magenta waypoint direction pointer (i.e., magenta triangle) on the directional scale indicates shortest direction of turn to the waypoint.

If the waypoint is only a hoop hanging in space, it is a fix and not directly associated with a NAVAID on the ground (e.g. VOR, NDB, user waypoint, or airport).

If the waypoint X disappears behind terrain on the PFD, there is terrain between the aircraft present position and the waypoint.

3.3.30. Mini Map

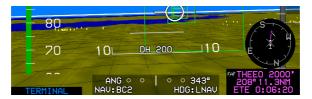


Figure 3-60: Mini Map

Cyan VOR #1

Green VOR #2

Figure 3-61: Mini Map VOR Symbology

3.3.31. Runways

The PFD displays airport runways in a 3-D manner. Upon activation of a DP, VFR approach, IFR approach, or STAR procedure, runways for the airport associated with the procedure, as well as, runways

associated with the three nearest airports (computed by the TAWS algorithms) are displayed.

Figure 3-62: Runways

Runways are displayed with hidden surface removal techniques of the terrain and obstruction rendering, so runways behind terrain appear to be so. Runways are based on characteristics in the navigation database, including elevation, position, orientation, length, and width, and displayed as defined in Table 3-11.

Table 3-11: Runway Drawing Criteria					
Feature	Color	Notes			
Runway markings, aiming point markings, centerline, designation, and displaced threshold arrows	Dark gray	According to characteristics from navigation database, e.g., including position, orientation, length, and width.			
Runway markings	Medium gray				
	1,0				

Table 3-11: Runway Drawing Criteria						
Feature	Color	Notes				
Landing portion of the selected runway.	Light gray	Taking into account displaced threshold data.				
Runway markings for	Lighter gray than					
the selected runway	the light gray.					

3.3.32. Heliports

Heliports appear as distinguishable 150' X 150' helipads with applicable markings as shown below.

Figure 3-63: Helipads

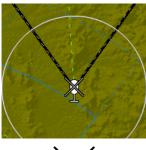
3.4. MFD Symbology

Navigation display (ND) may be configured the following formats:

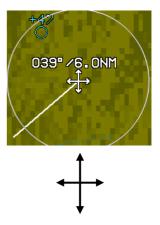
4) OASIS

- 1) Moving Map
- 2) Conventional HSI
- 3) Navigation Log

5) Strikes (see WX-500 Lightning Strikes Appendix)



8) Weather Radar (see


Weather Radar Appendix)

- Traffic (see Traffic 6) Appendix)
- 7) Datalink (see Datalink Appendix)

3.4.1. Ownship Symbology

Rotorcraft

Pan Mode

Figure 3-64: Ownship Symbology

Moving Map

3.4.2.

Figure 3-65: Basic Moving Map

NOTE:

When selected, latitude/longitude is displayed below the ownship symbol as aircraft current position.

Figure 3-66: Latitude/Longitude Display Compass Rose/ND Boundary Circle Symbol

Figure 3-67: Moving Map with Instrument Approach

Figure 3-68: North-Up Arc Mode

Figure 3-69: North-Up Centered Mode

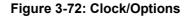
Figure 3-70: Heading-Up Centered Mode

3.4.3. Compass Rose/ND Boundary Circle Symbol

In heading up mode, the magnetic digital heading readout and pointer are aligned with the longitudinal axis of the ownship symbol.

Figure 3-71: Compass Rose/ND Boundary Circle Symbol

3.4.4. Clock/Options


The following are displayed in the upper right corner of the ND.

Zulu Time

Local Offset Time

Table 3-12: Clock Options					
Feature	Options	Notes			
Zulu Time or	hh:mm:ssZ	Synchronized with the			
Local Offset	ffset hh:mm:ssL GPS/SBAS constellation.				
Declutter	r DCLTR A = Automatic declutter mode				
Mode	Mode DCLTR M = Manual declutter mode				
Terrain	Enabled or	Terrain status is indicated by the			
Status	Disabled	absence or presence of terrain.			

3.4.5. Air Data and Groundspeed

088" /

True North Mode

Normal Mode

Figure 3-73: Air Data and Groundspeed

The following are displayed in the upper left corner of the ND:

- 1) Wind: Information consists of the following readouts:
 - a) Direction in degrees;
 - b) Speed in knots;
 - c) Crosswind component in knots; and
 - d) Graphical wind vector arrow oriented to correspond to the ND orientation.

NOTE:

Wind information is not shown when indicated airspeed is in the noise range of less than 20 KIAS, when the aircraft is in the ground mode, or when the AHRS is in DG mode.

If referenced to magnetic north, direction readout uses the degree (°) symbol. Otherwise, a stylized true north (^T) symbol is used.

- 2) **Outside Air Temperature**: Digitally in degrees C or F (as configured).
- 3) International Standard Atmosphere (ISA): Difference between ISA temperature and current outside air temperature is displayed digitally in degrees C or F (Negative values = less than Standard OAT). Decluttered if the "Show ISA Temperature Flag" is disabled in EFIS limits.
- 4) **Density Altitude**: Digitally in feet. Decluttered if "Show Density altitude Flag" is disabled in EFIS limits.
- 5) **True Airspeed**: Digitally in knots. Decluttered if "True Airspeed Flag" is disabled in EFIS limits.
- 6) Groundspeed: Digitally in knots.
- 3.4.6. Fuel Totalizer/Waypoint Bearing and Distance Functions

DEST - LSZA 31.4NM ETE 0:18:20 RNG 444NM END 04:19

GPS in normal state and current active waypoint

GPS in LON condition

GPS in normal state and not the current active waypoint

Figure 3-74: Fuel Totalizer/Waypoint Bearing and Distance Functions

Table 3-13: Fuel Totalizer/Waypoint Bearing and DistanceFunctions						
Function	Conditions	Type Symbols Options				
DEST Waypoint	If there is an active flight plan, waypoint type, identifier, range, and ETE/ETA for the last waypoint ("DEST" waypoint) are shown.	ETA or ETE Degree (°) or True North (^T) symbol				

Table 3-13: Fuel Totalizer/Waypoint Bearing and Distance Functions				
Function	Conditions	Type Symbols Options		
	If the active waypoint is not the last waypoint, range and time to destination waypoint are based on the flight plan route. Otherwise, range and time are based on a direct geodetic path.			
	Waypoint information is white but turns amber (yellow) with GPS LON caution.			
Range	Based on instantaneous fuel flow, fuel remaining and groundspeed are shown immediately below "DEST" waypoint information for easy comparison.			
Endurance	Based on instantaneous fuel flow and fuel remaining is shown.			

3.4.7. Navigation Data

Figure 3-75: Navigation Data and Airspace Depiction

The ND displays navigation data in correct relationship to the ownship symbol with navigation data symbols, which include airport symbols, NDBs, and user waypoints. High altitude and low altitude airways may be shown.

Table 3-14: Navigation Symbology						
KPHX	IFR Airport	ALGO	NDB			
´-∲-P48`~	VFR Airport	XJA244	FIX			
вхк₯	VORTAC	<u>J18-</u> 2	High Altitude Airway			
	DME only or TACAN	U135 U458-66	Low Altitude Airway			
ALOCS	VOR	D OF001	User Waypoint			
@ PN004	User Waypoint in Pan Mode		HSI CDI scale			

The ND has manual and automatic decluttering of navigation data. There are six levels of automatic declutter based upon the number of navigation data symbols drawn in the current ND format and range. Decluttering is as follows:

- Airports: Manually or automatically decluttered. In automatic declutter mode, large airports (IFR procedure and longest runway and automatically adjusted threshold needed to achieve desired symbol count) are always shown; IFR airports that are not large airports are shown in levels 1, 2, 3, and 4; and VFR airports are shown in levels 1, 2, and 3.
- 2) **VORs**: Manually or automatically decluttered. In automatic declutter mode, VORs are shown in levels 1, 2, 3, 4, and 5.
- NDBs: Manually or automatically decluttered. In automatic declutter mode, NDBs are shown in levels 1 and 2. Both enroute and terminal NDBs are shown.

- 4) FIXES (including user waypoints): Manually or automatically decluttered. In automatic declutter mode, enroute fixes are shown in level 1. Terminal fixes are manually selected and not shown in automatic declutter mode. Enroute fixes, terminal fixes, and user waypoints may be manually decluttered separately from each other.
- 5) High Altitude Airways: Manually selected.
- 6) Low Altitude Airways: Manually selected.

Table 3-15: Airspace Depiction				
Type of A	ARINC 424 Airspace	Vertical Limits		
	Single pixel, dashed lines	More than ±500'		
	Single pixel solid lines	Within ±500'		
	Double pixel solid lines	Within airspace vertical limits		
		Color of Airspace		
	Class C, CONTROL AREA, TRSAs, Class D	Green		
	Class B, TCAs (where applicable)	Blue		
	Caution, danger, MOAs, training, warning, or unknown areas	Amber (Yellow)		
	Prohibited, restricted, or TFR areas (when equipped with Datalink)	Red		

3.4.8. Analog Navigation Symbology

When selected, the ND displays analog (VOR1 and VOR2) navigation symbology, when valid. When the VOR1 and/or VOR2 pointers are selected for display, bearing and distance for the selected VOR pointers appear at the bottom of the ND view (cyan

3-50

for VOR1; green for VOR2). If the DME channel is in hold mode, the associated distance readout is amber (yellow), and the letter "H" is shown above the distance readout (see Figure 3-95). The size of the HSI depends on arc or center modes to ensure a full HSI is always displayed.

Figure 3-76: Analog Navigation Symbology HSI in ARC Mode

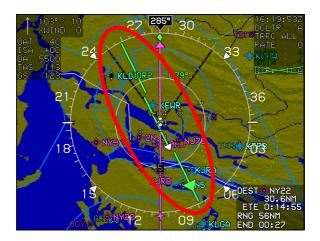
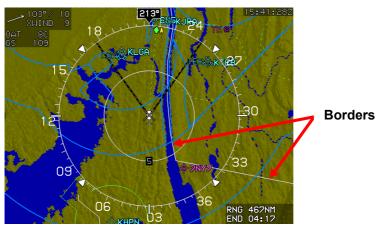
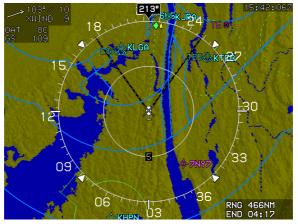



Figure 3-77: Analog Navigation Symbology HSI in Centered Mode



3.4.9. Borders

If national and United States state borders are selected, they are drawn at all map scales. The borders are white if the ND background includes terrain.

State Borders Drawn

Without State Borders Drawn Figure 3-78: Borders

3.4.10. Terrain/Obstructions

Figure 3-79: Terrain/Obstructions PFD

Figure 3-80: Terrain/Obstructions MFD

Terrain is displayed on the ND in its correct relationship to the ownship symbol using color to show relationship to aircraft altitude.

Table 3-16: Terrain Color		
Based on Aircraft Altitude	Color	Notes
Terrain at or below 100 feet	Olive	Terrain slope
less than aircraft altitude	shades	determines shade.

Table 3-16: Terrain Color

Based on Aircraft Altitude	Color	Notes
Terrain above 100 feet less	Brown	
than aircraft altitude	shades	
FLTA alerts	Amber	See Section 8 TAWS
	and Red	See Section o TAWS
Water at all altitudes	Deep	Takes precedence
	Blue	over other colors.

Obstructions are displayed on the ND in correct relationship to the ownship symbol using color to show relationship to aircraft altitude.

Table 3-17: Obstructions			
Lateral Distance Away	21 NM or less	PFD in Narrow FOV	
	15 NM or less	PFD in Wide FOV	
	8.5 NM or greater	Not depicted on the ND	
	8.5 NM or less	As described below	
aircraft Within 2000' but more Vertical than 500' below aircra	More than 2000' below aircraft	Not depicted on the ND	
	Within 2000' but more than 500' below aircraft	Depicted in amber	
	Within 500' but below aircraft	Depicted in light red	
		Depicted in deep red	

Terrain and obstruction rendering is pilot-selectable to declutter the display by deselecting terrain (*independent declutter of obstructions is not possible*). Furthermore, terrain and obstruction rendering is disabled when:

- 1) The GPS/SBAS sensor is failed; OR
- 2) When the ADC is failed; OR
- 3) When the horizontal figure of merit exceeds the greater of 0.3NM or the horizontal alarm limit for the mode of flight.

NOTE:

See Section 8 Terrain Awareness Warning System for obstructions causing TAWS alarms and depiction of separate symbology.

3.4.11. Pan Mode

The ND screen has a pan mode for changing the location of the center of the screen away from current location and viewing map details along the route of flight and at the intended or alternate destination while either in flight or on the ground. When pan mode is active, use labeled buttons to pan location north, south, east, and west in a north-up, centered orientation. Upon entering pan mode, the heading pointer, track pointer, lubber line, waypoint pointer, analog navigation symbology, and field of view lines are removed from the display.

Figure 3-81 shows the line with bearing and distance from the map center to the aircraft's current position in white when the aircraft is more than 0.5 NM away. When panning, the nearest displayed airport, VOR, NDB, or fix within the inner range ring is highlighted with a flashing circle. Buttons are labeled to allow for viewing or hiding waypoint information (including datalink weather information associated with that point). When exiting pan mode, all previous settings are restored as before pan mode was enabled.

Figure 3-81: Pan Mode

3.4.12. Start Point

Activation of **NRST** or Direct-To function creates and activates a flight plan from the present position to the selected waypoint. A waypoint named "START" is placed at the current aircraft location when the flight plan is created.

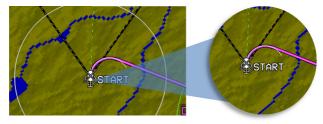
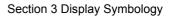


Figure 3-82: Start Point

3.4.13. Direct Point

Unnamed waypoints appear depending upon the procedure loaded when a direct-to command is entered. See Section 7 IFR Procedures for more information.



- -ALT- altitude terminations
- -DIR- waypoints that begin a Direct-To leg
- -DME- distance or DME terminations
- -INT- intercept terminations
- -RAD- radial terminations

Figure 3-83: Direct Point

3.4.14. Altitude Capture Predictor/Top of Descent

When a selected altitude or VNAV is specified on the PFD, "T/D" marks correct point on the flight plan path at which descent must be commenced and contains location on the flight plan path with indication of the glidepath angle used to calculate position. After passing top of descent along the lubber line, altitude is captured and shown as a green arc located ahead of the aircraft. The arc marks the bottom-of-descent or top-of-climb point.

Top of Descent

Top of Climb

3.4.15. Projected Path

When the aircraft is in a bank angle, a projected path emanates from the ownship symbol. This curving path is based upon aircraft bank angle and groundspeed as it projects one minute into the future up to a maximum of 180° of turn. The projected path or "noodle" assists in course interception and making small adjustments to bank angle for proper roll out.

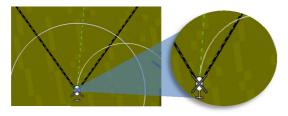


Figure 3-85: Projected Path

3.4.16. Active Flight Plan Path/Manual Course/Runways

When there is an active flight plan and the GPS/SBAS OBS setting is automatic, the flight plan path is shown on the ND in correct relationship to the ownship symbol. The active flight plan path depiction meets all the requirements of GPS/SBAS path definition and matches the lateral navigation guidance given on the PFD (GPS/SBAS CDI in automatic OBS mode, skyway boxes, and minimap). The fly-over waypoint symbol is distinct from fly-by waypoints and consists of the waypoint symbol within a circle. When there is a

parallel offset, the active flight plan path depicts the parallel offset path, and the original flight plan path is shown with haloed gray dashed lines. Top of descent symbols with an indication of glidepath angle are shown where VNAV descents are predicted to commence.

When there is an active waypoint and the GPS/SBAS OBS setting is manual, the manual course through the waypoint is shown as a pointer centered on the waypoint. The pointer matches the lateral navigation guidance given on the PFD (GPS/SBAS CDI in manual OBS mode, skyway boxes, and mini-map).

The active flight plan path's active leg/manual course and active waypoint are magenta but turn amber (yellow) in the event of a GPS LON caution.

The ND displays airport runways in correct relationship and scale to the ownship symbol. Upon activation of a DP, VFR approach, IFR approach, or STAR procedure, the runways for the airport associated with the procedure are displayed. In addition, the runways associated with the three nearest airports (as computed by the TAWS algorithms) are displayed.

3.4.16.1. Parallel Track

Figure 3-86: Parallel Track

When there is an active flight plan and GPS/SBAS OBS setting is automatic, the flight plan path is shown on the ND in correct relationship to the ownship symbol. See Section 5 Menu Functions and Procedures for details on creating a parallel track.

3.4.16.2. Active Flight Plan Path

The active flight plan path's active leg/manual course and active waypoint are magenta but turn amber (yellow) in the event of a GPS LON caution.

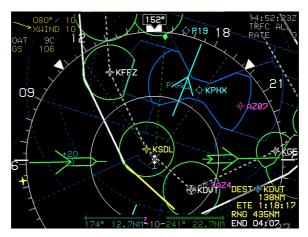


Figure 3-87: Loss of Navigation

3.4.17. Field of View Indication

Narrow FOV (Zoom On)

Figure 3-88: Field of View

The ND background indicates the ND FOV with a set of segmented gray lines leading out from the ownship symbol in either 35° or 70° angles depending on the zoom mode setting on the PFD.

3.4.18. Range

The white range ring is centered on the aircraft's position to quickly estimate distances. Distance (in NM) from the aircraft to the ring is a white number overlaying the 6 o'clock position of the ring. The range ring is half the distance to the directional scale. Consequently, when the range ring shows a distance of 5NM, the directional scale is 10NM. Scroll ① to set the overall map scale ranges in NM to of the following values as appropriate:

Figure 3-89: Range

3.5. HSI Screen

When the HSI screen is selected, the same ownship symbology is used as described for the ND, and the compass rose is always aligned with magnetic north. When the HSI NAV source fails, a red "X" is displayed in place of the HSI deviations.

The ownship symbol (Figure 3-64) is centered and points straight up on the HSI. The HSI has a compass rose aligned with either magnetic north or true north depending upon the status of the true north discrete input (if enabled upon installation). When the HSI NAV source fails (FMS, VOR1, or VOR2), a red "X" is displayed in place of the HSI deviations.

Figure 3-90: HSI Screen

A VDI appears, as in Figure 3-90, when the VDI source is valid to display vertical deviation information for the currently selected navigation source. When the selected vertical source is FMS, the VDI displayed on the HSI has the same behavior as the VDI displayed on the PFD with the exception of the VDI source displayed on the top of the VDI to avoid clutter with waypoint information below:

- 1) VNV1-B: Default FMS barometric VNAV mode.
- 2) VNV2-B: Default FMS barometric VNAV mode.
- 3) GS1: Glideslope #1
- 4) GS2: Glideslope #2

3.5.1. Conventional HSI/PTR Format

When selected, the ND displays conventional HSI symbology, including a selected course needle, a lateral deviation indicator, and a TO-FROM indicator. Navigation source indication and OBS setting are displayed in the top center of the HSI in the same color as the course needle. HSI pointer color is:

- 1) Magenta (if FMS is the selected navigation source);
- 2) Cyan (if VLOC1 is the selected navigation source);
- 3) Green (if VLOC2 is the selected navigation source); or

Yellow when HSI is slaved to GPS/SBAS and there is a GPS 4) LON condition.

Color

(Yellow) Pointer Color

Figure 3-91: HSI Pointer Color

As seen in Figure 3-92, a green diamond-shaped track pointer appears on the compass rose and is aligned with the aircraft's track across the earth at groundspeeds greater than 30 kts. When selected, the VLOC1, with GS1 is displayed. When the signal is invalid, the associated pointer is not shown.

When VOR1 and VOR2 pointers are selected for display, a bearing and distance display at the bottom of the ND appear. If bearing or distance is not valid, the respective field is filled with dashes.

Figure 3-92: Conventional HSI/PTR Format: HSI with VDI and Glideslope

Figure 3-93: Conventional HSI/PTR Format with Loss of Navigation Condition

3.5.2. Analog Navigation Symbology

When selected, the HSI displays analog (VOR1 [cyan] and VOR2 [green]) navigation symbology with an RMI pointer format overlaid upon the HSI. When the signal is invalid, the associated pointer is not shown. When the signal is valid for VOR1 and VOR2, a bearing and distance display for the selected VOR pointers appears at the bottom of the display in the same color of the respective pointer.

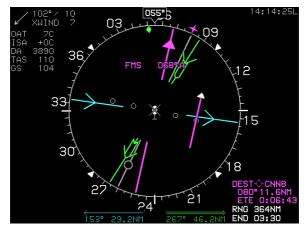


Figure 3-94: Analog Navigation Display VOR1 and VOR2

If a DME channel is in hold mode, the associated distance readout is displayed in amber (yellow) rather than blue or green, and "H" is shown above the distance readout.

Figure 3-95: HSI Bearing Distance Readout with DME in HOLD

Valid marker beacon discretes are displayed on the PFD and ND HSI with appropriate coloring markings. Only during a built-in-test, more than one marker beacon may be active. Marker beacons are disabled when the NAV source is FMS.

Figure 3-96: HSI with Marker Beacon Displayed

3.5.3. Compass Rose Symbols

When selected, a digital heading readout and pointer aligned with the longitudinal axis of the ownship symbol appear on the compass rose boundary circle.

Normal Mode

True North Mode

Figure 3-97: Compass Rose

If referenced to magnetic north, the heading readout uses the degree (°) symbol. Otherwise, a stylized true north (^T) symbol is used. A green diamond-shaped track pointer is aligned with the aircraft's track across the earth appears on the compass rose when groundspeed is greater than 30 kts. The pilot-settable heading bug geometrically interacts with the heading pointer on the compass rose. A magenta, star-shaped waypoint pointer is displayed on the heading scale at a point corresponding with the active waypoint but turns amber (yellow) in the event of GPS LON caution.

NOTE:

See Section 7 IFR Procedures for description of the following heading modes with the AHRS and EFIS:

- 1) ADAHRS Slaved—EFIS Magnetic North
- 2) ADAHRS Slaved—EFIS True North
- 3) ADAHRS Free/"DG"—EFIS Magnetic North
- 4) ADAHRS Free/"DG"—EFIS True North

3.5.4. Air Data and Groundspeed

Air data and groundspeed are displayed as specified in § 3.4.5.

Figure 3-98: HSI Display Air Data and Groundspeed

3.5.5. Clock/Options

The following are displayed in the upper right corner of the HSI:

08:57:35Z

Zulu Time

12:59:14L

Local Offset Time

Figure 3-99: HSI Clock

- 1) Zulu Time or LCL Time: As specified in § 3.4.4
- 2) Traffic: If configured as specified in Traffic Appendix.
- 3) **Datalink**: If configured as specified in Datalink Appendix.
- 4) Weather Radar: If configured Weather Radar Appendix.
- 3.5.6. Fuel Totalizer/Waypoint Bearing and Distance Functions

Fuel totalizer, waypoint bearing, and waypoint distance are displayed in the lower right corner of the HSI as specified in § 3.4.6.

Figure 3-100: HSI Fuel Totalizer/Waypoint Bearing

3.6. Navigation Log

LAYPOINT UNBU/OFFSet PATH DIST ETE ETA FUEL HAYPOINT UNBU/OFFSet PATH DIST ETA FUEL KLAX South 0009 8.8. 010 6.10<	05:41:21L 68 99						15:09:00Z CS 135					
• KCPH • · · · · · · · · · · · · · · · · · · ·	WAYPOINT UNAV/OFFSET	PATH	DIST	ETE	ETA	FUEL	WAYPOINT UNAV/OFFSET	PATH	DIST	ETE	ETA	
♦ KLGB → 1/2* S. 2m 0/13 OS 150 88 ♦ KL 0 → 110" 34. 1m 0:15 15:2 KLGB → /// 2 S. 2m 0:13 05:50 88 ♦ KL 0 → 110" 34. 1m 0:15 15:2 KR0A → // 251* 9.0m 0:16 05:55 87 ♦ KR0N → 111" 05:57 88 ♦ KR0N → 111" 13:39 → 13:39 → 13:39 → 13:39 → 13:39 → 13:39 → 13:39 → 13:39 → 14:55 → 16:39 → 32:3" 16:80 0:001 15:55 → KCNC → 33:2" 16:80 0:010 15:15 → 16:30 → 16:10 15:15 → 16:10 16:10 16:10 16:10 16:10 16:10 16:10 16:10 16:10 16:1					05:47			₽ 005°	12.6ო	0:05		
KRUX EP 175° 24.0w 0:14 00:15 28 KGN Constraint EP 27.9v 0:16 15:39 KRUX E 0:11 0:14 00:14 03:14 KKN EP 27.9v 0:16 15:39 KCRO E 0:15 00:16 65:30 KKN EP 0:15 15:55 KCRO E 0:10 0:11 0:11 0:55 64 KHV EP 0:28* 0:11 16:15 Log EP 0:32* 15:00:10 0:12 57 64 KHFD EP 0:8* 0:10 16:15 16:20 Log EP 0:32* 35:3v 0:12 07:18 50 KBDL EP 0:26* 16:20 16:20 KENG EP 276* 18:0v 0:12 07:38 207:49 46 200:12 200 21.2vv 07:38 207:49 200:12 200 200:12	🔶 KLGB' /#1				05:50		♦ KIJD'/н				15:27	
KCN0 → B+ 092" 19. Im 01.11 005.46 653 KOXC B+ 068" 26.5m 01.11 161.03 KRN1 → 054" 32.5m 01.11 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>37.9տ</td><td>0:16</td><td></td></t<>									37.9տ	0:16		
L88 */ B+ 054* 32.5 0519 0717 57 C KBDL 0505* 15.20 KBNG				0:11								
KP8P */ B- 275* 18.0- 0:10 (07:38) 50 KBNG */ B- 275* 18.0- 0:10 (07:38) 50 KBNG */ B- 275* 18.0- 0:10 (07:38) 50 B- 265* 38.2- D:268 30.2- 0:22 (03:12) 38				0:19				₽+ 008°	12.2ო	0:05		
♦ KONT'/ B- 268° 38.2m] B- 268° 38.2m] B- 247° 40.2m] C:2408:12 38				0:10								
• KLAX ' / 08:37 29	🔶 КОНТ' /н			0:23	08:12	38						
	KLAX'/	0 00			08:37	29						

With Fuel Enabled

Without Fuel Enabled

3.6.1. Clock and Groundspeed

The following are displayed in the upper left corner of the NAV Log:

- 1) Zulu or LCL Time: As specified in § 3.4.4.
- 2) Groundspeed: Displayed digitally in knots

3.6.2. Fuel Remaining and Fuel Flow Data

The following are displayed in the upper right corner of the NAV Log:

Fuel Remaining: If either fuel level or fuel flow is available, current fuel remaining is displayed digitally in fuel units.

Fuel Flow: If fuel flow is available, current total fuel flow is displayed digitally in fuel units.

3.6.3. Waypoint Identifier Column

The identifier for each waypoint of the active flight plan is displayed in the left-most column of the NAV Log. The active waypoint, indicated with an asterisk, is magenta but turns amber (yellow) in the event of a GPS LON caution. Brackets indicate suppressed waypoints. Navigation data symbols are shown with the waypoint identifier for the pilot to easily distinguish the waypoint type

When a waypoint is part of a procedure or parallel offset, the following legends are drawn on top of the navigation data symbol:

- 1) **FAF** = Waypoint is a final approach fix
- 2) **MAP** = Waypoint is a missed approach point
- 3) **MA** = Waypoint is part of the missed approach segment of an instrument approach procedure.
- 4) APP = Waypoint is part of an instrument approach procedure, but is not a final approach fix, missed approach point, or part of the missed approach segment.
- 5) **VFR** = Waypoint is part of a VFR approach.
- 6) **STAR** = Waypoint is part of a standard terminal arrival procedure.
- 7) **DP** = Waypoint is part of a departure procedure.

8) **PTK** = Parallel offset. In case of a STAR or DP waypoint subject to a parallel offset, both STAR/DP and PTK are shown.

3.6.4. VNAV and VNAV Offset Column

VNAV altitude and associated VNAV offset (in NM) are displayed immediately to the right of the Waypoint Identifier column. In the case of an approach with a final approach segment data block, the VNAV offset readout associated with the missed approach point is "GPI" to designate distance to the glidepath intercept point. VNAV altitudes and offsets from the navigation database or manually entered are shown in white. VNAV altitudes and offsets computed automatically are shown in gray. VNAV and VNAV Offset column elements align with Waypoint Identifier column elements to indicate the VNAV information applies to the associated waypoint.

3.6.5. Path Column

LNAV path between waypoints is displayed immediately to the right of the VNAV and VNAV Offset column. The following are displayed:

- Geodetic path between waypoints is displayed with (R4), followed by the initial geodetic course for the leg.
- 2) Discontinuities (i.e., a leg where FMS is unable to compute a valid path) are shown with the legend -**DISCONT**-.
- Procedure turns are shown with a pictorial representation of a procedure turn (either left or right turns) as well as the entry and exit course for the procedure turn.
- 4) Holding patterns are shown with a pictorial representation of a holding pattern (either left or right turns) as well as the inbound course for the holding pattern.
- 5) Arcs are shown with a pictorial representation of an arc (either left or right turns) as well as the entry and exit radials for the arc.
- 6) An altitude termination leg is shown by the initial geodetic course for the leg followed by the altitude at which the leg terminates.

Path column elements are offset from Waypoint Identifier column elements to indicate that the path information applies to the leg between waypoints.

3.6.6. Distance Column

Distance between waypoints is displayed immediately to the right of the Path column and is calculated taking into account the associated path as well as parallel offsets. In the case of a discontinuity, the distance between waypoints is the direct geodetic distance between the two waypoints. Distance column elements are offset from Waypoint Identifier column elements to indicate the distance information applied to the leg between waypoints.

3.6.7. Estimated Time Enroute Column

ETE between waypoints is displayed immediately to the right of the Distance column and is calculated taking into account the associated distance between waypoints and current groundspeed. ETE column elements are offset from Waypoint Identifier column elements to indicate ETE information applied to the leg between waypoints.

3.6.8. Estimated Time of Arrival Column

ETA at the active waypoint and all subsequent waypoints is displayed immediately to the right of the ETE column. ETA at the active waypoint is calculated taking into account the associated time remaining on the active leg and current time. ETA at subsequent waypoints is calculated taking into account the cumulative ETEs and current time. ETA column elements align with Waypoint Identifier column elements to indicate ETA information applies to the associated waypoint.

3.6.9. Fuel Remaining Column

Fuel remaining at the active waypoint and all subsequent waypoints is displayed immediately to the right of the ETA column. Fuel remaining at the active waypoint is calculated taking into account the associated time remaining on the active leg, current fuel flow, and current fuel quantity. Fuel remaining at subsequent waypoints is calculated taking into account the cumulative ETEs, current fuel flow, and current fuel quantity. Fuel Remaining column elements align with Waypoint Identifier column elements to indicate the fuel remaining information applies to the associated waypoint.

NOTE:

Since a suppressed waypoint is not part of the active flight plan, dashes appear in the absence of the following VNAV data associated with a suppressed waypoint:

- 1) Path data (dashes)
- 4) ETA data (dashes)
 5) Fuel remaining data

(dashes)

- 2) Distance data (dashes)
- 3) ETE data (dashes)

3.7. Hover Screen

The hover screen has the following elements. Hover screen ownship symbology is as in Figure 3-64.

Figure 3-102: Hover Screen Orientation

3.7.1. Hover Screen Range

The following selectable hover screen ranges are available (all distances are from the ownship symbol to the compass rose): 400', 800', 1,600', 0.5NM, 1NM, 2NM, and 5NM. Two range rings (one at half the radius of the compass rose) centered upon the ownship symbol aids in judging range to displayed symbols. Range indication corresponding to the radius of the range ring is presented on the range ring (200', 400', 800', 0.25NM, 0.5NM, 1NM, and 2.5NM).

3.7.2. Hover Vector

The hover vector is used to indicate flight direction and groundspeed and re-uses the compass rose and range ring as speed scales. In addition, two intermediate speed scales (the first between the ownship symbol and the range ring, the second between the range ring and the compass rose) are drawn using dashed lines. The speed range for the hover vector indication changes based upon current groundspeed. Available speed ranges are (all speeds represent the speed indicated at the compass rose): 20 kts, 40 kts, and 80 kts with the currently selected speed range textually displayed adjacent to the compass rose. Changes in speed range employ a deadband to prevent flicker at speed range boundaries.

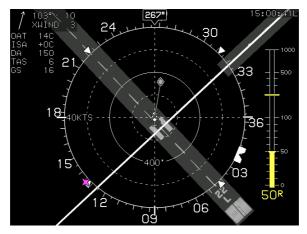


Figure 3-103: Hover Vector Symbology

The ownship symbol indicates 0 knots groundspeed and a dot connected to the ownship symbol by a gray line floating over the hover screen to indicate flight direction and groundspeed. Deviation of the dot in a straight up direction (12 o'clock position) indicates forward flight while straight down (6 o'clock position) indicates rearward flight. Deviation of the dot laterally indicates lateral drift. Movement of the dot is constrained to less than five knots per second to prevent jumpiness. The hover vector line and dot are limited and cropped at the outer circle of the hover screen.

3.7.3. Compass Rose Symbols

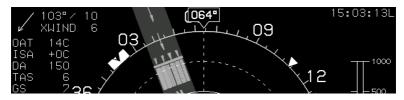
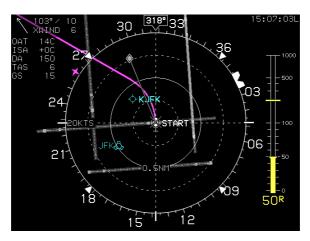



Figure 3-104: Hover Vector Compass Rose

A digital magnetic heading readout and pointer aligned with the longitudinal axis of the ownship symbol appears on the compass rose boundary circle. A green diamond-shaped track pointer aligned with the aircraft's track across the earth appears on the compass rose when groundspeed is greater than or equal to 30 knots. A pilot-settable heading bug geometrically interacting with the heading pointer appears on the compass rose. A magenta, star-shaped waypoint pointer is displayed on the heading scale at a point corresponding with the active waypoint, which turns amber (yellow) in the event of GPS LON caution.

3.7.4. Active Flight Plan Path/Manual Course

Figure 3-105: Hover Vector Active Flight Plan Path/Manual Course

When there is an active flight plan and the GPS/SBAS OBS setting is automatic, the flight plan path is shown on the hover screen in its correct relationship to the ownship symbol. The active flight plan

path meets all the requirements of GPS/SBAS path definition and matches the lateral navigation guidance given on the PFD (GPS/SBAS CDI in automatic OBS mode, skyway boxes, and minimap). Active flight plan path waypoints are shown as fly-over or flyby waypoints with the fly-over waypoint consisting of a waypoint symbol within a circle. The fly-by waypoint consists of a waypoint symbol without the circle.

When there is a parallel offset, the active flight plan path depicts the parallel offset path, and the original flight plan path is shown with haloed gray lines.

When there is an active waypoint and the GPS/SBAS OBS setting is manual, the manual course through the waypoint is shown as a pointer centered on the waypoint. The pointer matches the lateral navigation guidance given on the PFD (GPS/SBAS CDI in manual OBS mode, skyway boxes, and mini-map).

The active flight plan path's active leg/manual course and active waypoint are magenta but turn amber (yellow) in the event of a GPS LON caution.



Figure 3-106: Hover Vector Active Flight Plan Path/Parallel Course

3.7.5. Navigation Data

The hover screen displays navigation data in correct relationship to the ownship symbol. Navigation data symbols include airport symbols, VORs, NDBs, fixes, and user waypoints. The user

waypoint symbol on the hover screen includes an outlining box sized so it cannot be obscured by the ownship symbol. The intent of this requirement is to allow the pilot to hover by reference to a user waypoint. These symbols cannot be decluttered from the Hover Vector screen since there is no **FORMAT..** menu option.

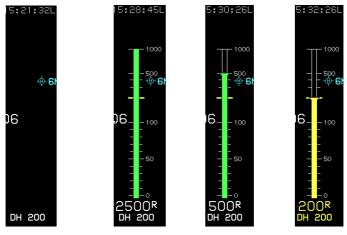
The hover screen displays airport runways and some heliports in correct relationship and scale to the ownship symbol. Immediately upon a system startup on the ground, the runways for the nearest airport are displayed. Upon activation of a DP, VFR approach, IFR approach, or STAR procedure, the runways for the airport associated with the procedure are displayed. In addition, the runways associated with the three nearest airports are also displayed. Runways are shown in dark gray according to characteristics contained in the navigation database, including position, orientation, length, and width. The landing portion of the selected runway, taking into account displaced threshold data, are shown in light gray.

3.7.6. Projected Path

When the aircraft is in a bank angle, a projected path emanates from the ownship symbol. The projected path is based upon aircraft bank angle and groundspeed and projects one minute into the future up to a maximum of 180° of turn.

Figure 3-107: Hover Vector Projected Path

3.7.7. Air Data and Groundspeed


Displayed as specified in § 3.4.5.

3.7.8. Clock

Displayed as specified in § 3.4.4.

3.7.9. AGL Indication

AGL altitude is displayed as an analog indication and digital readout on the right side of the hover screen, which is driven by whatever AGL altitude source being used as defined in § 3.3.3.

Above 2,500' AGL 2,500' AGL 500' AGL 200' AGL

Figure 3-108: Hover Vector AGL Indication

Digital readout of AGL altitude is not displayed when it is greater than the radar altimeter maximum valid altitude nor when it is invalid. The digital readout of AGL altitude is not displayed when its source is barometric and indicated airspeed is in the noise range (less than 20 KIAS) due to rotor wash effects. When AGL altitude source is radar altitude, the digital readout of AGL indication is smoothed to avoid jumpiness (as specified in Table 3-2).

Table 3-18: Analog AGL Indication Designed Parameters								
Range of Altitude	Markings	Notes						
0-1000'	Green-filled column	Thermometer fashioned style. Top of the column has a widened area for better registration against the scale accordingly, so the widened area disappears at AGL altitudes greater than 1,000 feet (i.e., maximum analog indication).						
Scaling								
0 to 100' 100'-1,000'	Linear Logarithmic	0' AGL is at the bottom, 50' AGL is at 25% of height, 100' AGL is at 50% of height, 200' AGL is at 67% of height, 500' AGL is at 83% of height, and 1,000' AGL is at full height						
	Major Tic							
	0', 50', 100', 50							
40' 00'	Minor Tick Marks							
10', 20', 30', 40', 60', 70', 80', 90', 200', 300', and 400'								
Analog indica displayed, wh	Color-filled column is not displayed when AGL altitude is invalid. Analog indication of AGL altitude (including the scale) is not displayed, when its source is barometric and indicated airspeed is in the noise range (less than 20 KIAS) due to rotor wash effects.							

3.7.10. Decision Height Indication

AGL indication includes a display of the set decision height altitude as described in § 3.3.5.

Section 4 Reversionary Modes

4.1. Reversionary Modes

The equipment has eight reversionary modes as follows:

Mode 0: GPS/SBAS, ADC, and AHRS normal.

Mode 1: GPS/SBAS failed; ADC and AHRS normal.

Mode 2: ADC failed; GPS/SBAS, and AHRS normal.

Mode 3: AHRS failed; GPS/SBAS, and ADC normal.

Mode 4: GPS/SBAS and ADC failed; and AHRS normal.

Mode 5: GPS/SBAS and AHRS failed; and ADC normal.

Mode 6: ADC and AHRS failed; and GPS/SBAS normal.

Mode 7: GPS, ADC, and AHRS failed.

To use this section, review the following table and notes to determine what feature or function is affected by one or more of the three sensors failed conditions. Examples follow with the IDU-450 displays in various configurations with a table breaking down the affected functions.

Not all possible IDU-450 display configurations and format combinations are represented here. All eight modes of system operation are represented for description purposes.

Table 4-1: Reversionary Mode Status (PFD)

Mode									
PFD Functions	0	1	2	3	4	5	6	7	
Airspeed	OK	OK	19	OK	19	OK	19	19	
Altimeter	OK	OK	19	OK	19	OK	19	19	
Altimeter Set Display	OK	OK	-	OK	-	OK	-	-	
Bank Scale	OK	OK	OK	-	OK	-	-	-	
CDI	ОК	1 + 20	ОК	ОК	20	20	ОК	20	
Runway	OK	1	25	-	-	-	-	-	
Waypoint Pointer	7	1	7	7	-	-	7	-	
Heading Scale	7	7	7	7	7	-	7	-	
AGL Ind.	OK	2	4	OK	11	11	4	-	
Flight Path Marker	ОК	1 + 14	-	-	-	-	-	-	
Hover Vector	OK	-	-	-	-	-	-	-	
Ground Track	7	1	7	7	-	-	7	-	
Heading Indicator	7	7	7	-	7	-	-	-	
Horizon	OK	OK	OK	-	OK	-	-	1	
Mini-Map	7	1	7	7	-	-	7	-	
Pitch Scale	OK	OK	OK	-	OK	-	-	-	
Highway in the Sky	ок	1 + 15	-	-	-	-	-	-	
Terrain/Obstructions	OK	-	25	-	-	-	-	-	
Clock Functions	OK	OK	OK	OK	OK	OK	OK	OK	
VSI	OK	OK	-	OK	-	OK	-	-	
Waterline Symbol	22	22	5	13	5	13	13	13	
Waypoint Symbol	OK	1	-	-	-	-	-	-	
Waypoint Brg/Dist	OK	1	OK	OK	-	-	OK	-	
Traffic	OK	OK	OK	-	-	-	-	-	
Traffic Thumbnail	OK	OK	OK	OK	OK	OK	OK	OK	
Speed Trend	OK	OK	-	-	-	-	-	-	

Table 4-2: Reversionary Mode Status (ND)

	1									
ND Functions	Mode									
ND Functions	0	1	2	3	4	5	6	7		
Aircraft Position	OK	1	OK	OK	-	-	OK	-		
Special Use Airspace	9	1	6	9	-	-	6 + 9	-		
Waypoint Pointer	9	1	9	9	-	-	9	-		
Active Flight Plan Path	9	1	9	9	-	I	9	-		
Groundspeed	OK	1	OK	OK	-	-	OK	-		
Ground Track	9	1	9	9	-	-	9	-		
Heading Indicator	9	9	9	-	9	I	-	-		
Navigation Symbols	9	1	9	9	-	I	9	-		
Outside Air Temp.	OK	OK	-	OK	-	OK	-	-		
Projected Path	OK	1	OK	-	-	I	-	-		
Traffic	OK	OK	OK	OK	OK	OK	OK	OK		
Terrain/Obstructions	ОК	-	25	ок	-	-	25 +9	-		
Clock Functions	OK	OK	OK	OK	OK	OK	OK	OK		
Waypoint Brg./Dist.	OK	1	OK	OK	-	-	OK	-		
Wind	21	3	-	-	-	-	-	-		
WX-500 Data	OK	OK	OK	OK	OK	OK	OK	OK		
Compass Rose	9	9	9	9	9	I	9	-		
Fuel Totalizer Functions	23	24	23	23	12	12	12	12		
True Airspeed	OK	OK	-	OK	-	OK	-	-		
Density Altitude	OK	OK	-	OK	-	OK	-	-		
OAT/ISA Display	OK	OK	-	OK	-	OK	-	-		

Table 4-3: Reversionary Mode Status (Output Functions)

Output Functions		Mode								
Output Functions	0	1	2	3	4	5	6	7		
Air/Ground Output	16	16	17	16	17	16	17	17		
Autopilot EFIS Valid	16	16	16	-	-	-	-	-		
TAWS Alarm Output	16	16	16	16	16	16	16	16		
TCAS-II RA Display Valid	16	16	-	16	-	16	-	-		
TCAS-II TA Display Valid	16	16	16	16	16	16	16	16		
Transmit Enabled	16	16	16	16	16	16	16	16		
Warning Light Output	16	16	16	16	16	16	16	16		
Caution Light Output	16	16	16	16	16	16	16	16		
Mstr. Caut. Light Output	16	16	16	16	16	16	16	16		
MDA/DH Output	16	16	18	16	18	16	18	18		
Altitude Capture Output	16	16	-	16	-	16	-	-		
IAS Switch Output	16	16	-	16	-	16	-	-		

- Note 1: Presented using inertial dead-reckoning based on last known wind information. If unable to dead-reckon (e.g., heading is failed or true airspeed cannot be calculated), function is disabled.
- Note 2: Only radar altitude presented when available.
- Note 3: Last known wind is saved during GPS/SBAS failure.
- Note 4: Either radar altitude or geodetic altitude less database elevation.
- Note 5: Waterline symbol expanded to large attitude bars. Rotorcraft versions (Part 27 or Part 29 airspeed scale), use full-time large attitude bars and do not show the waterline symbol.
- Note 6: Special use airspace boundaries are drawn with bold lines due to lack of aircraft altitude data.
- Note 7: In heading-only failure mode or AHRS failure mode, heading scale aligned with aircraft track and heading indication is removed. In heading-only failure mode or AHRS failure mode combined with GPS failure, heading scale is replaced with a red-X.
- Note 9: In heading-only failure mode or AHRS failure mode, compass rose aligned with aircraft track and heading indication is removed when in heading up mode. In heading-only failure mode or AHRS failure mode combined with GPS failure, compass rose is removed.
- Note 10: Presents using last-known wind information and aligned with aircraft track in heading up mode.
- Note 11: Only radar altitude presented when available.
- Note 12: Assuming valid fuel flow information, endurance is presented.
- Note 13: Large attitude bars presented and X'd out.
- Note 14: Flight path marker grayed after 1 minute to indicate degraded operation.
- Note 15: Highway in the Sky removed after 1 minute.

- Note 16: See IDU SCC Card and Limits Requirements for activation requirements.
- Note 17: Defaults to AIR unless Weight on Wheel/Weight on Ground discrete input is active.
- Note 18: Only DH function (with valid AGL altitude) in this mode.
- Note 19: Red-X in place of scale.
- Note 20: VLOC CDI always available if optional VOR symbology enabled.
- Note 21: Function removed during heading-only failure mode.
- Note 22: Rotorcraft versions (Part 27 or Part 29 airspeed scale), use full-time large attitude bars and do not show the waterline symbol.
- Note 23: Assuming valid fuel flow information, both range and endurance are presented.
- Note 24: Assuming valid fuel flow information, both range and endurance are presented using inertial dead-reckoning based on last known wind information. If the pilot is unable to dead-reckon due to loss of heading or true airspeed cannot be calculated, endurance only information is presented.
- Note 25: Inhibited in accordance with the conditions specified in TAWS automatic inhibit function (abnormal operation).

4.1.1. Oat Sensor Failure Mode

In addition, the equipment has an OAT sensor failure mode. With the OAT sensor failed, the display of wind, OAT, density altitude, and true airspeed on the ND are disabled.

4.1.2. Heading Failure Mode

In addition, the equipment has a heading failure mode. With heading failed, the PFD heading scale and MFD compass rose align with track (if available) or are removed and replaced with a red-X.

In this failure mode, the PFD heading scale includes "GPS TRK" around the track marker to clearly delineate the failure mode.

Figure 4-1: GPS TRK

4.1.3. PFD Screen Auto Reversion

For IFR approval in aircraft, flight instrument information essential to safety of flight remains available to the pilot without additional crewmember action after a failure. To accommodate this, MFDs must have the ability to sense when the PFD has failed and take over the PFD function automatically. The manner in which this occurs on the IDU-450 is as follows:

When an MFD (IDU #2, 3, or 4) becomes the transmit-enabled IDU, the MFD automatically switches to the PFD screen. Push ① to change the MFD to other screens after the automatic switch.

4.1.4. GPS Failure

GPS degrades or fails as a result of loss of satellite information, or GPS equipment failure. When SBAS provides the integrity, the EFIS provides a loss of integrity (LOI) caution within two seconds, if the current horizontal protection level (HPL) exceeds the horizontal alert level (HAL). The LOI caution appears when there is no integrity monitoring and disappears when it is restored.

Figure 4-2: LOI Caution

Further GPS degradation causes the EFIS to lose GPS updating of aircraft position, ground speed, and ground track, and the ability to calculate the wind information.

- 1) LOI (Loss of Integrity) displayed with no time delay.
- 2) HPL > HAL for the phase of flight currently in. Position is still presented based upon a GPS navigation solution.

3) NAV: FMS1 Lon HDG: BUG (Loss of Navigation) displayed with no time delay of the onset of the following:

Â

- a) The absence of power;
- b) Equipment malfunction or failure;
- c) The presence of a condition lasting five seconds or more where there are an inadequate number of satellites to compute position solution;
- d) Fault detects a position failure that cannot be excluded within time-to-alert when integrity is provided by FDE;
- e) HPL > HAL on the final approach segment: Genesys Aerosystems EFIS does not transition to DR navigation at this stage. A GPS navigation solution is still presented; and
- f) Where HPL > HAL on the final approach segment, this position may still be satisfactory for GPS navigation. For example, an HPL of 0.31NM exists, which means as soon as a transition to terminal mode occurs, all alerts would disappear. This is significantly important during a wind change if the system had been in a DR mode.

NOTE:

At any time, view HFOM on the FAULTS page to see the systemreported accuracy.

1) **DR** (Dead Reckoning)

a) If a GPS position cannot be calculated, a dead reckoning solution is provided with a timer **DR 01:23**. This solution is calculated from heading and TAS derived from the AHRS and ADC.

2) Loss of Vertical Navigation

Figure 4-4: Loss of Vertical Navigation (VLON)

If the navigation equipment is no longer adequate to conduct or continue the LNAV/VNAV approach, "VLON" appears within one second of the onset of any of the following conditions:

- a) The absence of power;
- b) Equipment malfunction or failure;
- c) The presence of a condition where fault detection detects a position failure that cannot be excluded;
- d) There are an insufficient number of SBAS HEALTY satellites;
- e) The horizontal protection level exceeds the alert limit as follows for LNAV/VNAV approaches:
 - i) Prior to sequencing the FAWP- HAL should be 0.3 NM with no limit on VAL
 - ii) After sequencing the FAWP- HAL 556m (0.3NM) and VAL 50m

When in LNAV mode, the fault detection function detects positioning failures within 10 seconds after the onset of the positioning failure.

4.2. PFD and MFD Failure Mode Examples

GPS failure results in the EFIS operating in "dead reckoning" mode. The EFIS continues to provide navigational position, groundspeed,

and ground track information, based upon the last known wind, current air data, and heading. The PFD and MFD are affected as follows.

4.3. PFD Failure Mode 0

Figure 4-5: PFD Failure Mode 0 GPS, ADC, and AHRS Normal

4.3.1. MFD Failure Mode 0 (Normal Mode)

Figure 4-6: MFD Failure Mode 0 (Normal Mode) GPS, ADC, and AHRS Normal

PFD Failure Mode 1 4.4.

Figure 4-7: PFD Failure Mode 1 **GPS/SBAS Failed; ADC and AHRS Normal**

4.4.1. MFD Failure Mode 1

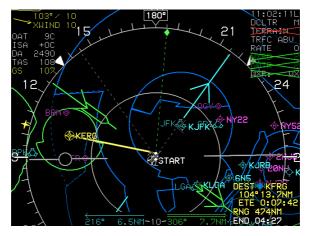


Figure 4-8: MFD Failure Mode 1 **GPS/SBAS Failed; ADC and AHRS Normal**

4.5. PFD Failure Mode 2 (Normal Mode)

Figure 4-9: PFD Failure Mode 2 (Normal Mode) ADC Failed; GPS/SBAS and AHRS Normal

4.5.1. MFD Failure Mode 2

Figure 4-10: MFD Failure Mode 2 ADC Failed; GPS/SBAS and AHRS Normal

PFD Failure Mode 3 4.6.

Figure 4-11: PFD Failure Mode 3 AHRS Failed; GPS/SBAS and ADC Normal

4.6.1. MFD Failure Mode 3

4-12

Figure 4-12: MFD Failure Mode 3 AHRS Failed; GPS/SBAS and ADC Normal

4.7. PFD Failure Mode 4

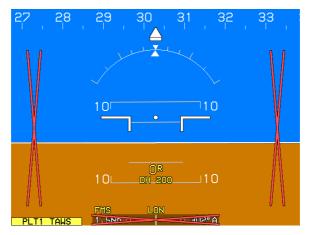


Figure 4-13: PFD Failure Mode 4 GPS/SBAS and ADC Failed; AHRS Normal

4.7.1. MFD Failure Mode 4

Figure 4-14: MFD Failure Mode 4 GPS/SBAS and ADC Failed; AHRS Normal

4.8. **PFD Failure Mode 5**

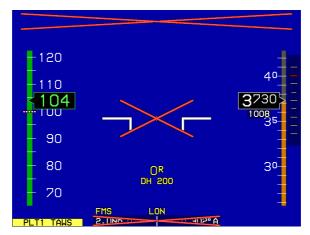


Figure 4-15: PFD Failure Mode 5 **GPS/SBAS and AHRS Failed; ADC Normal**

4.8.1. MFD Failure Mode 5

Figure 4-16: MFD Failure Mode 5 **GPS/SBAS and AHRS Failed; ADC Normal**

4.9. PFD Failure Mode 6

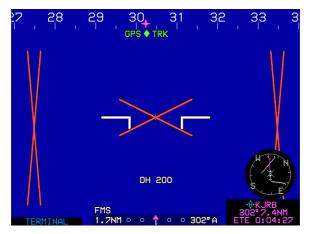


Figure 4-17: PFD Failure Mode 6 ADC and AHRS Failed; GPS/SBAS Normal

4.9.1. MFD Failure Mode 6

Figure 4-18: MFD Failure Mode 6 ADC and AHRS Failed; GPS/SBAS Normal

PFD Failure Mode 7 4.10.

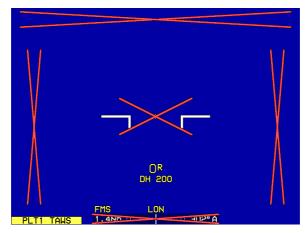


Figure 4-19: PFD Failure Mode 7 GPS/SBAS, ADC, and AHRS Failed

4.10.1. MFD Failure Mode 7



Figure 4-20: MFD Failure Mode 7 GPS/SBAS, ADC, and AHRS Failed

Section 5 Menu Functions and Step-By-Step Procedures

5.1. Menu Functions

The top-level menu level corresponds to the permanent labeling of the IDU pushbuttons and is active any time no soft menu options appear on the screen. Soft menu function tiles appear next to the appropriate IDU button and the right encoder $(\mathbf{0})$ when appropriate.

On the PFD, scroll ① to activate the heading menu. On MFD pages with an adjustable display (e.g., ND, Strike, Traffic, Datalink, Hover, Weather Radar, Video, or OASIS) scroll ① to change the display scale (CW = increase scale, CCW = decrease scale). On the video page, scroll ① to change the zoom level (CW = increase zoom, CCW = decrease zoom).

With the exception of IDU #1, push ① to swap between the PFD and MFD, unless the IDU is in MFD-only mode. IDU #1 is always configured to the PFD page.

Figure 5-1: IDU-450 Input Controls

Table 5-1: Encoder Functions for All Pages						
NAU:FMS 2.0NH □ □ 0 0 347*A HDG = 089°	PFD page					
18 SELECT 155" 8. INT 21 020" 7. ON CREATE-EDIT	MFD MAP page					
ATT AND A STAR STAR	MFD Video page					
ROUTE OFF PRN OFF DCLTR	MFD Datalink page					

5.1.1. Menu Philosophy

The menu system and buttons with an action are clearly labeled. The following rules are in the design of the menu system:

EXIT EXIT (R1): Whenever menu system is beyond the top-level, provides a one-touch escape to the top-level.

BACK **BACK (L1)**: Whenever soft menu level is deeper than the first-level, regresses through the menu system by one level.

Soft menu tiles: Used (even at the top-level) and are annunciated on the screen adjacent to the appropriate IDU button or encoder when appropriate.

Selection list: Menus adjacent to ① are frequently a selection list. Lists too long to be presented in the space available provide an indication of location within the list.

Within lists or on a soft menu tile, a two-dot trailer indicates further menu levels.

Menu messages are displayed for five seconds but are cleared if no IDU button is pressed or encoder pushed or scrolled.

Figure 5-2: IDU-450 Input Controls

5.1.2. Avoidance of Autonomous Behavior

TAWS/HTAWS popups: When an FLTA alert is generated, a popup function enables PFD SVS TAWS feature and activates terrain at an appropriate scale and format on the MFD moving map page. This is a required function of TSO-C194 for Enhanced HTAWS and is enabled in the other TAWS/HTAWS options integrated in the EFIS software. (See Section 8 Terrain Awareness Warning System for details.)

Traffic popups: When a traffic alert is generated, a popup function displays traffic on the PFD, traffic thumbnail and MFD moving map page.

5.2. Menu Synchronization

System settings changed by the menu system are synchronized between multiple IDUs in MFD-MFD mode. All parameters for rotorcraft are included. Each appendix for Datalink, Strikes, RBP, Traffic, Video, and Weather Radar contains specific limitations for menu synchronization for that feature.

Table 5-2: Menu Sy	/nchronization
Menu Parameter	Notes
The following menu parameters	-
displays at all times. These are k	
values that should never have inde	ependence.
AHRS 1 and 2 mode and slewing	
values	
Fuel Totalizer Quantity	
VNAV Climb Angle	
Countdown Timer Start Time	
Countdown Timer Default Value	
Remote Tune Frequencies	
VNAV Descent Angle	
Decision Height Setting	Used when "Dual Decision Height Flag" as set in EFIS limits.
Emergency and Minimum Fuel Settings	
Heading Bug and Heading Sub- Mode	
Minimum Altitude Bug Value	

1

Menu Parameter Notes	
VLOC OBS Settings	
Airspeed Bug Setting	
Target Altitude Bug Setting	
Timer Starting Signal	
Traffic Filter Setting	
True North Mode	
UTC Offset	
VSI Bug Setting	
Crosslink Synchronization Status	
The following menu parameters are synchronized across	s all
displays when crosslink is enabled. Otherwise, they are	
synchronized onside. These parameters are FMS parame	eters
and allow the pilot and co-pilot FMSs to be oper	ated
independently when crosslink is inhibited.	
Active Flight Plan Parameters	
Runway Display Parameters	
The following menu parameters are only synchronized on	side.
These parameters are usually sensor selections or PFD opt	
used to keep the appearance of any pilot's PFD consistent ir	
case of PFD reversion. The onside characteristic means	that
individual pilots can still adjust their PFD settings to	their
preference.	
Sensor Selections	
Transition Altitude	
Barometric Setting Units	
Barometric Setting Value	
Barometric Setting Mode	
Used when "Dual Deci	sion
Decision Height Setting Height Flag" as set in E	FIS
limits.	
Navigation Source	
Horizon Synchronization	
Parameters	
PFD Basic Mode	
PFD Zoom Mode	
PFD Analog AGL	
PFD Full-time Bank Scale Flag	
PFD Flight Director Show Flag	
PFD Mini-map Show Flag	

_ _ _ _ _ _ _ _ _

l

Menu Parameter	Notes
PFD Altitude (meters) Show Flag	
PFD Traffic Thumbnail Show	
Flag	
PFD Traffic Show Flag	
PFD OASIS Overlay Show Flags	
PFD Skyway Show Flag	
PFD Terrain Show Flag	
Rate of Turn Indication flag	
The following menu parameters	
displays. These are used to suppo	
give the pilot maximum MFD opera	
of these parameters are also in	
bottom MFD areas as specified in	To support mixed CPU Type
CPU Type	installations
DVI Mode Status	Support for with DVI option
MFD Hover Page Scale	
	Parameter is transmitted to
	all other IDUs to support
MFD Selected Page	weather radar vertical profile
	mode selection.
	Map scale is transmitted
MFD Map Page Settings	onside to support weather
	radar range selection.
OASIS CAS Box Render Status	Supports integrated OASIS
CASIS CAS Box Relider Status	CAS area.
450 Screen Display Status	Support for 450 reversion
MFD Map Function Declutter	
Settings	
MFD OASIS Overlay Show Flags	
MFD Show ETA Flag	
MFD Map NavData® Symbol	
Declutter Settings	
MFD Map and HSI Page Pointer	
Settings	
MFD OASIS Overlay Show Flags	

Table 5-2: Menu Synchronization

5.3. Menu Function Types

There are two types of menu functions on the IDU-450, top-level menu functions corresponding to the labeled pushbutton, and soft menu functions indicated by menu tiles, which appear on screen. Soft menu function tiles appear next to the appropriate IDU button or in the lower right corner when use of the encoder is appropriate. Soft menu functions take precedence over IDU pushbutton functions.

5.4. Top-Level Menu

On the IDU-450, the top-level menu corresponds to the permanent label of the IDU pushbuttons and is active anytime no soft menu options appear on the screen.

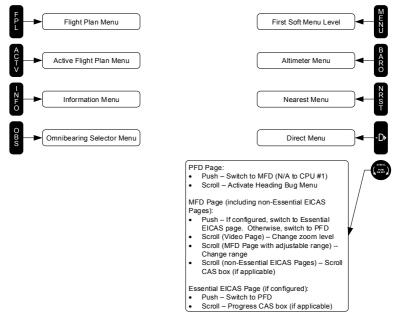


Figure 5-3: PFD Top-Level Menu

5.4.1. Top-Level Menu Option Descriptions

- 1) FPL (L1): Flight plan menu
- 2) ACTV (L2): Active flight plan menu

- 3) **INFO (L3)**: Information menu
- 4) **OBS (L4)**: Omnibearing selector menu
- MENU (R1): First-level associated with the current display page and times out after 10 seconds if there are no subsequent pilot actions.
- 6) **BARO (R2)**: Altimeter menu option
- 7) NRST (R3): Nearest menu option
- 8) (R4): Direct menu option

9) **#1 Encoder** (●)

- a) On a PFD, scroll to activate the heading menu.
- b) On MFD pages with an adjustable display scale (e.g., ND, Strike, Traffic, Datalink, Hover, or Weather Radar), scroll to change display scale (CW = increase, CCW = decrease).
- c) On the Video page, scroll to change zoom level (CW = increase, CCW = decrease).
- d) With the exception of IDU #1, push to swap between the PFD and MFD. IDU #1 is always fixed to the PFD page.

5.4.2. Top-Level Menu Automatic Pop-up Function Descriptions

Soft menu tiles appear adjacent to pushbuttons under the specified conditions.

Table 5	-3: 1	Fop-Level Menu Automatic Function Descriptions Precedence, Tile Legend, and Action
FPL (L1)	1)	When a terrain popup occurs during a TAWS FLTA alert, RESET appears. (MFD only)
	2)	When ND page with pan mode enabled, PN OFF appears. Press to disable pan mode. RESET has precedence over PN OFF . (MFD only)
	3)	When display is transmit enabled, LNAV appears when there is an active flight plan, heading bug sub-mode is active, and the system is integrated with an analog autopilot. Press to deactivate

Table 5	-3: 1	Fop-Level Menu Automatic Function Descriptions Precedence, Tile Legend, and Action
		heading bug sub-mode and resume guidance to active flight plan path. (PFD only)
	4)	When display is transmit enabled, MISS appears upon transitioning the FAF. Press to activate the missed approach procedure. LNAV has precedence over MISS .
	5)	When the display is transmit enabled, HDG appears when LNAV sub-mode is active and the system is integrated with an analog autopilot with HDG mode engaged. Press to deactivate LNAV sub-mode and resume guidance to the heading bug. MISS has precedence over HDG . (PFD only)
ACTV (L2)	1)	When showing ND Page with: (a) pan mode enabled; (b) information for the nearest highlighted waypoint is shown; and (c) airport weather information present in the information block.
	2)	When the display is transmit enabled and HRZ SYNC is armed, HS ON appears. Press to engage HRZ SYNC mode and apply the appropriate offset to displayed pitch attitude. UP has precedence over HS ON . (PFD only)
	3)	When the display is transmit enabled and HRZ SYNC is engaged, HS OFF appears. Press to cancel HRZ SYNC mode. UP has precedence over HS OFF . HRZ SYNC is also automatically cancelled by flying beyond the arming range. In most cases, it is anticipated that HRZ SYNC will be cancelled automatically by accelerating through the arming speed rather than by pressing HS OFF . (PFD only)
	4)	When the display is transmit enabled, CONT appears when in a holding pattern with further active flight plan legs after the holding pattern. Press to re-enabled automatic waypoint sequencing to allow normal sequencing to the leg after the holding pattern. UP , HS ON , and HS OFF have precedence over CONT . (PFD only)

Table 5	-3: Top-Level Menu Automatic Function Descriptions Precedence, Tile Legend, and Action
	 When the display is transmit enabled, RESUME appears when the following leg is a manual leg and the FMS is in FROM operation. Press to activate a Direct-To the waypoint after the manual leg. UP, HS ON, and HS OFF have precedence over RESUME. (PFD only)
	6) When the display is transmit enabled, VNAV appears when VNAV guidance is valid, the selected altitude sub-mode is active, and the system is integrated with an analog autopilot. Press to deactivate selected altitude sub-mode and resume guidance to VNAV path. UP, HS ON, HS OFF, CONT, and RESUME have precedence over VNAV. (PFD only)
	7) When the display is transmit enabled, ARM appears when on the final approach segment (between FAF and MAP). Press to arm missed approach procedure to automatically activate upon sequencing MAP. UP, HS ON, HS OFF, and VNAV have precedence over ARM. (PFD only)
INFO (L3)	When ND page with pan mode enabled, NORTH appears. Press to shift the center of the page in the specified direction.
OBS (L4)	When ND page with pan mode enabled, SOUTH appears. Press to shift the center of the page in the specified direction.
BARO (R2)	When ND page with pan mode enabled, INFO or HIDE appears. Press to toggle the display of information for the nearest highlighted waypoint.
NRST (R3)	When ND page with pan mode enabled, EAST appears. Press to shift the center of the page in the specified direction.
•• (R4)	When ND page with pan mode enabled, WEST appears. Press to shift the center of the page in the specified direction.

5.5. First Page (PFD)

On the IDU-450, IDU #1 is fixed to the PFD page, and other IDUs may show the PFD page as a backup function. IDU-450 PFD page first-level options are as follows.

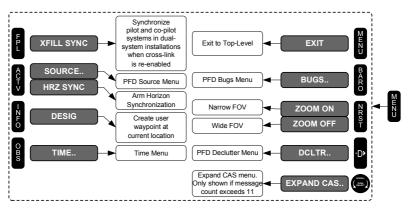


Figure 5-4: First Page PFD

5.5.1. PFD Page First-Level Option Descriptions

 XFILL SYNC (FPL) (L1): Appears in dual-system installations where the pilot and co-pilot systems are not synchronized, but crosslink is enabled. Press to synchronize the pilot and co-pilot active flight plan parameters to the system where the button press occurred.

1	Table 5-4:	Crossfill In	hibit/Arm/	Sync Fu	nction
Crossfill	Flight Plan	Indication (Pilot and	Action to Synchronize Flight Plans		Result
		Co-pilot)	Pilot	Co-pilot	
Enabled (Cond.1)	Synchro- nized	None	None	None	No action required. Pilot and co-pilot sides already synchronized.
Enabled (Cond.2)	Not Synchro- nized ⁽²⁾	XFILL ARM	MENU (R1) XFILL SYNC (L1)	None	Pilot's flight plan is sent to co-pilot side and both sides are synchronized

٦	Table 5-4:	Crossfill In	hibit/Arm	/Sync Fu	nction
Crossfill	Flight Plan	Indication (Pilot and	Action to Synchronize Flight Plans		Result
		Co-pilot)	Pilot	Co-pilot	
					going forward. XFILL ARM is removed from both sides.
			None	MENU (R1) XFILL SYNC(L1)	Co-pilot's flight plan is sent to pilot side and both sides are synchronized going forward. XFILL ARM is removed from both sides.
Inhibited (Cond.3)	Not Synchro- nized	XFILL INHBT	Enable cros (proceed to		XFILL INHBT removed. XFILL ARM displayed on both sides.

- ⁽¹⁾ Crossfill is inhibited with the use of a latching (ON) crossfill inhibit switch. Crossfill is enabled by releasing (OFF) this switch. The location and number of crossfill inhibit switches in a cockpit varies by installation. Usually a single crossfill switch can be centrally located in a side-by-side cockpit within reach of both pilots. If a single switch cannot be installed within reach of both pilots (tandem cockpits or very wide cockpits), two switches can be installed to function in parallel (either switch inhibits or enables crossfill on both the pilot and co-pilot sides).
- ⁽²⁾ Pilot and co-pilot flight plans can become unsynchronized under the following conditions:
 - ¹⁾ Crossfill is inhibited, and pilot and co-pilot flight plans are separately changed before crossfill is re-enabled.
 - ²⁾ Either the pilot or co-pilot side is restarted with an active flight plan on the other side and crossfill enabled.
- HRZ SYNC (L2): When the display is transmit enabled and horizon synchronization function is available, arms horizon synchronization function.

- SOURCE (L2): Activates PFD source selection menu option. HRZ SYNC has precedence.
- 4) DESIG (INFO) (L3): Creates a user waypoint at the current aircraft location. In addition, if pressed with an ND page operating in pan mode, creates a user waypoint at the panning location. User waypoint at current aircraft location is automatically named "OF###," where #### is the next available over-fly user waypoint number. User waypoint at panning location is automatically named "PN###," where #### is the next available panning user waypoint number. When pressed and the number of user waypoint count is more than 998, the USER WPT S FULL message appears.
- 5) TIME (OBS) (L4): Activates timer menu option.
- 6) **BUGS (BARO) (R2)**: Activates PFD bug set menu option.
- ZOOM ON/ZOOM OFF (NRST) (R3): Toggles between wide FOV mode and narrow FOV mode. ZOOM ON appears when current mode is wide FOV. ZOOM OFF appears when current mode is narrow FOV.
- 8) DCLTR **(R4):** Activates PFD declutter menu option.
- EXPAND CAS Encoder): Activates expand CAS menu option when there are more than 11 active CAS messages displayed on the IDU.

5.5.2. PFD Screen First Soft Menu Level

When horizon synchronization is available and the IDU is transmit enabled, **HRZ SYNC (L2)** appears in the PFD screen first soft menu level. **HRZ SYNC** takes precedence over the PFD source menu. Press **HRZ SYNC (L2)** to arm horizon synchronization mode. It is anticipated the pilot takes this action on a Cat. A departure prior to lifting the helicopter into hover flight.

XFILL SYNC (L1) appears in the PFD screen first soft menu level when all of the following conditions are met:

- 1) Crosslink status is enabled; and
- 2) Crosslink synchronization status is not enabled; and
- 3) Discrete input for Crossfill Inhibit is not enabled; and

- 4) Side in command is valid; and
- 5) AFCS Status is set to invalid.

5.5.3. First-Level (MFD)

IDUs other than #1 may show various MFD pages as described in § 5.22. MFD first-level options are as follows.

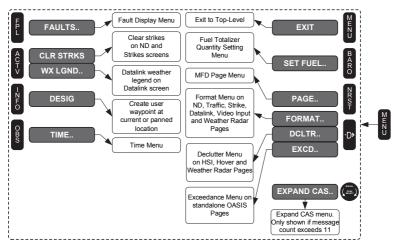


Figure 5-5: First-Level MFD

- 1) FAULTS (FPL) (L1): Activates fault display menu option.
- CLR STRKS (ACTV) (L2): On ND or Strike page with WX-500 option enabled, CLR STRKS activates strike clear option for the Goodrich/L-3 WX-500. On Datalink page, "WX LGND" activates the datalink weather legend.
- 3) **DESIG (INFO) (L3)**: Same function as PFD page first-level.
- 4) TIME (OBS) (L4): Same function as PFD page first-level.
- 5) **SET FUEL (BARO) (R2)**: Activates fuel totalizer set menu option.
- 6) **PAGE (NRST) (R3)**: Activates MFD display page select menu option.
- 7) FORMAT, DCLTR, or EXCD (R4):

- a) FORMAT : On ND, traffic, strikes, datalink, video, and weather radar pages, activates appropriate page format menu option. On the weather radar page, FORMAT appears when an RDR-2000 or RDR-2100 is installed but a Radar control panel is not installed.
- b) DCLTR: On HSI page with optional VOR or ADF symbology enabled or declutterable OASIS overlays, activates HSI declutter menu option. On hover page with declutterable OASIS overlays, activates hover declutter menu option. On weather radar page with declutterable OASIS overlays or in horizontal profile mode, activates weather radar declutter menu option.
- c) EXCD: On a standalone OASIS page, activates the EICAS exceedance menu option. EXCD only appears if exceedances are logged.
- 8) EXPAND CAS (**0**):

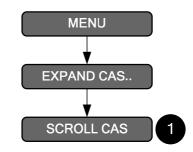


Figure 5-6: Expand CAS Menu

Activates the Expand CAS menu option and only appears when there are more than 11 active CAS messages being displayed on the IDU.

5.6. Lower-Level Menus (Below First-Level)

Top-level and first-level menus, called lower-level menus, and the eight pushbuttons and encoder control them as seen in Figure 5-1.

5.7. Flight Plan (FPL) Menu

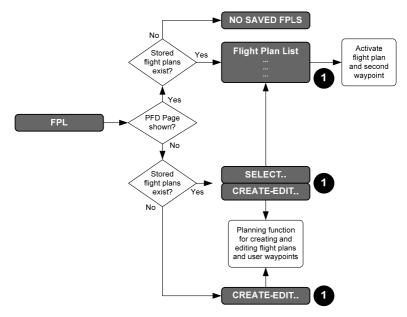


Figure 5-7: Flight Plan Menu

5.7.1. Flight Planner Page

The flight planner is used for following functions on pilot-modifiable elements in the IDU database.

- 1) Manage stored flight plans (activate, create, edit, delete, and reverse);
- 2) Manage user waypoints (create, edit, and delete); and
- 3) Perform RAIM predictions.

Because the flight planner takes over the IDU's controls, limitations are placed upon access and display of the flight planner. The flight planner is not available when a PFD page is being displayed on the IDU. (MFD in reversion mode).

When the flight planner is accessed, it only appears on the MFD to preserve access to crucial PFD page controls such as altimeter settings.

5.7.2. PFD Page Shown

Upon activation of the flight plan menu, the system checks for existing saved flight plans. If there are no saved flight plans, **NO SAVED FPLS** appears. Otherwise, a selection list of saved flight plans is presented. Upon selection of a saved flight plan, the second waypoint in the flight plan is activated.

5.7.3. MFD Page Shown on IDU

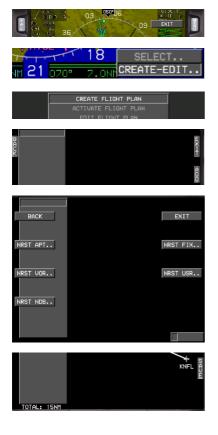
Upon activation of the flight plan menu, the system checks for existing saved flight plans. If there are no saved flight plans, the flight planner is activated. Otherwise, an option list is presented for the pilot to either select a saved flight plan or enter the flight planner. Selecting the saved flight plan option leads to a list of saved flight plans. Upon selection of a saved flight plan, the second waypoint in the flight plan is activated.

5.7.4. Create an Overfly User Waypoint

Figure 5-8: Creation of Overfly User Waypoint

When flying over intended waypoint, press **MENU (R1)** then **DESIG (L3)** on the PFD or MFD. A user waypoint is created at the present position and automatically named "OF###", where '###' is the next in sequence overfly user waypoint number available. User waypoint at panning location is automatically named "PN###" accordingly. Change the waypoint name by using the **EDIT USER WPT** function on the MFD.

NOTE:


When the maximum user waypoint count is 998 and an attempt is made to create additional user waypoints, **USER WPTS FULL** message appears.

5.7.5. Flight Plan (FPL) Menu Selecting (Step-By-Step)

- 1) Press FPL (L1).
- 2) Scroll **①** to desired flight plan and push to enter.

5.7.6. Flight Plan (FPL) Menu Create-Edit (MFD Only) (Step-By-Step)

- 1) Press FPL (L1).
- 2) Scroll **①** to **CREATE**-**EDIT..** and push to enter.
- 3) Push **1** to enter.
- Press ADD (R2) to begin creating first waypoint.
- Either use ① to create a new waypoint or press NRST APT.. (L2), NRST VOR.. (L3), NRST NDB.. (L4), NRST FIX.. (R2), or NRST USR.. (R3), and make desired selection. Push ① to enter.
- When finished, press SAVE (R4) to store the new flight plan as one of 100 flight plans in memory. If 100 flight

plans are present, the **CREATE FLIGHT PLAN** option is absent.

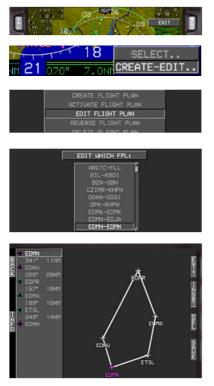
 If no other action is necessary, press BACK (L1) to return to function select page or EXIT (R1) to exit the menu.

5.7.7. Activate Flight Plan (MFD Only) (Step-By-Step)

<u> <> KE</u> F	26		0-0/	SELECT
26	5"	16.	1 NM	CREATE-EDIT

350	BZA-KNYL [≜] CZIMR-KHPN
	JULEB-TEB
	KCRQ-KCRQ
o 🔶 170º A	KJFK-KJFK

7	18 SELECT 070° 7.0NH CREATE-EDIT
	CREATE FLIGHT PLAN
	EDIT FLIGHT PLAN
	REVERSE FLIGHT PLAN
BACK	
	ACTIVATE WHICH FPL:
	ARCTC-FLL BIL-KBOI BZA-GBN CYMT-OSH CZINF-KHPN DGAA-DGSI


- 1) Press FPL (L1).
- 2) Scroll **1** to **SELECT..** and push to enter.

Or

- 1) Scroll **1** to **CREATE**-**EDIT..** and push to enter.
- Scroll **1** to ACTIVATE FLIGHT PLAN and push to enter.
- Scroll **①** to desired saved flight plan and push to enter.
- 4) If no other action is necessary, press BACK (L1) to return to function select page or EXIT (R1) to exit the menu.

5.7.8. Edit Flight Plan (MFD Only) (Step-By-Step)

- 1) Press FPL (L1).
- 2) Scroll **1** to **CREATE**-**EDIT..** and push to enter.
- Scroll ① to EDIT FLIGHT PLAN and push to enter.
- 4) Scroll **1** to desired flight plan and push to enter.
- 5) Edit flight plan by adding or deleting waypoints as appropriate.
- To save, press SAVE (R4).
- If no other action is necessary, press BACK (L1) to return to function select page or EXIT (R1) to exit the menu.

5.7.9. Reverse Flight Plan (MFD Only) (Step-By-Step)

- 1) Press FPL (L1).
- 2) Scroll **1** to **CREATE**-**EDIT..** and push to enter.
- Scroll ① to REVERSE FLIGHT PLAN and push to enter.

Section 5 Menu Functions and Procedures

- REVERSE HHICH FPL: ARA-BOA ARCTC-FLL BIL-KBOI BZA-GBN CZIRR-KNPN OGA-DOSI OFK-KDPK EDWK-EDWK EDWA-EDJA
- 4) Scroll **1** to desired flight plan and push to enter.
- If no other action is necessary, press BACK (L1) to return to function select page or EXIT (R1) to exit the menu.

5.7.10. Delete Flight Plan (MFD Only) (Step-By-Step)

18 SELECT
EDIT FLICHT FLAN REVERSE FLIGHT PLAN DELETE FLIGHT PLAN CREATE USER WPT (LAT-LON) CREATE USER WPT (RAD-DST)
ARA-BDA ARCTC-FLL BIL-KSOI BZA-BON CZINR-KHPN DGA-DGSI DPK-K:PN ED/A-EDM ED/K-EDM
CONFIRM DELETE FPL
BACK EXIT

- 1) Press FPL (L1).
- 2) Scroll **1** to **CREATE**-**EDIT.** and push to enter.
- Scroll **1** to **DELETE** FLIGHT PLAN and push to enter.
- Scroll **1** to desired flight plan to be deleted and push to enter.
- 5) Push **1** to **CONFIRM DELETE FPL**.
- Next flight plan is highlighted. If no other action is necessary, press BACK (L1) to return to function select page or EXIT (R1) to exit the menu.

5.7.11. Create User Waypoint (LAT-LON) (MFD Only) (Step-By-Step)

User waypoints may be created with three methods:

- 1) Latitude and Longitude
- 3) Overfly (Designate)
- 2) Radial and Distance

Follow the step-by-step procedure defined below to create a user waypoint using latitude and longitude.

C 250 400	36 03 00 09	
viii 21 07	18 SELI	ECT -EDIT
	REVERSE FLIGHT PLAN DELETE FLIGHT PLAN CREATE USER HPT (LAT-LON) CREATE USER HPT (RAD-DST) EDIT USER HPT DELETE HEED HDT	
BACK	ROTOR	EXIT
	N 40°00.26'	
	W072°55.25'	
	ELEV: 1'	SAUE
	APP BRG: OFF	
BACK	ROTOR	EXIT
	N 40°00.26'	
	W072°55.25'	
	ELEV: 1'	SAVE
	APP BRG:018	
BACK		EXIT
	CREATE FLIGHT PLAN	
	DELETE FLIGHT PLAN CREATE USER WPT (LAT-LON)	
	EDIT USER HPT DELETE USER HPT	
	RAIM PREDICTION	

- 1) Press FLP (L1).
- 2) Scroll **1** to **CREATE**-**EDIT..** and push to enter.
- Scroll **1** to CREATE USER WPT (LAT-LON) and push to enter.
- 4) To name new user waypoint, scroll **①** and push to enter all fivecharacter spaces. With new name created, use **①** to proceed through all fields as necessary.

Preloading of the approach bearing is dependent upon mode of flight as follows:

On Ground: Preloaded with current heading

In Flight: Preloaded with **OFF** value.

If desired, specify the approach bearing to user waypoint in degrees 1°-360°. **OFF** value disables VFR approaches to the user waypoint. Once all fields are entered, press **SAVE (R4)** to save the user waypoint and return to the editing screen.

5.7.12. Create User Waypoint (RAD-DST) (MFD Only) (Step-By-Step)

18 SELECT
DELETE FLIGHT PLAN CREATE USER HPT (LAT-LON) CREATE USER HPT (RAG-OST) EDIT USER HPT DELETE HEEP HPT
BACK RD001
RADIAL:001°
DIST: 0.0NM
DIST: 20.6MM

- 1) Press FPL (L1).
- 2) Scroll **1** to **CREATE**-**EDIT..** and push to enter.
- Scroll ① to CREATE USER WPT (RAD-DST) and push to enter.

The identifier is automatically named RD### where ### is the next available radial distance waypoint number.*

 After all fields have been entered, press SAVE (R4) to save and return to the editing screen.

* **Reference Waypoint** : The pilot is prompted to enter an identifier for the reference waypoint on the second line. Use **1** to enter the reference waypoint in the same manner as a waypoint is entered for a flight plan. If there is a single result from the search, the pilot is advanced to the radial entry box. If there is no result from the search, the pilot is re-prompted to enter an identifier. If there are multiple results from the search, a selection list with matching identifiers is displayed, and upon selection, the pilot is advanced to the radial entry box. **INFO** menu appears at this level and provides access to information for the highlighted result.

Radial Entry: The third line is for pilot to specify a radial from the reference waypoint in increments of degrees.

Distance Entry: The fourth line allows the pilot to specify a distance from the reference in increments of tenths of nautical miles.

5.7.13. Edit User Waypoint (MFD Only) (Step-By-Step)

	03 09 09	
viii 21 070°	CDEAT	ECT E-EDIT
	EATE USER HPT (CAT-COA EATE USER HPT (RAD-DST EDIT USER HPT DELETE USER HPT	>
E0:	IT HHICH USER HAYPOINT: ROTOR (ROTOR)	
BACK	ROTOR	EXIT
	N 40°00.26'	
	ELEV: 1'	SAVE
BACK	ROTOR	EXIT
	N 40°00.26'	
	W072°55.25' ELEV: 1'	SAVE
	APP BRG: OFF	

- 1) Press FPL (L1).
- 2) Scroll **1** to **CREATE**-**EDIT.**. and push to enter.
- 3) Scroll **1** to EDIT USER WPT and push to enter.
- 4) Scroll **1** to desired waypoint to be edited.
- Use ① to enter alphanumeric characters Follow prompts to edit information. Push ① to step through all character spaces.
- To back up, press BACK (L1) and continue to the end of all character spaces.
- Select another waypoint to edit or push SAVE (R4) to save changes to return to the EDIT USER WPT menu.

5.7.14. Delete User Waypoint (MFD Only) (Step-By-Step)

- 1) Press FPL (L1).
- 2) Scroll **1** to **CREATE**-**EDIT..** and push to enter.
- Scroll **1** to **DELETE USER WPT** and push to enter.

Section 5 Menu Functions and Procedures

DELETE WHICH USER WAYPOINT: OUERFLY 001 (OF001) DUT 834005 (REODEI) ROTOR (ROTOR) ROTOR (ROTOR)
CONFIRM DEL USER HPT
BACK
DELETE WHICH USER WAYPOINT:
DUT 834805 (R0081) ROTOR (ROTOR) ROTOR (ROTOR)

- 4) Scroll **①** to desired waypoint to be deleted.
- 5) Push **1** to **CONFIRM DEL USER WPT**.
- If no other waypoints to delete, press EXIT (R1) to exit the menu and return to the MAP.

Pilot alterations of user waypoint parameters while in flight do not automatically update to an active flight plan.

When changes are made to a user waypoint, and those changes are desired in existing flight plans, which use the waypoint, it must be deleted and replaced in the flight plans with the following steps:

- 1) EDIT the user waypoint as described in § 5.7.13.
- 2) Open a flight plan which uses the user waypoint.
- 3) Delete the existing waypoint from the flight plan.
- 4) Save and exit.
- 5) Reload the flight plan if it were in use.

5.7.15. RAIM Prediction

When selected, the RAIM prediction screen is only shown if the GPS /SBAS receiver is capable of performing a RAIM prediction. There must be no faults along with a current almanac in memory. The **FAULTS** menu may be monitored to determine if the GPS/SBAS receiver is capable of performing a RAIM prediction.

5-24

- 1) Press FPL (L1).
- 2) Scroll **1** to **CREATE**-**EDIT..** and push to enter.

 Scroll **1** to RAIM PREDICTION and push to enter.

SEE NOTE BELOW.

 4) If another RAIM Prediction is necessary, press START OVER (R2) to start the process again or press EXIT (R1) to exit the RAIM Prediction menu.

NOTE:

The pilot may perform RAIM prediction at a designated waypoint. The screen has various data entry boxes as follows:

- 1) Designated Waypoint : The pilot is prompted to enter an identifier for the designated waypoint. If there is a single result from the search, the pilot is advanced to the UTC time entry box. If there is no result from the search, the pilot is re-prompted to enter an identifier. If there are multiple results from the search, a selection list with matching identifiers is presented and, upon selection, the pilot is advanced to the UTC time entry box. INFO (L3) appears at this level to aid in selection and give access to information for the highlighted results.
- 2) **UTC Time Entry**: Allows entry of the 24-Hour UTC estimated time of arrival at the designated waypoint.
- 3) **UTC Date Entry**: Allows entry of the UTC estimated date of arrival at the designated waypoint.
- 4) **PRN Mask Entry**: Allows the pilot to specify the PRN number of satellites expected to be unavailable at the destination.
- 5) **EXIT** : Allows exit of the RAIM prediction screen at any time.
- 6) Once a designated waypoint and UTC estimated time of arrival are entered, CALC (R2) appears for the pilot to initiate the RAIM Prediction. Press CALC (R2) to check the UTC estimated time of arrival and ensure it is within the

current almanac (i.e., <3.5 days from current date and time). If it is, a Predictive FDE Request message requesting "Detection Availability" with a required HAL of 0.3NM is sent to the GPS /SBAS receiver. In response, the GPS/SBAS receiver replies with a sequence of Predictive FDE Response messages. These messages are parsed and used to fill in the RAIM Prediction result area at the bottom of the screen. The RAIM Prediction result area shows the RAIM Prediction results as "OK" or "XX" for ETA \pm in 5-minute increments. Once a prediction is complete, **START OVER (R2)** appears to allow the pilot to perform another prediction without having to exit the RAIM Prediction screen.

5.8. Active Flight Plan (ACTV) Menu

5.8.1. Main Menu

See Section 7 IFR Procedures for active flight plan description.

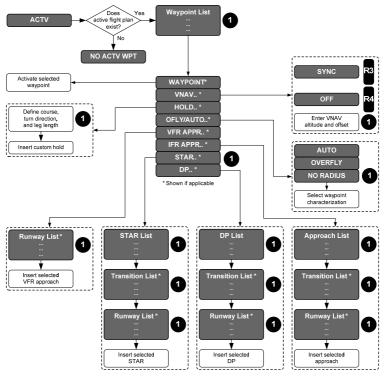


Figure 5-9: Active Flight Plan Main Menu

5.8.2. Active Flight Plan (ACTV) Menu Options

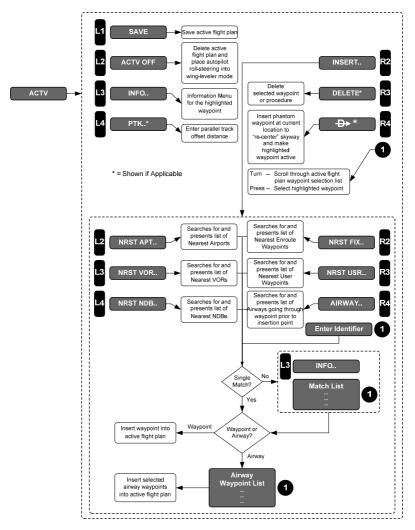


Figure 5-10: Active Flight Plan Menu Options

Various options appear at the same menu level as the nav log selection list. These options allow various modifications to be made to the active flight plan as follows.

Upon activation of the active flight plan menu, the application checks for the existence of an active waypoint. If there is no active waypoint,

a **NO ACTIVE WPT** menu message is displayed. Otherwise, a selection list in the form of a nav log of waypoints in the active flight plan is presented. See Section 7 IFR Procedures for detailed active flight plan information.

- SAVE (L1): Saves active flight plan. Stored flight plans are saved without procedures or phantom waypoint (this is a safety item as procedures potentially change every 28 days). Stored flight plans are named by their first and last waypoints. If the new stored flight plan has the same start and end points as a previously saved flight plan but has different routing, a number (0-9) is appended to the name to uniquely identify up to 10 routings with the same start and end points.
- 2) **ACTV OFF (L2)**: Deletes active flight plan. The pilot is prompted to confirm deletion prior to completion of the operation.
- 3) **INFO** (L3): Activates information menu option for highlighted waypoint.
- 4) PTK (L4): Shown if the active leg can be offset allowing the pilot to specify a parallel offset distance that applies to the active and contiguous legs. The range of parallel offsets are from 20NM left of track to 20NM right of track in 1NM increments.
- 5) INSERT /ADD (R2): Allows the pilot to insert or add a waypoint or airway into the active flight plan. If the highlighted position is one position past the end of the active flight plan, ADD (R2) appears, otherwise INSERT (R2) appears. When the highlighted waypoint is the second or subsequent waypoint of a procedure, the tile does not appear. This prevents corruption of IFR approaches, STARs, and DPs. When activated, the pilot is prompted to enter an identifier. Performing a search for waypoints requires the entry of at least two characters. If only one character is entered, only airways are searched.

For waypoints, if there is a single result from the search, the result is inserted or added to the active flight plan. If there is no result from the search, the pilot is re-prompted to enter an identifier. If there are multiple results from the search, a selection list with matching identifiers is presented and, upon selection, the selected waypoint is inserted or added to the active flight plan. INFO (L3) appears at this level to aid in selection and give access to information for the highlighted result.

For airways, a search is performed for all airways going through the highlighted waypoint and matching the entered identifier (i.e., to get a list of all Victor airways, Q-Routes and T-Routes going through the highlighted waypoint, enter an identifier string of "V", "Q" or "T"). If there is a single result from the search, a list of airway waypoints is shown for the pilot to select the desired exit point. If there is no result from the search, the pilot is reprompted to enter an identifier. If there are multiple results from the search, a selection list with matching airway identifiers is presented and, upon selection, a list of airway waypoints is shown for the pilot to select the desired exit point. Upon selecting the desired exit point, all airway waypoints from the previous waypoint to the desired exit point are inserted or added to the active flight plan.

- 6) NRST APT (L2): Performs a search for 20 airports within 240NM nearest to the wavpoint prior to the insertion point or, if there is no waypoint prior to the insertion point, current aircraft location. If there are no results (i.e., no airports within 240NM with a runway length greater than or equal to the minimum runway length setting), NO RESULTS is displayed. Otherwise, a selection list is displayed including identifier, bearing, and distance to each result. Upon selecting a result from the selection list, the item is inserted or added to the flight plan. INFO (L3) appears at this level to aid in selection and give access to information for the highlighted result, which includes datalinked weather information when available. With optional datalink, WX LGND (L2) and EXPND WX (L3) are available at this level to show a weather symbol legend and highlighted result METAR and TAF text respectively.
- 7) NRST FIX (R2): Performs a search for 20 fixes within 240NM nearest to the waypoint prior to the insertion point or, if there is no waypoint prior to the insertion point, current aircraft location. If there are no results (i.e., no fixes within 240NM), NO RESULTS is displayed. Otherwise, a selection list is displayed including identifier, bearing, and distance to each result. Upon selecting a result from the selection list, the item is inserted or added to the flight plan. INFO (L3) appears at this level to aid in selection and give access to information for the highlighted result.
- NRST NDB (L4): Performs a search for 20 NDBs within 240NM nearest to the waypoint prior to the insertion point or, if there is no waypoint prior to the insertion point, current aircraft location.

If there are no results (i.e., no NDBs within 240NM), **NO RESULTS** is displayed. Otherwise, a selection list is displayed including identifier, bearing, and distance to each result. Upon selecting a result from the selection list, the item is inserted or added to the flight plan. **INFO (L3)** appears at this level to aid in selection and give access to information for the highlighted result.

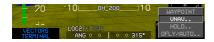
- 9) NRST USR (R3): Performs a search for 20 user waypoints within 240NM nearest to the waypoint prior to the insertion point or, if there is no waypoint prior to the insertion point, current aircraft location. If there are no results (i.e., no user waypoints within 240NM), NO RESULTS is displayed. Otherwise, a selection list is displayed including identifier, bearing, and distance to each result. Upon selecting a result from the selection list, the item is inserted or added to the flight plan. INFO (L3) appears at this level to aid in selection and give access to information for the highlighted result.
- 10) NRST VOR (L3): Performs a search for 20 VORs within 240NM nearest to the waypoint prior to the insertion point or, if there is no waypoint prior to the insertion point, current aircraft location. If there are no results (i.e., no VORs within 240NM), NO RESULTS is displayed. Otherwise, a selection list is displayed including identifier, bearing, and distance to each result. Upon selecting a result from the selection list, the item is inserted or added to the flight plan. INFO (L3) appears at this level to aid in selection and give access to information for the highlighted result.

Identifier Entry Box: The pilot may enter an identifier. Performing a search for waypoints requires the entry of at least two characters. If there is a single result from the search, it is inserted or added to the active flight plan. If there is no result from the search, the pilot is re-prompted to enter an identifier. If there are multiple results from the search, a selection list with matching identifiers is presented and, upon selection, the selected waypoint is inserted or added to the active flight plan. **INFO (L3)** appears at this level to aid in selection and give access to information for the highlighted result, which includes datalinked weather information when available. With optional datalink, **WX LGND (L2)** and **EXPND WX (L3)** are available at this level to show a weather symbol legend and highlighted result METAR and TAF text respectively.

- 11) **DELETE (R3)**: Not shown if the highlighted waypoint is a parallel offset entry or exit waypoint (these types of waypoints are deleted by removing the parallel offset). Otherwise, if the highlighted waypoint is a non-procedure waypoint, the function deletes the highlighted waypoint from the active flight plan. If the highlighted waypoint is part of a procedure, the function deletes the entire procedure from the active flight plan. The pilot is prompted to confirm deletion prior to completion of the operation. This tile does not appear if the highlighted waypoint is a non-procedure waypoint and there are fewer than three non-procedure waypoints in the active flight plan. This is because an active flight plan must always have at least two non-procedure waypoints. The tile also does not appear when the highlighted waypoint is one position past the end of the active flight plan.
- 12) **Direct** (R4): Not shown if the highlighted waypoint is a parallel offset entry or exit waypoint. Otherwise, inserts a phantom waypoint at the current aircraft location and makes the highlighted waypoint active. The phantom waypoint is a fly-over defined entry waypoint, and the leg prior to the phantom waypoint is designated a discontinuity. This assures the skyway is "re-centered" to provide guidance to the new active waypoint. This tile does not appear when the highlighted waypoint is suppressed or when the highlighted position is one position beyond the end of the active flight plan.

5.8.3. Active Flight Plan (ACTV) Menu Options (Step-By-Step)

- 1) Press **ACTV (L2)** to view active flight plan.
- Scroll **1** to desired waypoint. Push to enter.
- Scroll **1** to desired option and push to enter.



Section 5 Menu Functions and Procedures

- 4) As one option, a VNAV setting is entered.
- 5) As another option, deleting the next waypoint is accomplished.

5.8.4. Active Flight Plan (ACTV) Menu (Step-By-Step)

- With the desired flight plan selected and activated, the next steps may be accomplished on the PFD or MFD.
- 2) Press ACTV (L2) to view active flight plan.
- Scroll **1** to desired waypoint. Push to enter.
- Scroll **1** to VNAV.. then to desired altitude and push to enter.
- If no OFFSET is necessary, push ● to enter.
- View active flight plan for further editing or press
 EXIT (R1) to clear active flight plan from view.

5.8.5. Active Flight Plan (ACTV) Options NRST Menu Option (Step-By-Step)

 With active flight plan displayed, press
 INSERT.. (R2) to see NRST options.

- Press NRST APT.. (L2), NRST VOR.. (L3), NRST NDB.. (L4), NRST FIX.. (R2), NRST USR.. (R3), or AIRWAY.. (R4) to view applicable list. Scroll
 to desired selection and push to insert into active flight plan.
- Press SAVE (L1) to save active flight plan as one of the 100 stored flight plans. (Any procedure within the saved active flight plan is not saved.)

5.9. Information (INFO) Menu

If **INFO** is activated from within the **ACTV**, **NRST**, or **Direct** menu, information on the highlighted waypoint is shown. Otherwise, the function checks for an active waypoint. If there is an active waypoint, it becomes the default entry. If there is no active waypoint, then the nearest airport becomes the default entry.

If the default entry is accepted, then information for the default entry is shown. If the user rejects the default entry by entering identifier characters, then a search for matching characters is performed. Only two identifier characters are needed for searching, therefore after entering two identifier characters, **SEARCH (R4)** appears for an immediate search to begin if desired. If there is a single result

from the search, information for that result is shown. If there is no result from the search, the user is re-prompted to enter an identifier. If there are multiple results from the search, a selection list with matching identifiers is presented to allow the user to select the desired identifier.

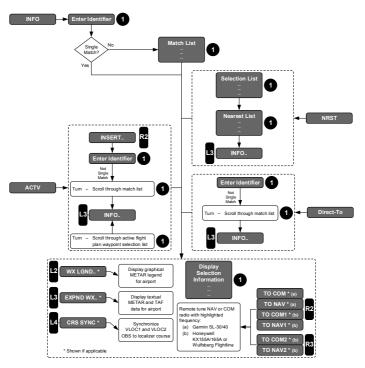


Figure 5-11: Information Menu

The amount and type of information presented depends upon the type of waypoint as follows.

Table 5-5: INFO Menu Information					
Туре	NAVAID	Airports	With Datalink Enabled		
Waypoint Identifier	NAVAID Type	Communication frequencies	Airport graphical METAR		
Waypoint Type	Frequency	Airport runway data	Current Altimeter setting		
Waypoint elevation			Current Wind		
Long Name			If textual		
Bearing and distance			METAR data is not available, all conditions are		
Latitude and longitude			followed by ""		

Table 5-6: INFO Menu*					
Single Frequency Associated with Waypoint	Conditions	Frequencies <118 MHz (NAV)	Frequencies >118 MHz (COM)		
NAV or COM tiles	More than one frequency with waypoint when highlighted in INFO block	TO NAV1 (R2) TO NAV2 (R3)	TO COM1 (R2) TO COM2 (R3)		
*When remote tuning is enabled for Garmin SL-30/40 radios, only a single TO COM or TO NAV is shown at (R2) .					

NOTE:

Frequencies are only sent to either com or nav radios in the standby position. It is up to the pilot to swap frequencies to the active position in the applicable radio.

When the information is presented for an ILS or localizer waypoint and the current VLOC1 or VLOC2 omnibearing selectors are not synchronized with the localizer course, **CRS SYNC (L4)** allows one-

touch synchronization of VLOC1 (L3) and VLOC2 (L4) omnibearing selectors to the localizer course.

Figure 5-12: CRS SYNC

5.9.1. Information (INFO) Menu (Step-By-Step)

1) Press **INFO.. (L3)** to view active waypoint.

Push **1** to view information.

5.10. Omnibearing Selector (OBS) Menu

OBS menu allows the pilot to control the omnibearing selector for showing course deviations. Press **FMS (L2)** to specify a manual or automatic OBS setting in which the active OBS is controlled by the active flight plan. OBS for VLOC1 allows the pilot to specify the active OBS setting for the VLOC1 navigation function. OBS for VLOC2 allows the pilot to specify the active OBS setting for the 5-36 IDU-450 EFIS Software Version 8.0F (Rotorcraft) Rev A Mar, 2018

VLOC2 navigation function. Manual **FMS**, **VLOC1**, and **VLOC2 OBS** settings are settable in increments of 1°. **OBS SYNC (R3)** synchronizes the manual **FMS**, **VLOC1**, or **VLOC2 OBS** settings (depending upon HSI source) to the inbound course or, if the inbound course cannot be determined, to aircraft heading. When

HSI source is FMS, **OBS AUTO** /**OBS MAN** (R4) toggles between automatic and manual OBS settings.

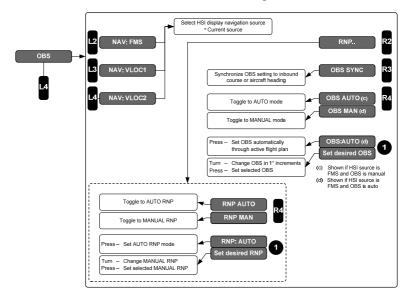


Figure 5-13: Omnibearing Selector (OBS) Menu

NOTE:

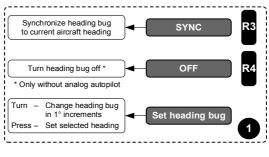
If a true north mode discrete input is configured, the OBS menu allows the pilot to toggle between **TRUE NORTH** and **MAG NORTH** modes.

With VOR symbology enabled, the OBS function also permits the pilot to select either **FMS**, **VLOC1**, or **VLOC2** as the HSI source. The HSI source selects the navigation source used to generate HSI guidance symbology. The OBS function also permits the pilot to select between manual and automatic RNP settings.

Upon selecting **RNP..** (**R2**), **RNP AUTO** /**RNP MAN** (**R4**) toggles between automatic and manual RNP settings. Manual RNP is selectable between 0.10NM and 15NM as follows:

- 1) 0.01NM increments between RNP 0.10 and RNP 0.3
- 2) 0.1NM increments between RNP 0.3 and RNP 2
- 3) 1NM increments between RNP 2 and RNP 15

5.10.1. Omnibearing Selector (OBS) Menu (Step-By-Step)



- Before pressing OBS (L4) to make any OBS changes, view the current setting to see if FMS is selected.
- Press OBS (L4) and make HSI source selection or change to OBS MANUAL (R4).

5.11. Heading Bug (HDG) Menu

The heading bug menu allows the pilot to set the heading bug in increments of 1°, synchronize the heading bug to current heading, or turn off the heading bug.

Figure 5-14: Heading Bug (HDG) Menu

IDU-450 EFIS Software Version 8.0F (Rotorcraft)

5.11.1. Heading Bug (HDG) Menu (PFD Only) (Step-By-Step)

5.12. Nearest (NRST) Menu

- Scroll **1** to enter Heading mode.
- Scroll **1** to change heading bug in 1° increments.
- Push ① to select new heading or press SYNC (R3) to sync current heading.

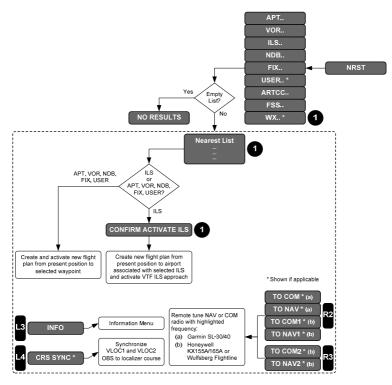


Figure 5-15: Nearest (NRST) Menu

Upon selecting a category from the option list, a selection list of up to 20 items within 240NM matching the category appears. If the list Rev A Mar, 2018 IDU-450 EFIS Software Version 8.0F (Rotorcraft) 5-39

is empty (i.e., no items within 240NM), **NO RESULTS** is displayed. The selection list includes identifier, bearing, and distance to the item, the list for Heliports and airports also contains an indication of the longest runway length at the airport. The selection list for airports contains only airports with runway length greater than or equal to the minimum runway length setting when the system was configured during installation.

The selection list for airports, VORs, ILSs, NDBs, ARTCCs, and FSSs includes an associated frequency (CTAF in the case of airports). Tiles are shown to allow transmission of the associated frequency to remote NAV or COM radios. If the frequency is greater than or equal to 118MHz, the tiles read **TO COM#** and the transmission is addressed to COM radios. If the frequency is less than 118MHz, the tiles read **TO NAV#**, and the transmission is addressed to NAV radios, **TO COM1** or **TO NAV1 (R2)**, or a **TO COM2** or **TO NAV2 (R3)** position.

NOTE:

Frequencies are only sent to either com or nav radios in the standby position. It is up to the pilot to swap frequencies to the active position in the applicable radio.

When the results for airports, VORs, ILSs, NDBs, fixes, and user waypoints are displayed, **INFO (L3)** appears to provide further information on the highlighted item.

In the case of **NRST ILS** where the current VLOC1 or VLOC2 OBS does not match the localizer course, **CRS SYNC (L4)** is presented to synchronize VLOC1 and VLOC2 OBS to the localizer course.

Upon selecting a waypoint of type airport, VOR, NDB, fix, or user waypoint, a new active flight plan is created from present aircraft position to the selected waypoint. Upon selecting a waypoint of type ILS, **CONFIRM ACTIVATE ILS** is displayed. When the pilot confirms the ILS activations, the following actions occur:

- A direct flight plan to the airport associated with the ILS is created;
- 2) A vectors-to-final ILS approach to the ILS is activated;
- If the heading bug is turned OFF, the heading bug is activated to current heading to act as a starting point for receiving vectors (autopilot enabled systems only);

- VLOC1 and VLOC2 OBS settings are set to the associated localizer course;
- 5) HSI source is switched as follows:
 - a) If there is only one nav radio installed, the source for the selecting side is changed to VLOC1. The source for the other side does not change.
 - b) If there are two nav radios installed, the default sensor for the selecting side controls which source is used. The source for the other side does not change.
- 6) Connected nav radios are remote tuned to ILS frequency.

5.13. Nearest (NRST) Menu (Step-By-Step)

- 1) Press **NRST (R3)** to enter Nearest Menu.
- 2) Scroll **1** to select **APT..** from list, push to enter.
- Scroll ① to desired airport and select to either INSERT, INFO, or send frequency to COMM1 or COMM2.

5.13.1. Nearest ILS (NRST) Menu (Step-By-Step)

- 1) Press **NRST (R3)** to enter Nearest Menu.
- 2) Scroll **1** to select ILS from list. Push to enter.
- Scroll **1** to desired airport and ILS approach then push to enter.
- 4) Push **1** to confirm and activate ILS.

5.14. Direct Menu

Upon activating the direct menu from the top-level menu, the function checks for a current active waypoint and, if found, the active waypoint becomes the default entry. If there is no active waypoint, the nearest airport becomes the default entry.

If the default entry is the active waypoint and accepted by the pilot, a phantom waypoint is inserted at the current aircraft location. The phantom waypoint is a fly-over defined entry waypoint, and the leg prior to the phantom waypoint is designated a discontinuity. This assures the skyway is "re-centered" to provide guidance to the new active waypoint. The rest of the active flight plan remains unchanged.

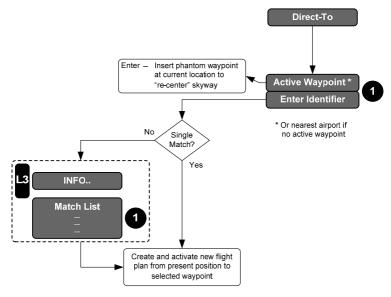


Figure 5-16: Direct Menu

If the default entry is not the active waypoint and accepted by the pilot, the resulting action depends upon whether the aircraft is in the air or on the ground. If in the air, a new active flight plan is created from present aircraft position to the selected waypoint. If on the ground, a search is conducted for a database airport within 6NM. If an airport is found, a new active flight plan is created from the found airport to the selected waypoint. Otherwise, a new active flight plan is created from the selected waypoint.

If the pilot rejects the default entry by entering identifier characters, a search for matching identifiers is performed. If there is a single result from the search, the resulting action depends upon whether the aircraft is in the air or on the ground. If in the air, a new active flight plan is created from present aircraft position to the selected waypoint. If on the ground, a search is conducted for a database airport within 6NM. If an airport is found, a new active flight plan is created from the found airport to the selected waypoint. Otherwise, a new active flight plan is created from present aircraft position to the selected waypoint.

If there is no result from the search, the pilot is re-prompted to enter an identifier.

If there are multiple results from the search, a selection list with matching identifiers is presented. Upon selection, the resulting action depends upon whether the aircraft is in the air or on the ground. If in the air, a new active flight plan is created from present aircraft position to the selected waypoint. If on the ground, a search is conducted for a database airport within 6NM. If an airport is found, a new active flight plan is created from the found airport to the selected waypoint. Otherwise, a new active flight plan is created from present aircraft position to the selected waypoint. **INFO (L3)** appears at this level to aid in selection and give access to the information function for the highlighted result.

5.14.1. Direct Menu (Step-By-Step)

- 1) Press (**R4**) to enter the Direct menu.
- The active waypoint or, in absence of an active waypoint, the nearest airport appears.
- Either push **1** to insert a phantom waypoint at the current aircraft location or scroll **1** to begin entering new identifier.

5.15.

Time (TIME) Menu

- After creating new identifier, scroll ● to the end and push to enter. A new active flight plan is created from the present aircraft position.
- If necessary, search waypoints for selection. Scroll ❶ to desired selection. Push to enter.

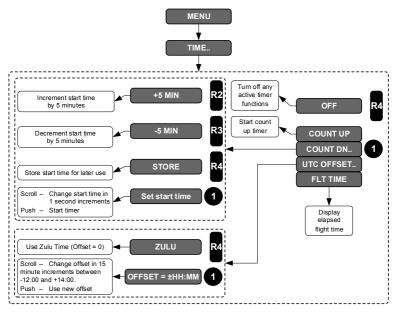


Figure 5-17: Time Menu

Upon selecting the time menu, an option list appears to let the pilot choose the count up, countdown timer, or flight time display. Press

OFF 🔘 (R4) to turn off any active timer functions.

If the count up timer is selected, the count up timer is activated. If the countdown timer is selected, the pilot is prompted to enter a start time from which the countdown begins. Shortcut tiles to quickly add


or decrement by five-minute increments are provided at this level. After entering a start time, the pilot may either start the countdown

timer or select **STORE** (R4) to store the start time for later use.

If the UTC offset is selected, the pilot is prompted to enter a UTC offset between -12:00 and +14:00 in 15-minute increments. A shortcut to quickly select Zulu time (UTC offset = 0:00) is provided at this level.

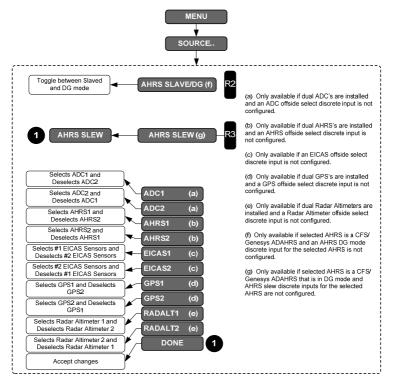
If the pilot selects the flight time display option, the elapsed time since the aircraft transitioned from ground to air mode is displayed for ten seconds or until any button is pressed. If the aircraft has not yet transitioned from ground to air mode, upon selecting the flight time display option, elapsed time is displayed as **FLT TM: 00:00:00**.

5.15.1. Time (TIME) Menu (Step-By-Step)

- 1) Press MENU (R1).
- 2) Press **TIME.. (L4)** to enter the **TIME..** menu.
- Scroll ① to select COUNT UP, COUNT DN.., UTC OFFSET.. or FLT TIME, and push to enter.
- If COUNT UP is desired, push ① to enter. A timer appears on the PFD area above the pitch scale.
- 5) To turn off timer, press **MENU (R1)** and **TIME..** (L4) then press **OFF (R4)** on PFD or MFD.

5.16. PFD Source (SOURCE) Menu

Upon activating the PFD source menu, an option list of sensor sources is shown for the pilot to select/deselect the following items:


- 1) ADC1, 5) GPS1,
- 2) ADC2, 6) GPS2,
- 3) AHRS1,

7) Radar altimeter 1, and

4) AHRS2,

8) Radar altimeter 2

If a Genesys ADAHRS is the selected AHRS and a DG/Slave discrete input is not configured for that AHRS, then **AHRS SLAVE/AHRS DG (R2)** appears to toggle between the two AHRS modes. If in DG mode without slew discrete inputs is configured for the selected AHRS, then **AHRS SLEW (R3)** appears to enter the submenu to adjust the DG mode slewing value.

Figure 5-18: PFD Source Menu

5.16.1. PFD Page First-Level Source Selection (Step-By- Step)

- 1) Press MENU (R1).
- 2) Press SOURCE.. (L2).
- Scroll ① to desired source, push to check/uncheck, scroll ① to DONE and push to enter or press EXIT (R1).
- When dual AHRS are installed with an AHRS off-side select discrete is not configured.
- When Genesys AHRS is installed and in DG Mode without discrete inputs for the selected AHRS are not selected.

5.17. PFD Bugs (BUGS) Menu

29.92

AHRS1

AHRS2

25-18

Upon selecting the PFD Bugs menu, set either minimums (MINS) (R3), an airspeed bug (IAS) (L2), the VNAV climb or descent angle

(VNAV CDA) 🗳 (R4), or vertical speed (VSI) (L4).

29,92

AHRS1

AHRSE

AHRS SLEW

25-18

Selecting the minimums option brings up a further option list for setting either decision height or minimum altitude. Selecting the minimum altitude option allows the pilot to either synchronize the minimum altitude to current altitude, turn the minimum altitude off, or set the minimum altitude in increments of 10 feet. The decision height option allows the pilot to either, set the decision height to a

default height of 200 feet, turn the decision height off, or set the decision height in increments of 10 feet.

Selecting the airspeed bug option allows the pilot to either, synchronize the airspeed bug to current airspeed, turn the airspeed bug off, or set the airspeed bug in increments of one knot indicated airspeed. On the low end, airspeed bug settings are no less than 60KIAS and no greater than V_{NE} .

NOTE:

When integrated with a Genesys/HeliSAS-E in IAS mode, it is not possible to turn off the airspeed bug.

Selecting the VNAV climb or descent angle option brings up a further option list for setting either climb angle or descent angle. At this further level, selecting either option allows the pilot to set the climb angle or the descent angle (as appropriate) in increments of 0.1° (a value of 0 is not allowed). Corresponding feet per nautical mile are shown adjacent to the climb or descent angle setting in parentheses. In addition, a shortcut tile is available to set the climb or descent angle to 3° .

Select the VSI bug option to either, synchronize the VSI bug to the current VSI, turn the VSI bug off, or set the VSI bug in increments of 100 feet per minute. The airspeed bug and VSI bug are mutually exclusive, therefore selecting one turns off the other.

Selecting the target altitude option allows the user to either synchronize the target altitude to current altitude, turn the target altitude off or set the target altitude in increments of 100 feet.

NOTE:

"Target altitude" refers to pre-selected altitude in Genesys/S-TEC HeliSAS-E installations.

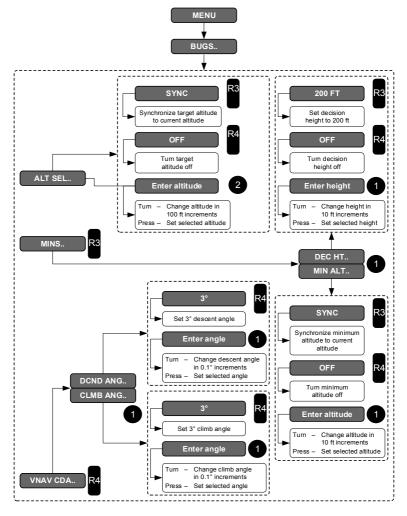


Figure 5-19: PFD Bugs (BUGS) Menu

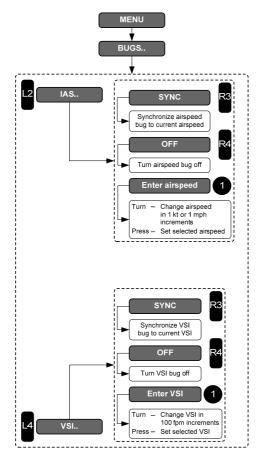
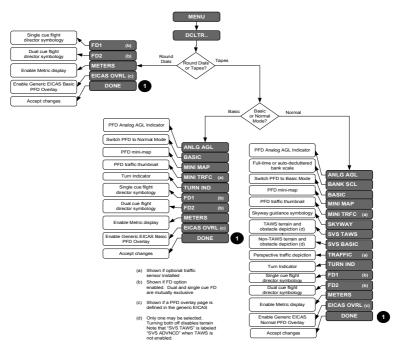


Figure 5-20: PFD Bugs (BUGS) Menu (Continued)

5.17.1. PFD Bugs (BUGS) Menu (Step-By-Step)

- Press MENU (R1) then BUGS (R2) to enter the Bugs menu.
- Press IAS (L2), VSI (L4), MINS (R3), or VNAV CDA (R4) to select desired menu.

Section 5 Menu Functions and Procedures



- If IAS (L2) is entered, press SYNC (R3) or OFF (R4) to accept or turn off IAS bug.
- If a different IAS bug is desired, scroll **0** to select desired airspeed and push to enter new value.
- If MINS (R3) is selected, scroll **0** to select either DEC HT.. or MIN ALT.. and push to enter.
- If DEC HT.. is selected, scroll
 to create new decision height. Push to enter.
- 7) DH displays on PFI below FPM.
- If VNAV CDA (R4) is selected, scroll ① to select either DCND ANG.. or CLIMB ANG... Push to enter.
- If DCND ANG.. is selected, Scroll ① to create the descent angle. Push to enter new descent angle or select default 3° (R4).

5.18. PFD Declutter (DCLTR) Menu

Figure 5-21: PFD Declutter (DCLTR) Menu

Upon activating the PFD declutter menu, an option list of declutter items is shown.

Table 5-7: PFD Declutter Options and Features				
Declutter Ontions	Configu	uration	Notes	
Declutter Options	Tapes Basic		Notes	
Analog AGL Indicator	~	~	Mutually exclusive with MINI MAP, and MINI TRFC.	
Full-Time or Auto Decluttered Bank Scale Display	~		Automatically returns to Bank Scale when decelerating to Hover Mode	
Basic Mode	✓	\checkmark		

E.

Table 5-7: PFD Declutter Options and Features				
Declutter Options	Configu	uration	Notes	
Declutter Options	Tapes Basi		Notes	
Mini-Map	~	~	Mutually exclusive with ANLG AGL, and MINI TRFC	
Traffic Thumbnail	~	~	Mutually exclusive with ANLG AGL, and MINI MAP	
Skyway Guidance	✓			
Airspeed Trend	✓		Feature only	
Non-TAWS	~		SVS TAWS is labeled "SVS ADVANCED"	
TAWS	~		when TAWS is not enabled	
Perspective Traffic Depiction	~			
Turn Rate Indication	✓	✓		
Single Cue Flight Director	✓	✓		
Dual Cue Flight Director	✓	✓		
METERS	✓	✓		

In Basic mode, the pilot may select or deselect the following items:

- 1) PFD analog AGL indicator
- Basic mode (switches PFD back to Normal mode)
- 3) PFD Mini traffic
- 4) PFD Mini-map

- 5) Turn indicator
- 6) FD1
- 7) FD2
- 8) Meters
- 9) Up to 8 declutterable OASIS overlays

5.18.1. PFD Declutter (DCLTR) Menu (Step-By-Step)

<mark>100 1010</mark>	BANK SCL BASIC MINI MAP ~
	MINI TRFC SKYWAY ✓ SVS TAWS
80 8408	SVS BASIC ✓ TRAFFIC ✓ TURN IND

- Press MENU (R1) then DCLTR (R4) to enter the Declutter menu.
- Scroll ① to ANLG AGL, BANK SCL, BASIC, MINI MAP, MINI TRFC, SKYWAY, SVS TAWS, SVS BASIC, TRAFFIC, TURN IND, FD1, FD2, METERS, or EICAS OVRL (if applicable) and push to check/uncheck. Scroll ① to DONE and push to enter or press EXIT (R1).
- If BANK SCL is unchecked, scroll ① to DONE and push to enter, or press EXIT (R1).
- 4) Bank scale is removed while in level flight.
- Scroll ① to SVS TAWS push to check/uncheck then scroll ① to DONE and push to enter or press EXIT (R1).
- 6) If SVS BASIC mode is desired, scroll ① to SVS BASIC, push ① to check/uncheck, then scroll ① to DONE and

5.19. PFD Altimeter Menu

push to enter or press **EXIT (R1)**.

 In the event of a TAWS warning, the system automatically switches back to SVS TAWS mode if terrain were disabled.

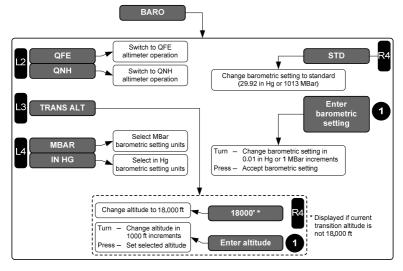


Figure 5-22: PFD Altimeter Menu

Press **BARO (R2)** to activate the altimeter menu. Scroll ① to increment (CW) or decrement (CCW) the barometric setting and push ① to accept the new barometric setting. In addition, the following options are available in the altimeter menu:

 QNH /QFE (L2): Toggles between QNH and QFE altimeter operation. When in QNH mode, QNE operation automatically is selected when above the transition altitude with a standard altimeter setting. The following definitions:

- a) **QFE**: Barometric setting resulting in the altimeter displaying height above a reference elevation (e.g., airport or runway threshold).
- b) **QNE** : Standard barometric setting (29.92 inHg or 1013 mbar [hPa]) used to display pressure altitude for flight above the transition altitude.
- c) **QNH** : Barometric setting resulting in the altimeter displaying altitude above mean sea level at the reporting station.
- 2) TRANS ALT (L3): Changes transition altitude in units of 500 feet. Transition altitude is used to generate barometric setting warnings and to determine QNE /QNH operation. If current transition altitude is not 18,000 feet, 18000' (R4) is available to set transition altitude as 18,000 feet.
- MBAR/IN HG (L4): Allows the pilot to select the barometric setting units (inHg or mbar).
- 4) **STD** (**R4**): Sets the barometric setting to standard (29.92 inHg or 1013 mbar).

5.19.1. PFD Altimeter Menu (Step-By-Step)

- 1) Press **BARO (R2)** to enter the Altimeter menu.
- 2) Scroll **1** to set proper QNH and push to enter.
- Crosscheck proper QNH under altitude indication.
- Press BARO (R2) again and STD (R4) to reset altimeter setting to 29.92 and push ① to enter or press EXIT (R1).

Section 5 Menu Functions and Procedures

 Normally the BARO menu is only used on the PFD, but it can be opened and changes made on the MFD. Press BARO (R2) and make changes accordingly.

5.20. MFD Fault Display (FAULTS) Menu

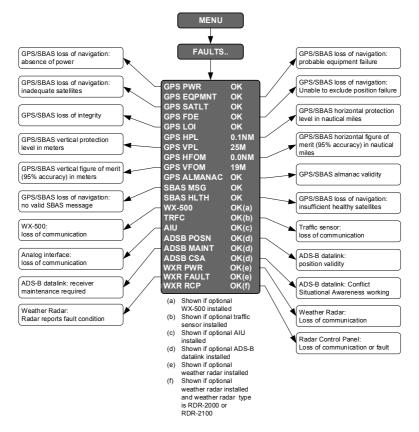
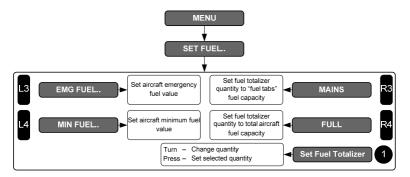


Figure 5-23: MFD Fault Display Menu

Upon selecting the MFD faults menu, the status of the following system parameters are displayed:

- GPS /SBAS loss of navigation due to absence of power (GPS PWR)
- GPS /SBAS loss of navigation due to probable equipment failure (GPS EQPMNT)
- GPS /SBAS loss of navigation due to inadequate satellites to compute a position solution (GPS SATLT)
- 4) GPS /SBAS loss of navigation due to a position failure that cannot be excluded within the time to alert (GPS FDE)
- 5) GPS /SBAS loss of integrity and loss of navigation due to loss of integrity (GPS LOI)
- Readout of the current GPS /SBAS horizontal protection level (GPS HPL) in nautical miles. This value may be used as the estimate of position uncertainty required in RNP airspace.
- 7) Readout of the current GPS /SBAS vertical protection level (GPS VPL) in meters.
- Readout of the current GPS /SBAS horizontal figure of merit (GPS HFOM) in nautical miles. This value is an indication of the 95% confidence horizontal position accuracy.
- Readout of the current GPS /SBAS vertical figure of merit (GPS VFOM) in meters. This value is an indication of the 95% confidence vertical position accuracy.
- 10) An indication of whether the GPS /SBAS receiver has a valid almanac in memory (GPS ALMANAC).
- 11) GPS /SBAS loss of navigation due to no valid SBAS message received for four seconds or more (SBAS MSG).
- 12) GPS /SBAS loss of navigation due to insufficient number of SBAS HEALTHY satellites (SBAS HLTH).
 - a) An Attitude or Range Fault Condition exists.
 - b) A Control Fault Condition exists.
 - c) A T/R Fault Condition exists.

- 13) If the WX-500 option is enabled, loss of communications with the WX-500 (WX-500).
- 14) If the traffic option is enabled, loss of communications with the traffic sensor (TRFC).
- 15) If the analog interface option is enabled, loss of communications with the analog interface (AIU).
- 16) If ADS-B datalink is enabled, an indication of ADS-B position validity (ADSB POSN), an indication of whether maintenance of the ADS-B receiver is required (ADSB MAINT), and an indication of whether the Conflict Situational Awareness algorithm is working (ADSB CSA).
- 17) If weather radar is enabled, an indication of weather radar power/communication status (WXR PWR X or WXR PWR OK). Weather radar power/communication status failed (WXR PWR X) reflects any one of the following conditions are true:
 - a) Loss of weather radar communication, or
 - b) Weather radar mode is OFF.
- 18) If weather radar is enabled, an indication of weather radar fault status (WXR FAULT –, WXR FAULT X, or WXR FAULT OK). When weather radar power/communication status is failed, weather radar fault status indicates determination of weather radar faults is not possible (WXR FAULT –). Weather radar fault status failed (WXR FAULT X) reflects any one of the following conditions are true:
 - a) A cooling fault condition exists.
 - b) For weather radar types ARINC 708-6 or Collins 800/840, a display or control bus fault condition exists.
 - c) For weather radar types ARINC 708-6, Collins 800/840 or Honeywell PRIMUS, a calibration or air data fault condition exists.
 - d) An attitude or range fault condition exists.
 - e) A control fault condition exists.
 - f) A T/R fault condition exists.


19) If weather radar is enabled and the weather radar type is RDR-2000 or RDR-2100, an indication of radar control panel status (WXR RCP X or WXR RCP OK). Radar control panel status failed (WXR RCP X) indicates either loss of communication or a failure status using the same test as invalid data SSM for output data.

5.20.1. MFD Fault Display (FAULTS) Menu (Step-By-Step)

- Press MENU (R1) then FAULTS (L1) to view the faults menu.
- 2) View status of GPS and equipment parameters.

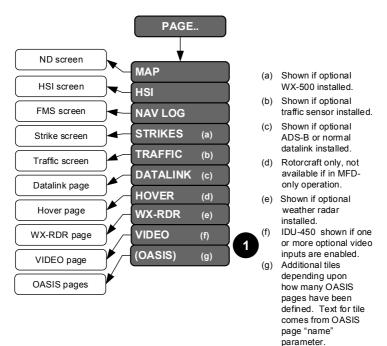
5.21. MFD Fuel Totalizer Quantity Setting (SET FUEL) Menu

Figure 5-24: MFD Fuel Totalizer Quantity Menu

The fuel quantity setting menu allows the pilot to:

1) Set the fuel totalizer quantity in increments of volume units.

5-60



- If either a fuel totalizer or fuel level sensing (with no unmonitored fuel) is configured in the air craft limits, set emergency and minimum fuel bugs in increments of volume units.
- If an aircraft fuel caution or aircraft fuel warning is configured in the air craft limits, set emergency and minimum fuel bugs in increments of volume units.

In addition, if a fuel totalizer is configured in the air craft limits, Press **MAINS (R3)** to quickly set the quantity to the "fuel tabs" fuel

capacity, and **FULL** (**R4**) to quickly set the quantity to the total aircraft fuel capacity. Units of measure and fuel flow are shown in the quantity window when available.

5.22. MFD Page (PAGE) Menu

Figure 5-25: MFD Page (PAGE) Menu

PAGE menu allows the pilot to select which MFD page to display:

1) MAP: Shows the ND page

- 2) HSI: Shows the HSI page
- 3) NAV LOG : Shows the FMS page
- 4) STRIKES: Shows the Strike page (See Strikes Appendix)
- 5) **TRAFFIC**: Shows the Traffic page (See Traffic Appendix)
- 6) **DATALINK**: Shows the Datalink page (See Datalink Appendix)
- 7) **WX-RDR**: Shows the Weather Radar page (See Weather Appendix)
- 8) VIDEO: Shows the Video page (See Video Appendix)
- 9) (OASIS): Shows OASIS configured page(s)

5.22.1. MFD Page (PAGE) Menu (Step-By-Step)

- 1) Press MENU (R1).
- Press PAGE.. (R3) to view page selection menu.

 Scroll O to MAP, HSI, NAV LOG, STRIKES, TRAFFIC, DATALINK, HOVER, WEATHER RADAR, or VIDEO and push to enter.

MFD NAV Log Page

5.23.

1) Press MENU (R1) then PAGE.. (R3) and scroll

12:09:21 65 103	L FUEL 87.2GAL FLOW 20.0GPH						
WAYPOINT	UNAU/OFFSET	P	ATH	DIST	ETE	ETA	FUEL
🔶 KDVT	4000'/w	Đ+	103°	9.4m	0:05	:	
*KSDL	4300'∕⊮	Đ.	124°	12.9м	0:07	12:15	85
KFFZ	4300'/м	₽	256°	11.8м	0:06	12:23	83
👶 PXR 🕾 GEJRI	4300'/wn 4300'/wn	₽	069°	2.1m	0:04	12:29	80 79
CEPIB	3000'/	₽	125°	6.1wm	0:03	12:37	78
ner RW12R	1341'/GPI	₽	125°	5.1w	0:02	12:40	77
M -ALT-	1800'/w	123*	1800'	0.0wm	0:00	12:40	22
⊨ GEJRI	4300'/M	₽•	308°)122°	12.9нн 16.0нн	0:07	12:48	74
🖼 GEJRI	4300'/wn					12:57	21
(KIWA)	' ⁄ _{Nf}	₽	163°	29.5wm	0:17	:	
🔶 KCGZ	4300'∕⊮	- Đ+	301*	41 . 1м	0:23	13:14	66
🔶 KGYR	4300'∕⊮					13:38	58

• to NAV LOG and push to enter.

 NAV LOG page cannot be formatted nor used to edit the active flight plan.

5.24. MFD ND Page Format (FORMAT) Menu

Upon selecting the MFD format menu when in the ND page, an option list appears with the following:

- 1) **CENTER/ARC** : Toggles between a centered and arced ND display format (if not panning).
- HDG UP/N UP : Toggles between heading up and north up ND display format (if not panning).
- 3) **PAN ON/PAN OFF** : Toggles ND page pan mode.
- 4) SYMB DCLTR : Activates an option list to choose either automatic or manual navigation symbol declutter. If the pilot chooses manual navigation symbol declutter, a further option list appears to allow the pilot to individually select:
 - a) large airports;
 - b) IFR airports;
 - c) VFR airports;
 - d) VORs;
 - e) NDBs;
 - f) fixes ;
 - g) terminal fixes ; and
 - h) user waypoints.

Figure 5-26: MFD Symbol Declutter

_RG APT IFR APT UFR APT JORS NDBS FIXES JSER WPTS DONE

Turning on VFR airports also turns on large and IFR airports. Turning on IFR airports also turns on large airports. Turning off large airports also turns off IFR and VFR airports. Turning off IFR airports also turns off VFR airports.

- 5) **FNCT DCLTR** : Activates an option list for the pilot to individually toggle display of:
 - a) airspace;
 - b) borders;
 - c) datalinked NEXRAD, graphical METARs (if ADS-B option is enabled);
 - d) estimated time of arrival (ETA);
 - e) high-altitude airways;
 - f) low-altitude airways;
 - g) current latitude and longitude display of present position;
 - h) ADF #1 pointer (if ADF symbology is enabled);
 - i) ADF #2 pointer (if dual ADF symbology is enabled);
 - j) VOR1 pointer (if VOR symbology is enabled);
 - k) VOR2 pointer (if dual VOR symbology is enabled);
 - I) Strikes (if WX-500 option is enabled);
 - m) Terrain;
 - n) Traffic (if traffic option is enabled); and
 - o) Weather radar (if weather radar option is enabled); and
 - p) Up to 8 declutterable OASIS overlays.

Section 5 Menu Functions and Procedures

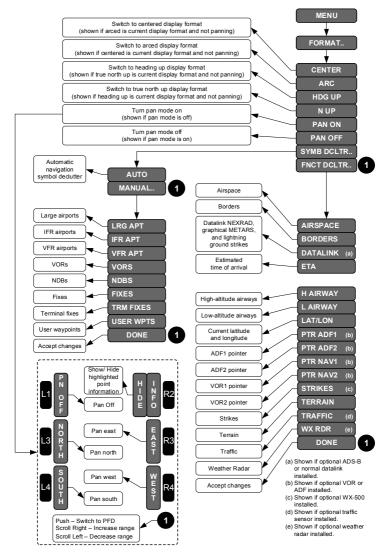
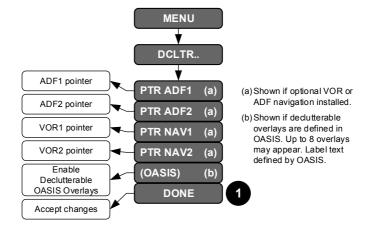


Figure 5-27: MFD ND Page Format Menu

5.24.1. MFD ND Page Format (FORMAT) Menu (Step-By-Step)



5.24.2. MFD HSI Page

1) Press MENU (R1) and FORMAT.. (R4).

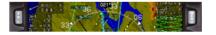

- Scroll **1** to FNCT DCLTR.. and push to enter.
- Scroll ① to LAT/LON, scroll ① to DONE and push to enter, or press EXIT (R1).

Figure 5-28: MFD HSI Declutter (DCLTR) Menu

5.25. MFD HSI Page

- Press MENU (R1) then PAGE.. (R3) and scroll
 to HSI and push to enter.
- HSI page displayed with full scale deflection and flashing FMS CDI.

5.26. MFD HSI Declutter (DCLTR) Menu

Upon selecting the HSI pointers menu when in the HSI page, an option list appears to allow the pilot to individually select display of:

- 1) ADF1 pointer (if ADF symbology is enabled);
- 2) ADF2 pointer (if dual ADF symbology is enabled);
- 3) VOR1 pointer (if VOR symbology is enabled); and
- 4) VOR2 pointer (if dual VOR symbology is enabled).
- 5) Up to 8 declutterable OASIS overlays.

Section 6 Quick Start Tutorial

Quick Reference Guide (DOC 64-000100-080F)

REV 8.0F P/N: 25-EFIS80F-SW-0002					
SOFTWARE OK (PILOT CPU #1) SOFTWARE CRC = 41392AED AIRCRAFT TYPE GENERIC					
SOUND CONFIG:	STANDARD EFIS SOUND	(OCAC54E8)			
MAG VAR DATA:	WMM-2015	(5ACF8586)			
NAVIGATION DATA:	COVERAGE = WORLD VALID DATE 09-14-20 EXPIRE DATE 10-12-20	17			
OBSTRUCTION DATA:	DATE 10-12-2017				
TERRAIN DATA: COVERAGE = \$75W180 - N75E181 VALID DATE 05-26-2007					
PRESS #	ANY BUTTON TO CONTINU	E			

Begin by reading the EFIS Rotorcraft Flight Manual (RFM) or Rotorcraft Flight Manual Supplement (RFMS).

Power up the EFIS. The system performs a built-in test routine. If all tests pass, the system displays a screen with the database coverage. Press any button or push/scroll **1** to acknowledge. The svstem begins two-minute а countdown while awaiting sensor initialization. For flight planning purposes or etc., press any button to override this countdown.

Right encoder is numbered ●. The left encoder (●) is for lighting control only.

Changing Altimeter Setting on PFD or MFD

Press **BARO (R2)** and scroll **①** to desired QNH altimeter setting and push to enter or press **EXIT (R1)**.

Creating Direct to Active Waypoint on PFD or MFD

Press (R4) for Direct-To menu. If in the air, the nearest airport appears. Scroll **①** to alpha or numerical character then push to confirm and advance to the next position. Push to enter, until all five spaces have been either entered or viewed.

A direct route to the active waypoint is activated and appears as magenta tethered balloon on the PFD as shown.

Active waypoint information, including waypoint type and identifier, elevation or crossing altitude, and bearing and distance are displayed below the traffic thumbnail, analog AGL indicator, or mini map as configured.

Indicated airspeed is on the left, altitude is on the right, and heading is across the top. An FMS/VLOC CDI is located on the bottom. The VSI appears on the right side of the altitude tape.

On the MFD, press **MENU** (**R1**) to view soft menu selections for easy access with press of appropriate IDU button.

On the MFD, press **MENU** (**R1**) then **PAGE** (**R3**) to view list of available pages. Scroll **①** for selection and push to show desired page.

Flight Plans (Stored Routes)

Activate Flight Plan on PFD or MFD

- 1) Press **FPL (L1)**.
- 2) Scroll **1** to **SELECT..** and push to enter.
- 3) Scroll **1** to select desired flight plan to activate.
- 4) Push **1** to activate desired flight plan.

Create Flight Plan on MFD

- 1) Press **FPL (L1)**.
- 2) Scroll **1** to **CREATE-EDIT..** and push to enter.
- 3) Scroll **1** to **CREATE FLIGHT PLAN** and push to enter.
- 4) Press ADD (R2) to create first waypoint with ❶ by entering waypoints from beginning to end, or press NRST APT (L2), NRST VOR (L3), NRST NDB (L4), NRST FIX (R2), or NRST USR (R3), select next waypoint, and push to enter.
- 5) Press SAVE (R4) to save flight plan.
- 6) Press EXIT (R1) to exit flight planner.

Waypoints

Create a User Waypoint on PFD or MFD

- 1) Press MENU (R1).
- 2) Press DESIG (L3).

Edit a User Waypoint on MFD

1) Press FPL (L1).

6-4

- 2) Scroll **1** to **CREATE-EDIT..** and push to enter.
- 3) Scroll **1** to EDIT USER WPT and push to enter.
- 4) Scroll **1** to highlight desired waypoint to edit and push to enter.
- 5) Edit waypoint. Press SAVE (R4) and press EXIT (R1) to exit.

Add Waypoint to an Active Route on PFD or MFD

- 1) Press ACTV (L2).
- Scroll O to location on waypoint list where added waypoint is to be inserted above.
- 3) Press INSERT (R2).
- 4) Press NRST APT (L2), NRST VOR (L3), NRST NDB (L4), NRST FIX (R2), NRST USR (R3), or AIRWAY (R4) (when applicable) and then
 - a) Scroll **1** to make selection and push to enter, or
 - b) Use **1** to enter waypoint identifier and push to enter.
- 5) Press **SAVE (L1)** to save new active flight plan as another stored flight plan.

Delete Waypoint from an Active Route on PFD or MFD

- 1) Press ACTV (L2).
- Scroll ① to highlight the waypoint to delete and press DELETE (R3) to prompt CONFIRM DEL WPT. If part of a published procedure, press DELETE (R3) to prompt CONFIRM DEL PROC.
- 3) Push **1** to **CONFIRM DEL WPT or CONFIRM DEL PROC** and push to enter.
- 4) Press **SAVE (L1)** to save new active flight plan as another stored flight plan.

Omnibearing Selector Function

Automatic OBS (FMS OBS Only) on PFD or MFD

- 1) Press OBS (L4).
- 2) Push **OBS:MANUAL or AUTO** (as applicable) to enter.

Manual OBS on PFD or MFD

- 1) Press OBS (L4).
- Select desired HSI source, press NAV VLOC1 (L3) or NAV VLOC2 (L4).
- If HSI source is NAV FMS, press OBS MANUAL (R4) then scroll
 to desired OBS value and push to enter, or press OBS SYNC (R3) and push to enter.
- If HSI source is NAV VLOC1 (L3) or NAV VLOC2 (L4) scroll to desired course (OBS:XXX° (XXX°)) and push to enter.

Approaches/Track

Select a VFR Approach on PFD or MFD

(The active flight plan must contain an eligible airport for runway selection and VFR approach creation.)

- 1) Press ACTV (L2).
- 2) Scroll **1** to highlight the desired airport or user waypoint, push to enter.
- 3) Scroll **1** to highlight VFR APPR.. and push to enter.
- 4) Scroll **1** to select desired runway and push to enter.

Change Runway during VFR Approach on PFD or MFD

- 1) Press ACTV (L2).
- 2) Scroll **1** to highlight the following and push to enter:
 - a) Eligible airport
 - b) VFR APPR..
 - c) Desired runway

(This will delete the previous VFR approach and create a new VFR approach to the selected runway.)

Select an IFR Approach on PFD or MFD

- 1) Press ACTV (L2).
- 2) Scroll **0** to the desired eligible airport and push to enter.
- 3) Scroll **1** to IFR APPR.. and push to enter.
- 4) Scroll **0** to desired approach and push to enter.
- 5) Scroll **0** to desired transition and push to enter.
- 6) Scroll **1** to desired runway and push to enter.

Change Runway on IFR Approach on PFD or MFD

- 1) Press ACTV (L2).
- 2) Scroll **1** to destination airport and push to enter.
- 3) Select **APPR:** Scroll **1** to desired approach. Push to enter.
- 4) Select **TRANS:** Scroll **1** to desired transition. Push to enter.
- 5) Select **RW:** Scroll **0** to desired runway. Push to enter.

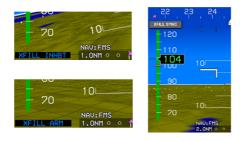
(This will delete the previous IFR approach and create a new IFR approach to the selected runway.)

Create NRST ILS Approach on PFD or MFD

- 1) Press NRST (R3).
- 2) Scroll **1** to ILS.. and push to enter.
- 3) Scroll **1** to desired airport beginning with ILS and push to enter.
- 4) Push **1** to **CONFIRM ACTIVATE ILS**.

Manual Leg Management on PFD

A manual termination leg was created within a procedure and waypoint sequencing is suspended.


To resume normal waypoint sequencing, press **RESUME** (L2).

XFILL SYNC Operation

XFILL Sync Operation on PFD

(Crossfill is the normal default mode of operation.)

- 1) During crossfill inhibited operation, XFILL INHBT appears on the PFD in the lower left corner.
- 2) When the pilot and co-pilot systems are not synchronized, XFILL ARM appears in lower left corner of the PFD.
- When the pilot and co-pilot systems are not synchronized, press MENU (R1) then XFILL SYNC (L1) to synchronize the pilot and co-pilot active flight plan parameters from the system where the button press occurred.

Section 7 IFR Procedures

7.1. Active Flight Plan

Upon activation of the active flight plan menu, the EFIS checks for an active waypoint. If there is no active waypoint, **NO ACTIVE WPT** is issued. Otherwise, a nav log of waypoints in the active flight plan is presented with the following:

- 1) Waypoint identifier and characterization (default, overfly [**OF**], or no radius [**0R**])
- 2) Symbol designating waypoint type and what type of procedure (if any) the waypoint is associated
- 3) VNAV altitudes and offsets associated with each waypoint
- 4) Information related to flight plan path between each waypoint

In the case of an approach with a final approach segment data block, the VNAV offset readout associated with the missed approach point (MAP) is "GPI" to designate distance to the glidepath intercept point. When courses are presented as part of the path information, they are displayed referenced to magnetic north with the degree (°) symbol.

VNAV altitudes and offsets from the navigation database or have been manually entered are white, and those computed automatically are gray. The active waypoint is designated by an asterisk and is magenta but turns amber (yellow) in the event of a GPS LON caution.

A suppressed waypoint (designated by brackets) is an airport associated with an IFR or VFR approach procedure. After an approach procedure is activated, the associated airport is no longer part of the active flight plan for guidance purposes. However, the associated airport is still shown in the nav log for it to be highlighted for information or to activate other procedures to the airport. Since only one approach may be active at any given time, only one waypoint may be suppressed at any given time.

A skipped waypoint is a waypoint associated with a dynamic termination leg with a zero length. These are either:

1) An altitude termination leg when current aircraft altitude is above the termination altitude; or

 System-created (i.e., not NavData® specified) intercept to a course to a fix leg where there is insufficient distance to calculate an intercept heading.

To add a waypoint to the end of the active flight plan, scroll through each waypoint of the flight plan to one position past the end. If not, the application makes the selected waypoint active. Otherwise, an option list is presented.

Upon selection of a waypoint from the selection list, the EFIS checks whether the selected waypoint meets the criteria for waypoint activation, manual VNAV parameter entry, custom holding pattern entry, manual overfly characterization, VFR approach entry, IFR approach entry, STAR entry, or DP entry. If it does, an option list is presented as follows:

- 1) **WAYPOINT**: If the selected waypoint is neither suppressed, skipped, nor a manual termination, make the selected waypoint the active waypoint.
- 2) VNAV: If the selected waypoint is neither suppressed, skipped, a manual termination, part of an IFR approach, nor part of a VFR approach, enter a manual VNAV altitude and offset for the selected waypoint. This level includes tiles to synchronize the VNAV altitude to current altitude and to remove the manual VNAV altitude and offset entry. VNAV altitudes are settable in increments of 100 feet, and offsets are settable in increments of 1NM.
- 3) HOLD: If the selected waypoint is neither suppressed, skipped, a manual termination, part of an IFR approach after the FAF/FAWP, part of a VFR approach, a holding waypoint, nor a DP anchor waypoint, enter a manual holding pattern at the selected waypoint. Define the course, turn direction (left or right), and leg length (expressed as either distance or time) for the manual holding pattern. Holding pattern course is settable in increments of 1° and leg length is settable in increments of 1NM (1-25NM) or a tenth of a minute (0.5-5.0 MIN).
- OFLY/AUTO: If the selected waypoint is neither suppressed, skipped nor a manual termination, change the waypoint's overfly characterization. The choices are:
 - a) AUTO: Reset automatic overfly characterization by FMS.

- b) OVERFLY: Force the overfly characterization to be an overfly adjust-exit waypoint and force the inbound course to go directly to the waypoint regardless of the amount of course change required.
- c) NO RADIUS: Force the turn radius at the waypoint to be zero. This forces the inbound course and outbound course to go directly to and from the waypoint regardless of the amount of course change required.

NOTE:

It is not possible to track a "NO RADIUS" path perfectly, but the FMS path guidance quickly recaptures the outbound course after resuming automatic waypoint sequencing. Designating a waypoint as a "NO RADIUS" waypoint affects the turn radius used to calculate procedure turn and holding pattern leg paths.

- 5) VFR APP: If the selected waypoint is a user waypoint with an approach bearing, a VFR approach to the user waypoint based upon the approach bearing is created, and the user waypoint is suppressed. If the selected waypoint is a VFR airport or an IFR airport with surveyed runways, the pilot is presented with a list of runways. After selecting a runway, a VFR approach to the runway is created, and the airport waypoint is suppressed. Activating a VFR approach deletes any pre-existing IFR or VFR approaches. If a heading bug is not already active, activating a VFR approach activates the heading bug on current aircraft heading and is used to define the course intercept angle.
- 6) IFR APP: If selected waypoint is an airport with an IFR approach, the pilot is presented with a list of available approaches (including, if applicable, the five-digit channel number, followed by a list of available transitions, if there are more than one) and a list of runways (if there are surveyed runways at the airport). After selection, the appropriate IFR approach is created, and the airport waypoint is suppressed. Activating an IFR approach deletes any pre-existing IFR or VFR approaches. If there is a pre-existing STAR to the airport, the IFR approach waypoints are inserted after the STAR waypoints. If a heading bug is not active and the activated transition is "Vectors to Final," activating an IFR approach activates the heading bug on current aircraft heading for purposes of defining the course intercept angle.

- 7) STAR: If the selected waypoint is an airport with a STAR, the pilot is presented with a list of available STARs, followed by a list of available transitions (if there are more than one) and a list of runways (if there are surveyed runways at the airport). After selection, the appropriate STAR is created. Activating a STAR deletes any pre-existing STAR. If there is a pre-existing approach (IFR or VFR) to the airport, the STAR waypoints are inserted prior to the approach waypoints.
- 8) DP: If the selected waypoint is an airport with a DP, the pilot is presented with a list of DPs, followed by a list of available transitions (if there are more than one) and runways (if there are surveyed runways at the airport and more than one runway is authorized for the DP). After selection, the appropriate DP is created, and upon activation, deletes any pre-existing DPs.

7.2. IFR Procedures

Pilots operating in a radar environment are expected to associate departure headings or an RNAV departure advisory with vectors or the flight path to their planned route or flight. There are two types of departure procedures (DP); obstacle departure procedures (ODP) are printed either textually or graphically, and standard instrument departure procedures (SID) are always printed graphically. All DPs, either textual or graphic, may be designed using either conventional or RNAV criteria. RNAV procedures have RNAV printed in the title.

ODPs are not found in the navigation database, and therefore the climb angle found in the PFD BUGS menu should be set to comply with the steeper than normal climb gradient during the departure until established on the enroute structure. ODPs are recommended for obstruction clearance and may be flown without ATC clearance, unless an alternate departure procedure (SID or radar vector) has been specifically assigned by ATC.

Approach minima are never coded in NavData®. On some approaches, the altitude coded at the MAP for a non-precision approach coincides with an MDA (normally where the final approach course does not align with the runway), but more often the coded altitude is some height above the threshold.

7.3. Overview of Procedures and Instrument Approaches

This Genesys Aerosystems EFIS provides 3-D GPS precision and non-precision instrument approach guidance using a system

integral TSO C146c BETA 3 GPS receiver with GPS and augmented GPS with Satellite Based Augmentation System (SBAS) commonly referred to as WAAS (Wide Area Augmentation System). In order to support full integration of RNAV procedures into the National Airspace System (NAS), a charting format for instrument approach procedures (IAPs) designed to avoid confusion and duplication of instrument approach charts.

Use of this GPS receiver provides a level of certified service supporting RNAV (GPS) approaches to LNAV, LP, LNAV/VNAV, and LPV lines of minima within system coverage. Some locations close to the edge of the coverage may have lower availability of vertical guidance.

Approach with vertical guidance (APV) procedures are defined in ICAO Annex 6 and include approaches such as the LNAV/VNAV procedures presently being flown with barometric vertical navigation (BARO-VNAV). These approaches provide vertical guidance but do not meet the more stringent standards of a precision approach. With the WAAS BETA 3 GPS receiver and updatable navigation database in this system, these approaches may be flown using an electronic glidepath, which eliminates errors introduced by using barometric altimetry.

In addition to LNAV/VNAV procedures, APV takes advantage of the high accuracy guidance and increased integrity provided by GBS/SBAS. This SBAS (TEROS/ICAO) generated angular guidance allows use of the same TERPS approach criteria for ILS approaches. The resulting approach procedure minima, localizer performance with vertical guidance (LPV), have a decision altitude as low as 200 feet height above touchdown (EASA OPS LPV 250 ft.) with visibility minimums as low as ½ mile (providing the terrain and airport infrastructure and regulations support the lowest minima criteria.)

Another non-precision GPS/SBAS approach is certified as a localizer performance (LP) approach where terrain or obstructions prohibit the certification of the LPV vertically guided approach. This approach takes advantage of the angular lateral guidance and smaller position errors (provided by GPS/SBAS) to provide a lateral only procedure similar to an ILS localizer. LP procedures may provide lower minima than a LNAV procedure due to the narrower obstacle clearance surface. In the LP approach, vertical guidance is for information only and is based on SBAS or BARO information.

The Genesys Aerosystems EFIS guides the pilot through every step of the approach procedure with Highway in the Sky (HITS) 3-D symbology. The system defines a desired flight path based upon the active flight plan. The current position of the aircraft is determined relative to the desired path in order to determine lateral deviation for display on the GPS/SBAS CDI and VDI. The EFIS auto-sequences from one waypoint to the next in accordance with the flight plan along the flight path with the following exceptions:

- 1) Pilot has selected a manual GPS/SBAS OBS (SUSPEND shown).
- Active waypoint is the missed approach waypoint, and the missed approach procedure has not been armed (ARM) or initiated (MISS) (SUSPEND shown).
- 3) Aircraft is in a published or manually created holding pattern, and the pilot has not chosen to continue (**CONT**) out of the holding pattern (**SUSPEND** shown).
- Active waypoint is the last waypoint of the active flight plan (no flag shown).
- 5) Leg following active waypoint is a manual termination leg, and the pilot has not chosen to resume (**RESUME**) to the waypoint following the manual termination (**SUSPEND** shown).

The linear vertical scale limits of the VDI for LNAV/VNAV and LPV approaches are shown in Figure 7-1.

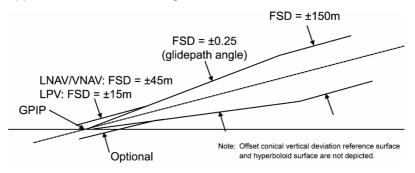


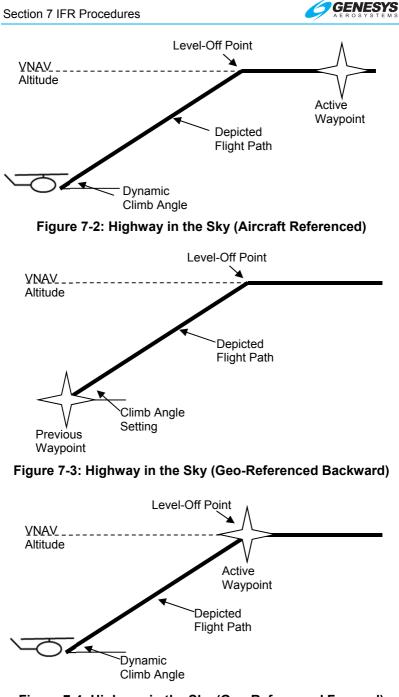
Figure 7-1: Vertical Deviation Indicator Linear Deviation

7.3.1. Highway in the Sky (Skyway)

When not decluttered, the PFD displays the active navigation route or manual OBS course in a 3-D manner with a series of skyway boxes, which overlay the flight plan route at a desired altitude and provide lateral and vertical guidance. Skyway boxes conform to the VNAV requirements of GPS/SBAS receiver requirements (TSO-C-146C). The top and bottom of the boxes are parallel to the horizon on straight leg segments and dynamically tilt with respect to the horizon on turning leg segments based on leg segment turn radius and groundspeed.

When the active route is in view, up to five boxes are shown with the dimensions being a constant 400 feet wide (±200 feet from the desired lateral path) by 320 feet tall (±160 feet from the desired vertical path) spaced horizontally 2000 feet. Skyway boxes are drawn using the hidden surface removal techniques of the terrain and obstruction rendering, so a skyway box behind terrain appears to be so. Skyway boxes disappear in basic mode and unusual attitude mode. In reversionary mode 1 (GPS failure), skyway boxes disappear after one minute to indicate degraded navigation performance.

Table 7-1: Highway in the Sky Configuration				
Type HITS Lines	Fully Integrated Autopilot	Partially Integrated Analog Autopilot (HDG Mode and/or NAV/APR mode discrete inputs)	Un-Integrated Autopilot or No Autopilot	
Dashed	Not coupled to skyway			
Solid	Coupled to Skyway	Coupled to skyway. Autopilot is either in HDG mode with LNAV heading/roll-steering sub-mode engaged or in NAV/APR mode with the FMS, FMS1, or FMS2 as the selected navigation source.	Always Solid	


Skyway box altitude is controlled by VNAV altitude, aircraft altitude, aircraft climb performance, and climb/descent angle setting. If no

VNAV altitude is set, the skyway boxes describe the desired lateral flight path of the aircraft at the aircraft's current altitude.

With a VNAV altitude set, the boxes provide both lateral and vertical guidance. Climb and descent angle settings are controlled individually with a resolution of 0.1° on the PFD. VNAV is guided by VNAV waypoints determined by VNAV altitude and VNAV offset from flight plan waypoints. There are two sources for VNAV altitudes, the navigation database and manual input through the ACTV menu which are then automatically computed by the system using "look-ahead" rules. When "look-ahead" finds a further VNAV altitude constraint above the previous VNAV altitude constraint (i.e., climb commanded), an automatic VNAV altitude is continuously calculated for the waypoint based upon an immediate climb to the altitude constraint at the higher of actual climb angle or the climb angle setting (dynamic climb angle). When "look-ahead" finds a further VNAV altitude constraint below the previous VNAV altitude constraint (i.e., descent commanded), an automatic VNAV altitude is calculated for the waypoint based upon a descent to reach the VNAV altitude constraint at the associated waypoint using the descent angle setting. If no further VNAV altitude constraints are found, the automatic VNAV altitude is set to the last valid VNAV altitude constraint.

When a VNAV climb is desired, the boxes are drawn at a vertical position the higher of: (a) the dynamic climb angle emanating from the aircraft's present position (aircraft-referenced); (b) the dynamic climb angle emanating from the next waypoint VNAV altitude (geo-referenced forward); or (c) the climb angle setting emanating from the previous waypoint VNAV altitude (geo-referenced backward). The geo-referenced backward calculation is only considered when the current leg is part of a procedure and is designed to provide pilot awareness, if a specified climb gradient is not being met. Once the boxes intercept the VNAV altitude, further boxes are drawn with a zero angle to show a level off followed by a level flight segment as an anticipatory cue for planning. Climb guidance is depicted in Figure 7-2, Figure 7-3, and Figure 7-4.

When a VNAV descent is desired, boxes are drawn with a zero angle until reaching a descent point. Further boxes are drawn downward at an angle corresponding to the descent angle setting. The descent point is defined by the intercept of a line emanating upward from the subsequent VNAV waypoint at the descent angle setting and a line representing level flight at the previous VNAV altitude. On the final approach segment of an IFR approach, descent angle and VNAV waypoint are defined as follows.

Table 7-2: Final Segment of IFR Approach, Descent Angle and VNAV Waypoint						
Condition	Condition VNAV Waypoint Descent Angle					
IFR approach with valid final approach segment data block	Glidepath intercept point (GPIP) as defined in final approach segment data block	Descent angle as defined in final approach segment data block				
No or invalid final approach segment data block No intermediate waypoints exist between FAF and MAP.	Missed approach point location	Straight line from FAF to MAP location and altitudes.				
No or invalid Final Approach Segment data block Intermediate waypoints exist between FAF and MAP.	Missed approach point location	Steepest descent angle based upon straight lines from the FAF and subsequent intermediate waypoints to MAP location and altitudes.				

On the final approach segment of a VFR approach procedure, the higher of the descent angle setting or 3° is used.

Because five boxes are shown, the descent point depiction is an anticipatory cue. Figure 7-5 depicts descent guidance and creates an easily understood, yet safe, VNAV paradigm meeting the VNAV requirements current guidance. Simplicity is a primary objective.

Further, the paradigm is biased towards keeping the aircraft at the highest altitude possible for the longest period of time, an important safety benefit for operators of single-engine aircraft. The climb paradigm compensates for an aircraft's ability to climb more steeply than specified and warns of being below a desired climb gradient when the aircraft is unable to meet the specified climb angle. The descent paradigm encourages flying stabilized approaches.

Figure 7-5: Highway in the Sky Final Approach Segments

7.3.2. Waypoint Sequencing

Where automatic waypoint sequencing is suspended due to reasons 4 or 5 in § 7.3, the EFIS automatically switches from TO operation to FROM operation when appropriate. If not suspended, automatic waypoint sequencing occurs upon the following conditions:

- Bearing to the transition point (turn bisector for fly-by waypoint, active waypoint for fly-over waypoint) is more than 90° from the current course (i.e., transition from "TO" to "FROM" operation);
- Aircraft location is within two turn diameters (based upon current true airspeed and 15° angle of bank) of the active waypoint location; and
- 3) Aircraft heading is within 90° of the current course (i.e., generally pointed in the correct direction).

The desired flight path is created from a sequence of straight, left turning, and right turning leg segments designed to provide smooth

skyway, GPS/SBAS CDI, and lateral autopilot guidance. Each leg between waypoints is composed of up to nine segments. Radii for turning segments (other than DME arc or radius to a fix segments) are calculated with the parameter speed determined as follows:

- 1) If the waypoint is part of a DP and within 30 NM of the departure runway, speed is the preprogrammed procedure speed.
- 2) If the waypoint is part of a STAR and within 30 NM of the arrival runway, speed is the preprogrammed procedure speed.
- 3) If the waypoint is part of an IAP or VFR approach procedure, speed is the preprogrammed procedure speed.
- 4) If the waypoint is part of a holding pattern, speed is the preprogrammed procedure speed.
- 5) Otherwise, speed is the current true airspeed or preprogrammed procedure speed, whichever is higher.

In all cases, if NavData® derived speed limit is associated with the waypoint, speed is the lower of the NavData® derived speed limit or the speed determined above.

7.3.3. Fly-Over Waypoints

To create the desired flight path, each waypoint is designated as a fly-by or a fly-over waypoint. Waypoints are further subdivided into waypoints with a defined entry heading and waypoints with a defined exit heading. Waypoint auto-sequencing for fly-by waypoints occurs at the bisector of the turn. Waypoint auto-sequencing for fly-over waypoints occurs over the waypoint.

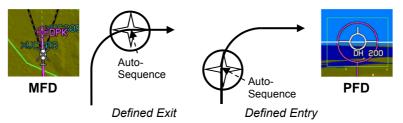


Figure 7-6: Fly-Over Waypoints

The following waypoints are fly-over with defined entry heading:

1) Exit from holding pattern and procedure turn;

- 2) Entry into holding pattern;
- 3) Missed approach point;
- Phantom waypoint (waypoint created by either inserting a waypoint into the active flight plan or performing the Direct-To function within the active flight plan -- avoids S-turns);
- 5) Last waypoint;
- 6) Start waypoint (waypoint created by creating a new active flight plan with the Direct-To function avoids S-turns);
- 7) Reference (takeoff runway end) waypoint of a DP;
- 8) Waypoint leading into discontinuity; and
- 9) Altitude, DME, or radial termination legs (ARINC 424 path types CA, FA, VA, CR, VR, CD, FD, and VD).
- 10) Waypoints marked as overfly in the navigation database.

The definitions of leg type designators are as follows.

Table 7-3: RNAV Path Terminator Leg Type					
Path	Designator Terminator		Terminator		
Constant DME arc	А	Α	Altitude		
Course to	С	С	Distance		
Direct Track	D	D	DME Distance		
Course from a Fix to	F	F	Fix		
Holding Pattern	Н		Next Leg		
Initial		М	Manual Termination		
Constant Radius	R	R	Radial Termination		
Track Between	Track Between T				
Heading To V					
Examples: CF = Course to Fix, and FM = Course from a Fix to a Manual Termination, etc.					

7.3.4. Fly-By Waypoints

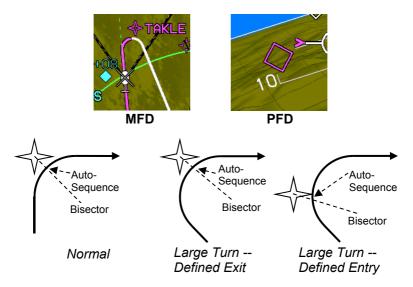


Figure 7-7: Fly-By Waypoints

The following waypoints are fly-over with defined exit heading:

- 1) Entry into procedure turn; and
- 2) Waypoint exiting a discontinuity with the exception of phantom waypoints or DP reference waypoints;
- First waypoint with the exception of start waypoints or DP reference waypoints;
- 4) Course to a fix legs that are not to the FAF/FAWP are fly-by with defined entry heading. All other waypoints are fly-by with the entry adjusted and have a defined exit heading.

NOTE:

Entry adjustments should be expected anytime a turn exceeds 120°. Turns greater than 120° should not be used in conjunction with RNP routes. (RNP standards specifically exclude such turns from RNP requirements.)

Leg segments for paths are constructed by the EFIS as follows.

Table 7-4: Leg Segments for Paths Constructed by the EFIS				
Path Type	Entry Waypoint			
		,	2nd half of fly-by turn at entry waypoint.	
	Fly-By	Fly-By	WGS-84 geodesic or arc path from entry to exit turns.	
			1st half of fly-by turn at exit waypoint.	
		Eh: Ouer	2nd half of fly-by turn at entry waypoint.	
	Fly-By	Fly-Over Defined Exit Heading	WGS-84 geodesic or arc path from entry to exit turns.	
		Heading	Turn to exit heading prior to exit waypoint.	
Straight	Fly-By	Fly-Over Defined Entry Heading	2nd half of fly-by turn at entry waypoint.	
Leg, DME Arc, or			WGS-84 geodesic or arc path from entry turn to exit waypoint.	
Radius to a Fix	Fly-Over Defined Exit	Fly-By	WGS-84 geodesic or arc path from entry waypoint to exit turn.	
	Heading		1st half of fly-by turn at exit waypoint.	
	Fly-Over Defined Exit Heading	Fly-Over Defined Exit Heading	WGS-84 geodesic or arc path from entry waypoint to exit turn.	
			Turn to exit heading prior to exit waypoint.	
	Fly-Over Defined Exit Heading	Fly-Over Defined Entry Heading	WGS-84 geodesic or arc path from entry waypoint to exit waypoint.	
	Fly-Over Defined Entry Heading	Fly-By	Turn from entry heading after entry waypoint.	

Path Type	Entry Waypoint	Exit Waypoint	# of Segments and Description
			WGS-84 geodesic or arc
			path from entry to exit turns.
			1st half of fly-by turn at exit waypoint.
			Turn from entry heading after entry waypoint.
	Fly-Over Defined Entry Heading	Fly-Over Defined Exit Heading	WGS-84 geodesic or arc path from entry to exit turns.
	Treading	Ticading	Turn to exit heading prior to exit waypoint.
	Fly-Over	Fly-Over	Turn from entry heading after entry waypoint.
	Defined Defined Entry Entry Heading Heading		WGS-84 geodesic or arc path from entry turn to exit waypoint.
		Fly-Over Defined Entry Heading	WGS-84 geodesic path from entry waypoint on outbound heading for 30 seconds.
			Turn to procedure turn heading (45°).
Proce-	Fly-Over Defined		Outbound on procedure turn heading for 72 seconds.
dure Turn	Exit Heading		Turn to inbound heading (135°).
			WGS-84 geodesic path to exit waypoint. Entry waypoint and exit waypoint are same point.
			Turn to proper entry procedure heading. This heading varies. For a parallel entry, it is 180° from

Table 7-4: Leg Segments for Paths Constructed by the EFIS				
Path Type	Entry Waypoint	Exit Waypoint	# of Segments and Description	
			the holding course. For direct and teardrop entries, it is the heading required to get to entry of inbound turn. WGS-84 geodesic path to entry of inbound turn.	
			Inbound turn. Degree of turn varies depending upon entry procedure and heading.	
Holding Pattern	Fly-Over Defined Entry Heading	Fly-Over Defined Entry Heading	WGS-84 geodesic path to holding fix for direct and teardrop entries. WGS-84 geodesic path to entry of turn to holding pattern heading for parallel entries.	
			Turn to holding pattern heading for parallel entries. This leg is not used for direct and teardrop entries.	
			Turn to holding pattern outbound leg (180°).	
			Holding pattern outbound leg (length based upon either time or distance as specified by navigation database).	
			Turn to holding pattern inbound leg (180°).	
			Holding pattern inbound leg (length based upon either time or distance as specified by navigation database).	

7.3.5. Direct-To

If the EFIS generates a WGS-84 geodesic path to a designated "To" fix, the aircraft captures this path without "S-turning" or undue delay. Where the selected "To" fix is in the active flight plan, the required transition is created as follows:

- 1) A phantom waypoint is created at the current aircraft location.
- 2) Leg prior to the phantom waypoint is designated as a discontinuity.
- Phantom waypoint is designated as a fly-over defined entry heading waypoint where the entry heading is current aircraft track.

Where the selected "To" fix is not in the active flight plan, the required transition is created as follows:

- 1) A new active flight plan is created from "Start" (current aircraft location) to the "To" fix.
- 2) "Start" waypoint is designated as a fly-over defined entry heading waypoint where the entry heading is current aircraft track.

7.3.5.1. Direct-To Unnamed Waypoints inside Procedures

Active Flight Plan

MFD Navigation Display

PFD Waypoint information

Figure 7-8: Unnamed Waypoints

The following identifiers are implemented for unnamed waypoints inside a published procedure and are found on the ND or inside the active flight plan.

- 1) -ALT- for altitude terminations
- 2) -DIR- for waypoints that begin a Direct-To leg

- 3) **-DME-** for distance or DME terminations
- 4) -INT- for intercept terminations
- 5) **-RAD-** for radial terminations
- 6) -MAN- for manual terminations

7.4. Discontinuities

Where the EFIS is unable to construct a smooth flight path as described above due to active flight plan waypoint spacing (i.e., spacing too close for turn radius), a discontinuity is placed between the waypoints. When a discontinuity exists, no path nor skyway is drawn between the waypoints. The pilot cannot activate the waypoint exiting the discontinuity, as it is not possible to provide path guidance to this waypoint. Attempts to activate the waypoint exiting the discontinuity activates the next waypoint or, if there is no next waypoint (i.e., end of active flight plan), activation of the waypoint leading into the discontinuity.

7.4.1. Manual Termination Legs

Manual termination legs (ARINC 424 path types FM and VM) are a special case and are handled as follows:

- 1) The manual termination leg is a discontinuity;
- 2) Waypoint sequencing is suspended on the leg prior to the manual termination leg;
- Once the CDI transitions to FROM operation, RESUME (L2) appears;
- When ready to end manual navigation and resume a path to the waypoint following the manual termination leg, press **RESUME** (L2) to create and activate a Direct-To path to the waypoint.

NOTE:

If the manual termination leg is not followed by another waypoint (other than a suppressed waypoint), **RESUME (L2)** does not appear, because there would be no waypoint-to-waypoint sequencing to resume.

7.5. Magnetic Course

The source of magnetic variation used for paths defined using magnetic course is in accordance with the following:

- 1) If the leg is part of a database terminal area procedure and the magnetic variation is specified by the State for the procedure, the magnetic variation to be used is the value specified.
- If the leg is not part of a procedure and the active fix is a VOR, the magnetic variation to be used is the published station declination for the VOR.
- 3) If the leg is not part of a procedure and the terminating fix is not a VOR, the magnetic variation to be used is defined by the system using an internal model.

The EFIS is capable of computing magnetic variation at any location within the region where flight operations may be conducted using magnetic north reference. The assigned magnetic variation is calculated using the NIMA GEOMAG algorithm and World Magnetic Model appropriate to the five-year cycle in a MAGVAR database.

7.5.1. AHRS Modes for Heading Source

AHRS Slaved—EFIS Magnetic North: Standard mode of operation. Everything displayed relative to magnetic north drift free.

AHRS Slaved—EFIS True North: Everything is displayed relative to true north with drift free heading. The preferred way to operate in areas where navigation is done relative to true north. (See Section 9 Appendix for limitations on Earth's magnetic flux horizontal field)

AHRS Free/"DG"—EFIS Magnetic North: Use this mode when operating around significant magnetic disturbances in areas where navigation is done relative to magnetic north. Ensure the compass rose is slewed to a magnetic north value.

AHRS Free/"DG"—EFIS True North: Method of operation in highlatitude areas where navigation is accomplished relative to true north. Heading is not drift free and requires periodic correction. This mode may also be used when operating around significant magnetic disturbances in areas where navigation is done relative to true north. Ensure the compass rose is slewed to a true north value.

7.5.2. GPS Altitude

WGS-84 ellipsoid altitude received from the GPS/SBAS is converted to geodetic (MSL) altitude using the EGM 2008 geoidal database, which is revised on a 12-year cycle.

7.5.3. Dead Reckoning

The EFIS has dead reckoning capability and is active whenever a valid position is not being sent by the GPS/SBAS sensor. The EFIS projects the last known GPS/SBAS position forward using TAS and heading corrected for last known wind as it continues to navigate using this position and the active flight plan. The system provides the capability to determine bearing to an airport based upon the dead reckoning position.

7.5.4. Parallel Offsets

The parallel offset is a route parallel to, but offset from, the original active route. The basis of the offset path is the original flight plan leg(s) and one or more offset reference points as computed by the EFIS. The computed offset reference points are located so that they lie on the intersection of lines drawn parallel to the host route at the desired offset distance and the line that bisects the track change angle. Except in the case where the parallel offset ends, the offset reference point is located abeam of the original flight plan waypoint at the offset distance.

The parallel offset function does not propagate through route discontinuities, unreasonable path geometries as follows:

- 1) Legs that are parts of approach procedures (IFR and VFR); or
- Legs with complex geometries or that begin or end with dynamically terminations. (ARINC 424 path types other than CF, DF, or TF or any leg where the starting waypoint is not a fixed position); or
- Legs that begin at an aircraft starting position (reference waypoint in a DP or start/phantom waypoints created by the Direct-To function.

Parallel offset function does not propagate through the following:

1) Any waypoint at the beginning or end of a route discontinuity; or

- 2) Any waypoint at the beginning or end of a prohibited leg type; or
- A waypoint with an unreasonable path geometry, defined as a turn greater than 120°.

When the parallel offset function begins or ends within a flight plan due to the above constraints, parallel offset entry or exit waypoints are inserted into the flight plan. Discontinuities precede parallel offset entry waypoints and follow parallel offset exit waypoints. This allows the pilot to navigate to and from the parallel offset as required.

The EFIS provides guidance to parallel tracks at a selected offset distance. When executing a parallel offset, navigation mode and all performance requirements of the original route in the active flight plan are applicable to the offset route. The EFIS provides for entry of offset distance in increments of 1NM, left or right of course, and is capable of offsets of at least 20NM. Offset mode is clearly indicated with an advisory flag, i.e., **PTK = L 20NM**. When in offset mode, the EFIS provides reference parameters (e.g., cross-track deviation, distance-to-go, time-to-go) relative to the offset path and offset reference points.

Figure 7-9: Parallel Offset PTK-/PTK ENDING

Once a parallel offset is activated, the offset remains active for all flight plan route segments until removed automatically (transitioning through a parallel track exit waypoint), until the flight crew enters a "Direct-To" routing or activates a new flight plan route, or until (manual) cancellation.

NOTE:

If a parallel offset is entered in the active flight plan and then cancelled, that active flight plan is no longer eligible for configuring another parallel offset without deleting and reopening due to the creation of a discontinuity.

Table 7-5: Parallel Offsets Symbols and Description			
Symbol	Description		
^{¢™} PTK- 080"10.5NM ETE 0:03:02	Parallel offset has been created and has a designated ending waypoint.		
SPHK-	Designated ending waypoint of parallel offset		
PTK = R 3NM	Parallel track advisory indicating offset track 3 NM to the right of host route.		
6- PTK	PTK (L4) appears when active route is eligible for a parallel offset.		
PTK ENDING	Approaching end of parallel offset waypoint		
UNAV AT EDMN ALTITUDE: 4300' OFFSET:NM	VNAV altitude is possible with offset of distance before or after waypoint.		
UNAU AT EDMN ALTITUDE: 6800' OFFSET: NA	VNAV altitude input is possible but not an offset of a distance before or after waypoint.		

Table 7-5: Parallel Offsets Symbols and Description			
Symbol	Description		
INF0	The absence of PTK (L4) indicates a parallel offset is not allowed for reasons stated above.		
 ドレム ドレン ドレン	Indicates each waypoint is a part of the parallel offset.		

7.6. Default GPS/SBAS Navigation Modes

In the default GPS/SBAS mode, the EFIS has enroute, terminal, LNAV approach, LNAV/VNAV approach, LP approach, LPV approach, VFR approach, and departure navigation modes. Mode annunciation, alert limits (horizontal and vertical), and CDI FSD (horizontal and vertical) are determined by navigation mode.

Table 7-6: Default GPS/SBAS Navigation Modes				
Navigation Mode Annunciation				
Enroute	None			
Terminal	TERMINAL			
LNAV Approach	LNAV APPR			
LNAV/VNAV Approach	LNAV/VNAV APPR			
LP Approach	LP APPR			
LPV Approach	LPV APPR			
VFR Approach	VFR APPR			
Departure	TERMINAL			

The system switches to default navigation modes based upon region of operation as follows.

Table 7-7: Default Navigation Modes Based Upon Region of Operation			
Default Navigation Mode	Definition of Region		
Departure	Selected when the active waypoint is the first waypoint of a departure or missed approach procedure <u>and</u> the active leg heading is aligned (±3°) with the active runway heading. Also set when the active waypoint is the MAWP but a missed approach has been manually activated*.		
	VTF IFR approach has been selected; and		
VTF	within 30 NM of the active runway*; and		
Approach	the FAWP is the active waypoint*; and		
(LNAV, LNAV/VNA V, LP or	the bearing to the FAWP is within 45° of the final approach segment track (treated as a mode entry criteria)*; <u>and</u>		
LPV)	the desired track to FAWP is within 45° of the final approach segment track (treated as a mode entry criteria).		
-	IFR approach has been selected; and		
	within 30 NM of the active runway*; and		
	the MAWP or the FAWP is the active waypoint; and		
	if the FAWP is the active waypoint:		
Approach (LNAV, LNAV/VNA V, LP or	the bearing to the FAWP is within 45° of the final approach segment track (treated as a mode entry criteria)*; <u>and</u>		
LPV)	the desired track to FAWP is within 45° of the final approach segment track (treated as a mode entry criteria)*; <u>and</u>		
	either the segment leading into the FAWP is not a holding pattern or the pilot has elected to continue out of holding.		
VFR	VFR approach has been selected*; <u>and</u>		
Approach	within 30 NM of the active runway*; <u>and</u>		
	the active runway is the active waypoint.		
Terminal	Not in departure mode; <u>and</u>		

Table 7-7: Default Navigation Modes Based Upon Region ofOperation

Default Navigation Mode	Definition of Region	
	Not in approach mode; <u>and</u>	
	The active waypoint is part of a departure <u>or</u> the active waypoint and previous waypoint are parts of an arrival or approach <u>or</u> within 30 NM of the departure airport, arrival airport, or runway.	
Enroute	Not in departure, approach, or terminal modes.	

NOTE:

During RNP 0.3 Approach (manually or coded) the scale remains in RNP 0.3.

7.7. GPS/SBAS CDI Scale

Table 7-8: Summary of Changes In Cross-Track FSD					
	To Enroute	To Terminal	To Approach		
From Enroute		Change from ±2 NM FSD to ±1 NM FSD over distance of 1 NM; start transition when entering terminal mode.			
From Terminal	Change from ±1 NM FSD to ±2 NM FSD over distance of 1 NM; start transition when entering enroute mode.		If VTF, switch immediately. Otherwise, change from ±1 NM FSD to approach FSD over distance of 2 NM; start transition at 2 NM from FAWP		
From Approach		Change to ± 1 NM.			

Table 7-8: Summary of Changes In Cross-Track FSD						
	To Enroute	To Terminal	To Approach			
From Departure		If initial leg is aligned with runway, change from ±0.3 NM FSD to ±1 NM FSD at the turn initiation point of the first fix in the departure procedure.				

NOTE:

For RNP 0.3 routes, time to alert (TTA) is the same as for the approach. For RNP 0.3, the EFIS uses a 10-second TTA when using GPS-only, and a 2-second TTA when using EGNOS.

7.8. Approach Type Selection

Figure 7-10: GPS Mode (LNAV APPR)

The EFIS selects the approach type (LNAV, LNAV/VNAV, LP, or LPV) when entering approach mode with the following order of precedence and prerequisites:

1) **LPV**:

- ARINC-424 "Level of Service" indicates LPV minimums are published;
- b) Valid long-term, fast, and ionospheric SBAS corrections are available and being applied to at least 4 GPS satellites;
- c) Final approach segment data block exists and passes CRC; and
- d) Horizontal and vertical alert limits from final approach segment data block are predicted to be supported.
- 2) LP: (Same precedence and prerequisites as LPV)

3) LNAV/VNAV:

- a) ARINC-424 "Level of Service" indicates LNAV/VNAV minimums are published;
- b) If a final approach segment data block exists, it passes CRC; and
- c) Horizontal alert limit of 556 m. (.3 NM) is predicted to be supported.

NOTE:

Because the EFIS inherently supports barometric VNAV, it is not a prerequisite for the vertical alert limit to be predicted or supported. Nor is it a prerequisite for valid long-term, fast, and ionospheric SBAS corrections to be available and applied to at least four GPS satellites. Rather, the vertical alert limit (50 m) and SBAS correction tests are used to determine whether to present guidance based upon GPS altitude or barometric altitude.

 LNAV: This is the default approach type and is selected when none of the above selections is made. There are no prerequisites for selecting LNAV.

The EFIS continuously displays the approach type (mode indication) after selection. It does not degrade the approach type after selection unless the approach procedure is reselected or changed.

NOTE:

These GPS/SBAS modes still appear during a ground-based approach such as an ILS approach.

Some instrument procedures include notes saying the following: "RNP 0.3 required" and are coded as an RNAV procedure. In these cases, select manual RNP to see the RNP and ANP values on the PFD.

7.8.1. Approach Path Definition as VTF IFR Approach

In addition, the pilot may select a VTF IFR approach, indicating the pilot does not intend to fly the entire procedure. When a VTF IFR approach is selected, the EFIS creates an initial point (IP) waypoint on the extended final approach course to provide deviations relative to the extended final approach course. The IP is a fly-over defined exit heading waypoint, and the leg prior to the IP is designated as a discontinuity. Until the FAWP has been sequenced, the EFIS indicates a VTF IFR approach has been selected (**VECTORS**) to indicate guidance is not relative to a published approach path and TERPS or ICAO DO 8168 clearances are not assured.

7.8.2. VTF VFR Approach

Figure 7-11: Navigating to FAF on VTF VFR Approach

The pilot may select a VFR approach to a runway or user waypoint with a defined approach bearing. When a VFR approach is selected, the EFIS creates an IP waypoint approximately 12 NM on the extended final approach course to provide deviations relative to the extended final approach course. The IP is designated as a fly-over defined exit heading waypoint, and the leg prior to the IP is designated as a discontinuity.

During this VTF VFR approach, the aircraft is proceeding towards the IP. Since the IP is designated as a discontinuity, proceeding direct is not possible. When attempting to proceed direct to the IP, only the active leg between the IP and RW01 is activated.

7.8.3. Missed Approach and Departure Path Definition

Figure 7-12: Missed Approach and Departure Path

Once on the final approach segment (dashed line course similar to instrument approach chart portrayal), the pilot may initiate an immediate missed approach or arm the system to execute the missed approach at the MAWP. If armed before crossing the MAWP, the missed approach is armed for automatic initiation at the MAWP. If a missed approach is not initiated prior to crossing the MAWP, the EFIS switches to FROM mode at the MAWP and continues on the same course.

If the pilot initiates the missed approach, the EFIS provides guidance relative to the procedure. If a missed approach is armed prior to crossing the MAWP, the desired path, to and after the MAWP, is

defined by the procedure. If the first leg in the missed approach procedure is not a straight path aligned within 3° of the final approach course, the FSD changes to terminal mode FSD (\pm 1 NM) when the missed approach is initiated. Otherwise, the FSD changes to \pm 0.3 NM, when the missed approach is initiated (departure mode), and changes to terminal mode FSD (\pm 1 NM) at the turn initiation point of the first waypoint in the missed approach procedure.

The pilot may select DP guidance and, if the first leg in the DP is not a straight path aligned within 3° of the runway heading, terminal mode FSD (\pm 1 NM) is used. Otherwise, the FSD is \pm 0.3 NM (departure mode) and changes to terminal mode FSD (\pm 1 NM) at the turn initiation point of the first waypoint in the DP.

7.9. Loss of Navigation Monitoring

The EFIS continuously monitors for loss of navigation capability. In manual or automatic RNP mode prior to sequencing the FAWP, the loss of navigation caution is displayed using a 10-second TTA if the RNP value is less than 2 NM and a 30-second TTA otherwise. Use the Faults menu to distinguish the cause of the LON caution. The caution returns to its normal state upon termination of the responsible condition.

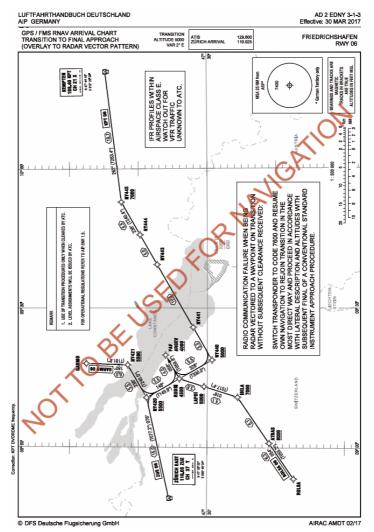
7.10. Selection of an Instrument Procedure

When an instrument procedure is selected and active, the receiver notifies the pilot of the most accurate level of service supported by the combination of the GPS/SBAS signal, receiver, and selected approach, using naming conventions on the minima lines of the selected approach procedure. Once the level of service has been given, the EFIS operates in this mode for the duration of the procedure, unless the level of service is unavailable. The EFIS cannot change back to a more accurate level of service until the next time an approach is activated.

The following includes examples of step-by-step procedures:

- 1) Standard Terminal Arrival Route (STAR)
- 2) ILS Instrument Approach
- 3) ILS Instrument Approach with Manual Termination leg
- 4) LOC Back Course Instrument Approach

- 5) RNAV (GPS) Instrument Approach to LPV Minima
- 6) NRST ILS Instrument Approach with Standard Instrument Departure (SID)
- 7) VOR/DME Instrument Approach
- 8) Instrument approach with primary and alternate missed approach procedures.


7.10.1. Standard Terminal Arrival Route (STAR) (Step-By-Step)

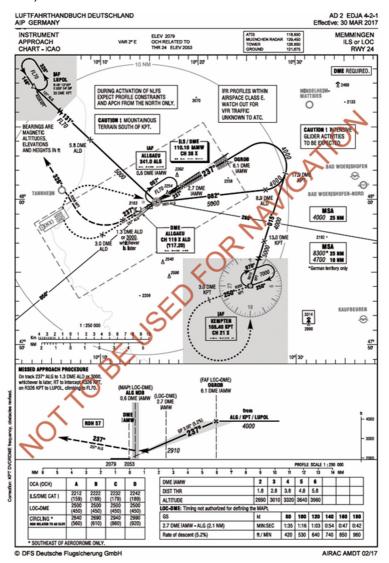
If the selected waypoint is an airport with a published STAR, this option is available for selection from a list of available STARs, transitions, and runways. After selection, the appropriate STAR is created and displayed on the MAP page. Activating a STAR deletes any pre-existing STAR, and it is inserted prior to any approach waypoints if previously entered.

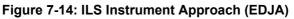
STARS normally terminate at a fix near the airport, so a radar vector or feeder route is used for transition to the approach phase of the arrival. If an instrument approach is activated during the STAR, the approach waypoints are inserted after the STAR.

The following example includes the execution of a Standard Terminal Arrival Route procedure into Friedrichshafen Germany (EDNY) followed by an ILS RWY 24.

Figure 7-13: Standard Terminal Arrival Route (STAR)

- Arrival airport must be entered as a waypoint.
- Push **0** with desired airport (EDNY) highlighted.


14:32:12 GS 114	L		FUEL 84.4GAL FLOW 20.3GPH				
WAYPOINT	UNAU/OFFSET	F	'ATH	DIST	ETE	ETA	FUEL
🔶 EDTP 🍰 KPT	'/ _{N1}	₽	099°	45.Own	0:23	:	
*** D267K	'/ _{N1}	₽	267°	10.8м	0:05		
0267R	' / _{M1}	₽	266°	6.4m	0:03	:	
🕬 KPT27	' / _M	₽.	266°	9.5м	0:05	;	
🗢 -DIR-	' ⁄ ₈₀		SCONT-	9.9мн	0:05	14:32	84
STAR MOKOP	' ⁄ ₈₁	₽ ₽	321° 123°	6.348	0:03	14:35	83
🔶 EDNY		ь. Ф	154°	5.9мн 18.4мн	0:03		82
🔶 LOIH	' / _{M1}	B+	027	41.7mm	0:03	14:48	79
🛆 ALD	' ⁄ _{N1}	Đ.	343°	15.1н	0:08	15:10	- 21
🔶 EDMI	' / _{N1}	E+	067"	33.6	0:17	15:18	69
🛆 aug	' / _{M1}		097"	28.7m	0:15	15:36	63
MSE	' / _{N1}					15:51	58


- 3) Scroll **1** to **STAR..** and push to enter.
- Scroll **1** to desired STAR (**KPT6P**). Push to enter.
- If no transition is offered, scroll **1** to desired runway (**RW06**). Push to enter.
- 6) ATC clears direct MOKOP and ILS RWY 26. Press ACTV (L2) scroll ① to MOKOP, press ② (R4), and push ① to enter. (See § 7.10.2 for loading an ILS)
- Press MENU (R1) and press PAGE (R3) scroll
 to NAV LOG and push to enter. View first portion and then scroll
 to view remainder of NAV LOG.
- 8) The NAV LOG, which is static in nature and can be viewed at any time, is the only page with clock time, groundspeed, fuel quantity, and fuel flow displayed. The active flight plan can be opened as an overlay to make changes.

7.10.2. ILS Instrument Approach (Step-By-Step)

All approach operations begin with the same basic steps. This example selects ILS or LOC RWY 24 at Memmingen Germany (EDJA).

PTK 70 TERMINAL	S 18408 10 B EDJA // 056* 22NH FHS 1.6N
- 70 TERMINAL	10
- 70 TERMINAL	10 DH_250 PICK APPR; 1L524 NDB0HE06 FHS NDB0HE24 1.0MH 0 0 0 0 (
- 80 20 TERMINAL	10 DH_250 PICK TRANS: 10 DH_250 PICK TRANS: ALG2 FMS 1.0NH • • • • • • • • • • • • • • • • • • •

Section 7 IFR Procedures

- 1) Press ACTV (L2).
- Scroll **1** to desired airport and push to enter.
- 3) Scroll **1** to IFR APPR... Push to enter.
- 4) Scroll **1** to desired approach. Push to enter.
- Scroll **0** to transition (*indicates most logical from current position). Push to enter.
- 6) Scroll **1** to landing runway. Push to enter.
- 7) If instructed to hold at OGROB as published, scroll **①** to **OGROB** and push to enter. Scroll **①** to **HOLD** and push to enter and enter holding direction and leg length or time. Push to enter.
- The holding pattern is created and is the next leg to be sequenced.
 ATC issues clearance for the ILS 24 Memmingen and to maintain 4000'.

Section 7 IFR Procedures

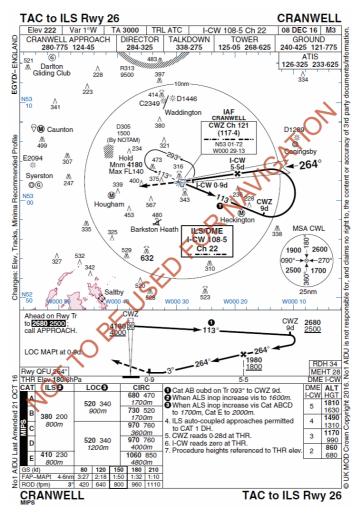
- Established in the HOLD as directed at 4000'. When ATC issues clearance for the approach, press CONT (L2) to resume waypoint sequencing to the FAF.
- 10) MFD view of holding pattern, next leg in white and destination with distance and ETE.

- Passing the FAF, press ARM (L2) to arm the missed approach procedure and resume waypoint sequencing.
- 12) After **ARM (L2)** is pressed, SUSPEND

disappears, and auto waypoint sequencing continues through the full missed approach procedure after passing the MAWP.

13) PFD inside FAF on localizer centerline and on glideslope.

14) MFD HSI page shows the VDI with glideslope source on top of VDI.


15) Missed approach segment appears as magenta and white dashed lines. The next leg (-ALT-) has an altitude termination leg of 3000'.

RW24 2110'/ 237° 6NM ₩ *D237C 3000'/ 235° 2NM	DGROB	4000'/		A
235" 2NM	00.102	2110 /	237°	6NM
		20007 /	235°	2NM
		3000 /	237°	3000'

7.10.3. ILS Approach with Manual Termination Leg in MAP (Step-By-Step)

This example selects RAF Cranwell United Kingdom (EGYD) with -ALT- termination leg followed by an immediate manual termination leg requiring pilot action to resume automatic waypoint sequencing.

20 FIS TERNINAL 1.6	NM
TUL	
10 DH_200 PICK APPR: 20 ILS26 NDBDME09 NDBDME09 NDBDME08 NDBDME08 NDBDME08 NDBDME08 NDBDME08 TERMINAL 1.1NH * • • • • • • • • • • • • • • • • • •	
PTCK TRANS:	E

and the second sec	100H_200	PICK TRANS:
- 20		CWL1
-	FMS	CWL2 ≭CWZ1
TERMINAL	1.0NM + 0 0	CWZ2

and a summer por second	10	DH	200	-	PIC	K RW:	
	10	UML					
	FMS				EGYD	RW19	
TERMINAL	1.0NM 0	0		° 3	EGYD	RW26	

- Press ACTV (L2). Scroll
 to the destination airport and push to enter.
- 2) Scroll **0** to **IFR APPR..** and push to enter.
- Scroll

 to desired approach and push to enter.
- Scroll to desired transition and push to enter. (* = most logical from present position.)
- 5) Scroll **①** to desired runway (colors the active runway light gray). Push to enter.
- Passing the FAF, press ARM (L2) to arm the missed approach procedure and resume automatic waypoint sequencing.
- DH set at 200' and localizer minimums set as MDA 520'.

- On localizer centerline and slightly above glideslope. Below minimum altitude and at DH but not below 200' AGL.
- Past the MAWP, auto nav source switches to FMS and auto waypoint sequencing is suspended due to -ALT- leg climbing to 2680'.
- MFD showing manual termination leg with no further course guidance. Altitude predictor arc indicates climb performance meets procedure requirements.
- 11) Automatic waypoint sequencing still suspended. Press **RESUME (L2)** to resume.

- 23 24 25 26 27 28 29 3 120 20 20 20 30 110 20 20 30 90 10 DH 200 10 0 90 10 DH 200 10 0
- 12) After **RESUME (L2)** is pressed, normal waypoint sequencing resumes to next active waypoint (EGXP)

7.10.4. LOC Back Course Instrument Approach (Step-By-Step)

This example includes a LOC/DME Back Course approach at Santa Maria, California, USA (KSMX) with attention drawn to OBS settings and includes blue numbers to associate places of reference on the chart and the EFIS.

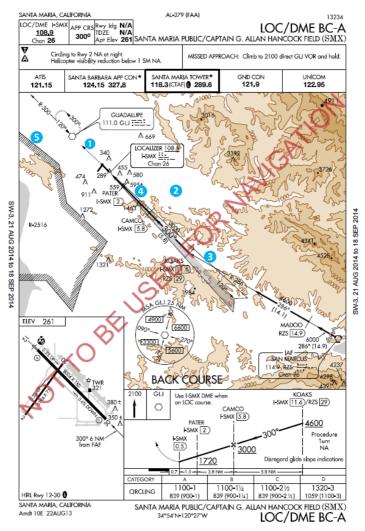


Figure 7-16: LOC Back Course Approach

РТК Р
80 0H 200 OHD 70'0 1/0 OFLY-AUTO VER APPR VER APPR TERMINAL 1.0NH 9. 0. 120"A
PICK APPR: 700 10 100 100 100 100 100 100 100 100
PICK TRANS: 700 10 FMS - UTF - TERMINAL 1.0NM 0 0 0 0 ± 12

18:56:43 GS 114	3L		FUEL FLOW	62.4G 20.0G			
WAYPOINT	UNAU/OFFSET	F	PATH	DIST	ETE	ETA	FUEL
🖧 RZS	2700'/w		0000		0.07	:	
** MADOO		₽	286°	14 . 9wm	0:07		
🐡 -DIR-	2700'/m	-DI	SCONT-	27.2m	0:14	18:53	63
*** *KOAKS		₽	148°	15.4м	0:08	19:04	60
CAMCO	3000'/	₽	302°	5.6ო	0:02	19:07	59
				3.844	0:02		
* PATER	1720'/м	Đ.	303°	1.5м	0:00	19:09	58
net MA300	1320'/w	- Đ•	302°	5.8м	0:03	19:10	58
🛛 GLJ			.)120°	5.4	0:02		57
🗄 GLJ	2100'/w		J120		0:02	19:16	56
(KSMX)	' / _{N1}			NH	:	:	
KIZA	2100'/w	₽	117"	30.2м	0:15	19:32	51
+ NILLI	2100					10102	

- Press ACTV (L2). Scroll **1** to airport active waypoint. Push to enter.
- 2) Scroll **1** to **IFR APPR..** and push to enter.
- 3) Scroll **1** to **LBCA** and push to enter.
- Scroll **①** to transition (*indicates most logical from current position). Push to enter.
- 5) Scroll **1** to desired runway. Push to enter.
- 6) Follow ATC clearance and determine where to proceed. To view NAV LOG, press MENU (R1) and PAGE (R3). Scroll
 ① to NAV LOG and push to enter.
- Assume ATC issued clearance to proceed direct to KOAKS, ACTV

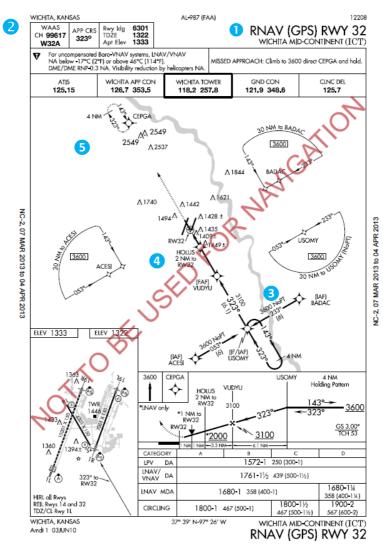
(L2) and (R4) were pressed when KOAKS was highlighted.

- To set minimums, press MENU (R1), BUGS (R2), MINS (R3), scroll ① to MIN ALT.., and push to enter. Scroll ① to set minimum altitude and push to enter.
- 9) 3 Press OBS (L4). Press NAV VLOC1 (L3) or NAV VLOC2 (L4) as applicable. Scroll 1 to set back course bearing of 300° and push to enter. This results in proper sensing of back course CDI indications. The map is configured for ARC mode.

10) Localizer course is now within 105° and has changed from BC to front course with CDI left of center during course intercept from the right side.

- After passing the FAF (CAMCO), MISS (L1) and ARM (L2) appear. There is no SUSPEND advisory due to the stepdown fix of PATER 0.2NM ahead. Approaching PATER (flyby waypoint symbol) stepdown fix with the missed approach procedure armed and speed transitioned to 70 KIAS. The green arc altitude predictor indicates arrival at minima over the runway.
- 12) Approaching MAP MA300 with runway in sight. IAS stabilized at 70 KIAS.

13) Passing the MAWP, nav source automatically switches to FMS.



- 14) 5 Entering HOLD at GLG and navigating on FMS.
- 15) **CONT (L2)** appears as a reminder to press when ready to leave the HOLD and continue to the destination KIZA.

7.10.5. RNAV (GPS) Instrument Approach to LPV Minima (Step-By-Step)

This example includes an RNAV (GPS) RWY 32 approach to Wichita, Kansas, USA (KICT) and includes blue numbers to associate places of reference on the chart and the EFIS.

Figure 7-17: RNAV (GPS) Instrument Approach to LPV Minima

PTK 20 TERMINAL	10 15208 10 KICT
FLTA INHBT TERMINAL	FHS OFL*AUTO 1.0NH • • • • • 057*A IFR APPR
- 80 70	10PICK APPR: #KNAU19LZ #K

	10	DH 200	PICK TRANS:
- 70			ACESI *BADAC
FLTA INHBT	FMS	0 0 1 0 0 0	USOMY - VTF -

2

	10 04 200	PICK RW:
		KICT RW14
		KICT RW19L
	FMS	KICT RW19R
FLTA INHBT TERMINAL	1.0NM 0 0 + 0 0 0	KICT RW32

- Press ACTV (L2). Scroll
 to desired airport
 from active flight plan and push to enter.
- 2) Scroll **1** to **IFR APPR..** and push to enter.
- Scroll ① to desired approach, for example, RNAV32 (99617). Verify WAAS channel number

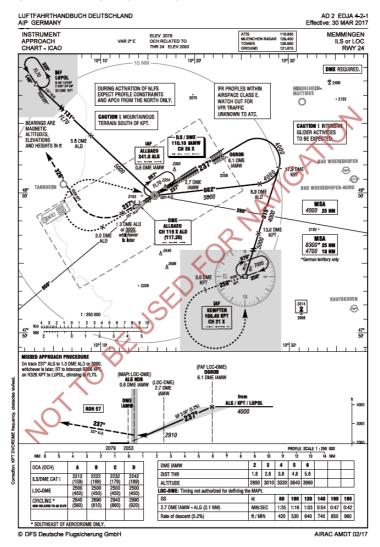
2 matches instrument approach chart and push to enter. Push to enter.

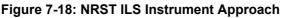
- Scroll **①** to the desired transition and push to enter. (* = most logical from present position.)
- Scroll **1** to assigned landing runway. (Active runway is light gray for identification purposes.)
- While 2.8NM outside of FAF, the VDI source is VNV-B.

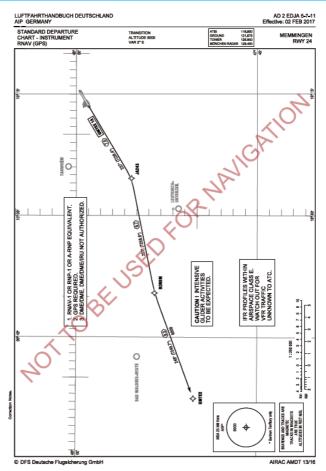
LP

- 7) 3 On final approach course and approaching the FAF, **LPU APPR**, appears with the VDI. The source automatically switches to LPV.
- Upon passing HOLUS, press ARM (L2) to continue auto waypoint sequencing. This is the latest point on the approach to press ARM (L2).
- VDI displays vertical guidance for the LPV vertical profile based on GPS/SBAS.
- 10) Obstructions appear on PFD and MFD.
- 11) Press **MENU (R1)** then **ZOOM (R3)** for wideangle view of PFI area.
- 12) FPM lined up on the active runway on glidepath approaching minimums with CDI centered and on glidepath approaching minimums of 1580' MSL.

- 13) Below minimums with FPM aligned with touchdown zone on runway. Minimums are amber (yellow) and flashing as the audible alert, "MINMUMS, MINIMUMS," sounds.
- 14) Past the MAWP, NAV source remains FMS1 and scale automatically changes to 0.3NM FSD.


Satisfying the altitude termination leg of 1572' during the missed approach leg.


15) 5 Established in hold at CEPGA. Press CONT (L2) to continue waypoint sequencing to next leg in active flight plan.


7.10.6. NRST ILS Instrument Approach (Step-By-Step)

This method does not require the airport to be in the active flight plan. This example selects ILS RWY 24 at Memmingen Germany (EDJA) with the NRST ILS method of creation followed by the Kempton Three Alpha (KPT 3A) SID.

Figure 7-19: Standard Instrument Departure Procedure

KPT 3A KEMPTEN THREE ALPHA On track 237" ALG to 5.3 OHE ALD, LT on track tells to intercept R299 KPT to KPT (Δ), GPS/FMS RNAV: [A2500-] - JA242[L] - JA244[L] - KPT.	FL 70	München Radar 129.450	Not to be used during activation of NLFS. Expect Re-routing by ATC. Flights continuing via M738: PDG 4.9% (300 ft/NM) until reaching KPT.
--	-------	--------------------------	--

Figure 7-20: Kempton Three Alpha (KPT 3A) SID

- Press NRST (R3). Scroll
 to ILS... Push to enter. This clears any prior active flight plan.
- Scroll **1** to desired NRST ILS. Push to enter.
- Once confirmed, push **1** to activate the ILS.
- The following actions occur:
 - a) Direct flight plan to the ILS airport is created.
 - b) A vectors-to-final ILS approach is activated.
 - c) Heading bug is activated to the current heading.
 - d) VLOC 1 and VLOC 2 OBS are set to the associated localizer course.
 - e) ILS frequency is automatically transmitted to NAV#1 in standby position. (When configured)
 - FIS changes to LOC1, and VDI indicates source of glideslope GS2.

- Passing the FAF (OGROB), MISS (L1) and ARM (L2) appear. Press ARM (L2) to arm the missed approach procedure and resume automatic waypoint sequencing.
- 6) HITS indicates guidance to follow GPS overlay of the localizer and glideslope. However, the localizer source for CDI and glideslope receiver VDI are the primary sources for guidance on this ILS approach.

06

 MFD press MENU (R1) then PAGE (R3). Scroll
 to HSI and push to enter.

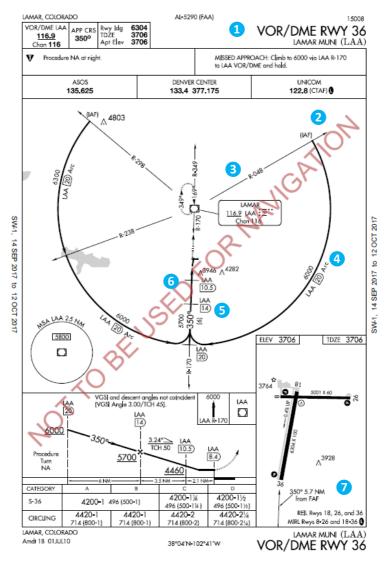
8) Inside 2.0 NM final with FLTA INHBT LNAU APPR indicating no TAWC

indicating no TAWS alerts are triggered and the default GPS mode LNAV APPR is active.

- Below DH over the inner marker with zoom mode on and stabilized at 70 KIAS on the localizer centerline.
- During the missed approach, the navigation source automatically switches to FMS with 0.3NM FSD. FLTA is still inhibited and terminal mode is active while within the terminal area.
- 11) Press ACTV (L2) and scroll • to JA242 press • (R4) and push to

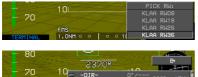
(R4) and push to enter.

12) Kempton Three Alpha SID was loaded to the (EDJA) suppressed waypoint, and JA242 and JA244 displayed on the white track line. This requires management of the active flight plan to follow the SID in lieu of the missed approach path.


13) Now JA242 is the active waypoint with a magenta line going straight out instead of turning right for the published missed approach procedure. With route of flight as follows:

> On track 237° ALG to 5.3 DME ALD. LT, on track 166° to intercept R299 KPT to KPT climb to FL 70.

7.10.7. VOR/DME Instrument Approach (Step-By-Step)


This example loads the Lamar Municipal, Colorado, USA VOR/DME RWY 36 approach and is flown via the east arc followed by a missed approach. Blue numbers associate locations on chart and EFIS.

TERMINAL	KLAA 103° 68NM KULS'/ 103° 68NM FHS 1.5N
	10 →10 H0LD 0CLY/AUTO 0CLY/AUTO FMS UFR APPR 1.0NM ○ ○ ○ ○ 107*A IFR APPR
	2260R PICK APPR: U0RDHE36 WERNAUDE (57429) FHS2 Z.0NH ○ ○ ○ ◆ WRAUDE (5613)

- 80	-			
70	10-	2370R	-	
	10	-DIR-	0"/	028" 17NM
	20	*D048T	6000"/	
	FMS **	CF36	6000'/ 6000'/ 5700'/	355" ENM
TERMINAL	1.02	FF36	5700'/	E

- **1** Scroll **1** to select 2) desired approach (VORDME36) and push to enter.
- Scroll **1** to desired 3) transition (DO48T). (* = most logical from present position.) Push to enter.
- Scroll **1** to desired 4) runway. Push to enter.
- 5) Press ACTV (L2) scroll • to view procedure and select fix for compliance with ATC clearance 2

(DO48T). Press 🛄 (R4) and push **1** to enter.

A magenta line leads 6) from the -DIR- current position to 3 D048T. which is now the active waypoint. 6000' is the VNAV altitude, and aircraft is descending to the HITS boxes with green arc altitude predictor showing where this altitude is reached along the route.

ANLG AGL	
BANK SCL	
BASIC	
MINI MAP	~
MINI TRF	
SKYWAY	
SVS TAWS	
SVS BASI	
TRAFFIC	
TURN IND	
FD1	
FD2	
METERS	
DONE	

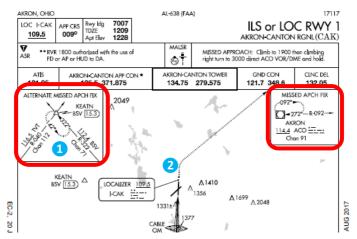
- 7) Established on the 20 DME ARC 4 with NAV1 and NAV2 set on 116.9 MHz for LAA VOR and inbound FAC set at 350° on both VORs with DME indicating on both nav sources.
- 8) To declutter the mini map on the PFD, press MENU (R1) and then DCLTR (R4). Scroll ① to MINI MAP and push to check. Press EXIT (R1) or scroll ① to DONE and push to enter.
- 9) Established inbound on the final approach course to the FAF (FF36)
 crossing top of descent symbol ahead indicating when descent can be commenced to cross the FAF at 5700'. Nav source is VOR1 and HITS source is GPS. The primary lateral source is the VOR and DME for this instrument approach.

- 10) After passing the FAF, MISS (L1) and ARM (L2) appear. Press MISS (L1) to immediately execute the missed approach procedure or press ARM (L2) to arm the missed approach procedure upon crossing the MAWPT.
- 11) Approaching the 6 stepdown fix 11VOR at the proper altitude of 4460' as shown in the waypoint information box.

Below minimums with audible alert, "MINIMUMS, MINIMUMS."

12) Established at 70 KIAS on short final with the runway in sight .6 NM ahead at the same angle as shown on the instrument approach chart.

13) After passing the MAWPT and the missed approach procedure automatically sequenced, aircraft begins following the dashed magenta missed approach course lines on the MAP. NAV source automatically switched to FMS1 and 0.3NM FSD.


TERMINAL FLTA INHBT

references to still being in the terminal area and TAWS terrain alerts are still inhibited.

7.10.8. ILS or LOC RWY 1 Instrument Approach with Missed Approach Flown to Alternate fix (Step-By-Step)

This example loads the Akron-Canton, Ohio, USA, ILS or LOC RWY 1 approach with the missed approach flown to the alternate missed approach fix (KEATN)

Figure 7-22: ILS or LOC RWY 1 Instrument Approach with Missed Approach Flown to Alternate fix (Step-By-Step)

During the instrument approach clearance, ATC advised that in the event of a missed approach, plan on flying the alternate missed approach instructions to **1** KEATN intersection and hold as published. The ILS RWY 1 instrument approach is loaded and the active flight plan is opened and **0** is scrolled to one position past (KCAK) and **INSERT (R2)** is pressed and KEATN entered with **0** and pushed to enter.

- Create KEATN waypoint in active flight plan between KCAK and KPOV. Push **1** to enter.
- 2) Scroll **1** to **KEATN** and push to enter.
- 3) Scroll **1** to **HOLD..** and push to enter.

· - 80	
- 70	10 22008 HOLD AT KEATN COURSE: 322"
	TURN DIR: LEFT LEG DIST:NM
TERMINAL	2 ONM 0 0 + 0 0 200 LEG TIME: 1.0MIN

- 4) To create published holding pattern at KEATN, scroll/push ① through the process then push to enter. Observe KEATN is in correct position in active flight plan after (KCAK.)
- 5) 2 Upon executing the missed approach, press ACTV (L2). Scroll ① to KEATN press ① (R4) and push ① to enter direct routing to KEATN.
- Verify the active flight plan has the holding pattern entered as published and is depicted on the ND correctly.
- Established holding pattern at KEATN. When cleared to continue to next waypoint, press CONT (L2). Waypoint sequencing resumes to next waypoint.
- 8) If an instrument approach is necessary at the destination (KPOV) the approach can be loaded without losing the holding pattern at KEATN, since it was not part of the KCAK ILS 01 Instrument approach procedure.

NOTE:

Navigation databases should be current for the duration of the flight. If the Aeronautical Information Regulation and Control (AIRAC) cycle is due to change during the flight, operators and pilots should establish procedures to ensure the accuracy of navigation data including suitability of navigation facilities used to define the routes and procedures for flight. Once acceptable means to compare aeronautical charts (new and old) to verify navigation fixes prior to departure, electronic data have traditionally been verified against paper products. If an amended chart is published for the procedure, do not use the database to conduct the operation.

There may be a slight difference between the navigation information portrayed on the chart and the primary navigation display heading. Differences of three degrees or less may result from equipment manufacturer's application of magnetic variation and are operationally acceptable.

GPS receivers do not "fail down" to lower levels of service once the approach has been activated.

If only **LON** appears, use the LNAV minima if the rules under which the flight is operating allow changing the type of approach being flown after commencing the procedure. If the lateral integrity limit is exceeded on an LP approach, a missed approach is necessary, since the lateral alarm limit may not be reset while the approach is active.

Section 8 Terrain Awareness Warning System Enhanced HTAWS and HTAWS

8.1. Enhanced HTAWS and HTAWS (Terrain Awareness Warning System) Functions

The IDU provides TSO-C194 HTAWS functionality. Depending on aircraft configuration and external sensors/switches, the system is configurable as an Enhanced HTAWS or HTAWS. Functions provided by HTAWS are:

- 1) Terrain Display: Terrain and obstacles on PFD and ND.
- 2) Forward Looking Terrain Awareness (FLTA): Alerts to hazardous terrain or obstructions in front of the aircraft.
- 3) **Excessive Rate of Descent** (**GPWS Mode 1**): Alerts when hazardously high rate of descent above terrain (i.e., descending into terrain).
- 4) **Excessive Closure Rate to Terrain (GPWS Mode 2)**: Alerts when hazardously high rate of change above terrain (i.e., flying level over rising terrain).
- Sink Rate after Takeoff or Missed Approach (GPWS Mode 3): Alerts when loss of altitude is detected immediately after takeoff or initiation of a missed approach.
- 6) Flight into Terrain when not in Landing Configuration (GPWS Mode 4): Alerts when descending into terrain without properly configuring the aircraft for landing.
- Excessive Downward Deviation from an ILS Glideslope (GPWS Mode 5): Alerts when deviating below glideslope on the final approach segment of an ILS approach.

Table 8-1: TAWS Functions Provided by the EFIS									
Aircroft Turne	TAWS	Terrain	FLTA		GPWS Mode				
Aircraft Type	Class	Display	FLIA	1	2	3	4	5	
Rotorcraft RG	Enhanced	✓	\checkmark	✓	✓	<	<	>	
Rotorcraft FG	Enhanced	✓	\checkmark	✓	✓	<		>	
Rotorcraft	Normal	✓	\checkmark			✓			

Notes: RG = Retractable Gear; FG = Fixed Gear

8.2. Terrain Display

Display of terrain on the PFD and MFD are described in Sections 3 Display Symbology and 5 Menu Functions and Step-By-Step Procedures where applicable.

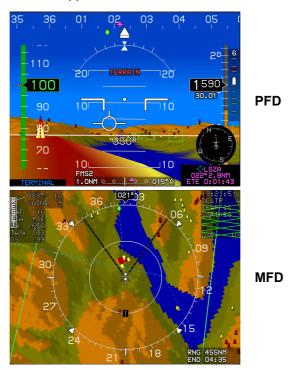


Figure 8-1: Terrain Display

8.3. Forward Looking Terrain Alert Function

Figure 8-2: FLTA INHBT

FLTA function uses the following to alert to hazardous terrain or obstructions within a search envelope in front of the aircraft:

- 1) Terrain database
- 2) Obstruction database
- 3) Airport and runway database
- 5) Aircraft track
- 6) Aircraft groundspeed
- 7) Aircraft bank angle
- 8) Aircraft altitude
- 9) Aircraft vertical speed

8.3.1. FLTA Modes

Aircraft position

The EFIS FLTA mode is either slaved to the GPS/SBAS navigation mode or set automatically based upon default mode logic.

8.3.2. GPS/SBAS Navigation Mode Slaving

The EFIS performs TSO-C146c GPS/SBAS functions in addition to the TAWS functions. As a result, GPS/SBAS navigation mode is available as an input to the TAWS. The pilot may select an IFR procedure (approach, DP, or STAR), which automatically changes the GPS/SBAS navigation mode to enroute, terminal, departure, or IFR approach as appropriate. In addition, the pilot may select a VFR approach to any runway or user waypoint with a defined approach path. Selection of a VFR approach causes automatic GPS/SBAS navigation mode to change to enroute, terminal, or VFR approach as appropriate.

When slaved, the GPS/SBAS active runway threshold or user waypoint is the reference point for automatic FLTA inhibiting. The advantage is the GPS/SBAS navigation modes are a direct indication to the FLTA function of pilot intent.

8.3.3. Default FLTA Mode

If the default FLTA navigation mode is higher in precedence than the GPS/SBAS navigation mode, FLTA mode is slaved to the default FLTA navigation mode. These modes, in order of precedence, are:

 Departure Mode: Enabled when in ground mode. Reference point for automatic FLTA inhibiting and mode envelope definition is the last point at which the ground definition was satisfied (this is near the liftoff point). Departure mode ends upon climbing through 1500 feet above or traveling more than 6NM from the reference point.

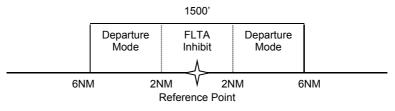


Figure 8-3: Default FLTA INHBT

- 2) Other Modes: For other default FLTA modes, reference point for automatic FLTA inhibiting and mode envelope is the nearest runway threshold or the nearest user waypoint with a defined approach bearing. TAWS continuously searches all runway thresholds at the nearest three airports to determine the nearest runway threshold. TAWS performs a search for the nearest three airports and nearest user waypoints with a defined approach bearing every 3NM of distance traveled. Modes are as follows:
 - a) **Approach Mode**: When within 1900 feet and 5NM of the reference point.
 - b) Terminal Mode: From 5NM to 15NM from the reference point when below an altitude varying from 1900 feet (at 5NM) to 3500 feet (at 15NM) above the reference point.
 - c) **Enroute Mode**: When not in any other mode.

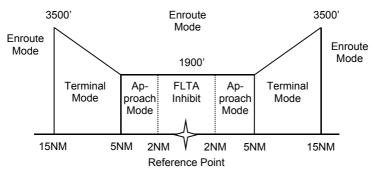


Figure 8-4: FLTA INHBT Mode Areas

8.3.4. FLTA Search Envelope

The FLTA search envelope is an area in front of and below the aircraft. If terrain or obstructions are found within the FLTA search envelope, a caution or warning is given. Dimensions of the search envelope depend upon TAWS type, FLTA mode, groundspeed, bank angle, and vertical speed. Basic envelope parameters are as follows.

1) **TAWS Type**: Determines value of several parameters used to calculate the search envelope.

Table 8-2: FLTA Search Envelope for HTAWS		
Envelope	Parameter	
	10% of vertical speed	
Level-Off Rule	Used for level off leading for descending flight reduced required terrain clearance (RTC)	
	36 seconds of the forward range search envelope	
Range	Reduced to 24 seconds when low altitude mode is engaged. GPS/SBAS HFOM is added to range.	
Enroute Mode		
Level/Climbing Flight RTC		
Terminal Mode	150 feet	
Level/Climbing Flight RTC	Reduced to 100 feet when low	
Approach Mode	altitude mode is engaged.	
Level/Climbing Flight RTC Departure Mode Level/Climbing Flight RTC Enroute Mode Descending RTC		
Terminal Mode Descending RTC	100 feet	
Approach Mode		
Descending RTC		
Departure Mode		
Descending RTC		

- Aircraft Track: Terrain search envelope is aligned with aircraft track.
- Aircraft Groundspeed: Used in conjunction with range parameter to determine look-ahead distance and used in with FLTA mode to determine the search volume width as follows:
 - a) Enroute Mode: Based on a 30° change in track followed by 30 seconds of flight at aircraft groundspeed. Maximum width is 0.5NM either side of track.
 - b) Terminal Mode: Based on a 15° change in track followed by 30 seconds of flight at aircraft groundspeed. Maximum width is 0.5NM either side of track.
 - c) Approach Mode: Based on a 10° change in track followed by 30 seconds of flight at aircraft groundspeed. Maximum width is 0.3NM either side of track.
 - d) Departure Mode: Based on a 10° change in track followed by 30 seconds of flight at aircraft groundspeed. Maximum width is 0.3NM either side of track.

After calculating search volume width as described above, the GPS/SBAS HFOM is added to search volume width.

- Aircraft Bank Angle: Used to expand the search volume in the direction of a turn and requires at least 10° of bank. In addition, search volume expansion is delayed so at 10° of bank, the bank angle must be continuously held for 3.25 seconds, which is reduced linearly with increased bank angle so at 30° of bank there is no delay time.
- 2) Aircraft Vertical Speed: If above 500 FPM vertical speed is used to determine which RTC values should be used. At vertical speeds less than 500 FPM, level and climbing flight RTC values apply. A three-second pilot reaction time is used and applied to the level-off rule parameters.

8.3.5. FLTA Alerts and Automatic Popup

When terrain or obstructions fall within the FLTA search envelope, a FLTA warning is generated. Terrain rendering is enabled when a FLTA warning is initiated or upgraded as follows:

1) On PFD screen, terrain rendering is enabled;

 On navigation display screen, terrain rendering is enabled only if TAWS Inhibit is not enabled (i.e., TAWS Inhibit prevents terrain from being automatically enabled on the ND).

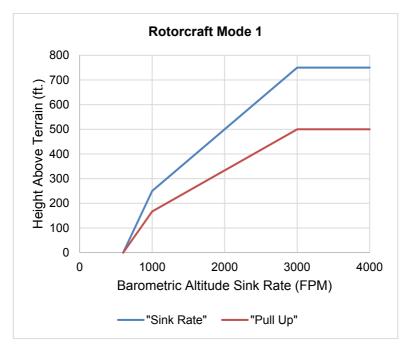
In addition, when an FLTA warning is initiated or upgraded, an automatic popup mode is engaged as follows:

- 1) Display switched to navigation display.
- 2) Display switched to aircraft centered and heading up.
- 3) Display panning disabled.
- 4) Display scale set to:
 - a) 10NM (groundspeed > 200 knots);
 - b) 5 NM (groundspeed < = 200 knots and groundspeed > 100 knots); or
 - c) 2NM (groundspeed < = 100 knots).

After the popup mode is engaged, the pilot may change any setting automatically changed by the popup mode. In addition, **RESET (L1)** appears for 20 seconds to reset the previous screen configuration with one button press. Popups only occur on IDU #0 or IDU #2 and do not occur:

- 1) if TAWS Inhibit is enabled;
- 2) If CPU#2 is showing the PFI or EICAS function.

 Figure 8-5: Popup Mode


 Rev A Mar, 2018
 IDU-450 EFIS Software Version 8.0F (Rotorcraft)

8.4. Excessive Rate of Descent (GPWS Mode 1)

GPWS Mode 1 function is present in Enhanced HTAWS and uses aircraft vertical speed information and AGL altitude to alert when the rate of descent is hazardously high as compared to height above terrain. GPWS Mode 1 has a caution and warning threshold. When below the thresholds, a GPWS Mode 1 warning is generated.

Table 8-3: HTAWS GPWS Mode 1 Envelope			
Sink AGL Altitude (ft.)			
Rate	"Sink Rate" "Pull Up"		
(fpm)	Caution Threshold	Warning Threshold	
< 1000	$62.5\% \times (Sink Rate - 600)$		
1000	Lesser of:	$66\% \times \begin{pmatrix} \text{Caution} \\ \text{Threshold} \end{pmatrix}$	
to	750 or	Threshold	
3000	$25\% \times (Sink Rate)$		

8.5. Excessive Closure Rate to Terrain (GPWS Mode 2)

GPWS Mode 2 function is present in Enhanced HTAWS only and uses filtered AGL rate and AGL altitude to alert when the rate of change of height above terrain is hazardously high as compared to height above terrain (i.e., flying level over rising terrain). Envelope selection is determined as follows and is based upon a 10 second sampling time.

There are two Mode 2 envelopes: Mode 2A, which is active when not in landing configuration, and Mode 2B, which is active when in landing configuration. Envelope selection is determined as follows.

Table 8-4: HTAWS GPWS Mode 2 Envelopes			
Landing Gear	Mode 2A	Mode 2B	
Retractable	Landing Gear Up	Landing Gear Down	
Fixed	AGL Altitude > 200 ft or	AGL Altitude \leq 200 ft and	
	Airspeed > 80 KIAS	Airspeed \leq 80 KIAS	

When the GPWS Mode 2 envelope is pierced, a GPWS Mode 2 warning is generated.

Table 8-5: HTAWS GPWS Mode 2A Envelopes (NOT in Landing Configuration)			
AGL Rate (fpm)	AGL Altitude (ft.) "Caution, Terrain" "Pull Up" Caution Warning Threshold Threshold		
< 1905		$125\% \times (AGL Rate - 1600)$ 20% of the lesser of:	
	Airspeed (KIAS)	AGL Rate (fpm)	
> 1905	< 90 90 to 130	3120 3120 + 72 × (Airspeed – 90)	$ \begin{pmatrix} 66\% \times \\ Caution \\ Threshold \end{pmatrix} $
	> 130	6000	
		or AGL Rate	

Table 8-6: HTAWS GPWS Mode 2B Envelopes (Landing Configuration)		
AGL Altitude (ft.)		
"Caution, Terrain" "Pull Up"		
Caution Threshold	Warning Threshold	
Lesser of:		
300 or	$66\% \times (Caution Threshold)$	
20% × (AGL Rate – 2000)		

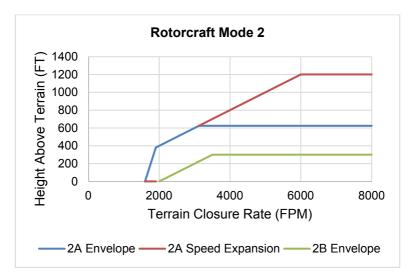


Figure 8-7: Rotorcraft GPWS Mode 2

8.6. Sink Rate after Takeoff or Missed Approach (GPWS Mode 3)

GPWS Mode 3 function uses aircraft vertical speed information and AGL altitude to alert when a sink rate is detected immediately after takeoff or initiation of a missed approach. GPWS Mode 3 is armed by either being in ground mode or by being on the first leg of a missed approach procedure (as determined by the GPS/SBAS) with distance to the active runway threshold increasing. GPWS Mode 3 is disarmed upon climbing through **400 feet AGL**, traveling more than **3 NM** from the last point at which the ground definition was satisfied (this is near the liftoff point), or transitioning to the second leg of a missed approach procedure. GPWS Mode 3 has a caution

threshold based upon height above terrain and vertical speed. When below the caution threshold, a GPWS Mode 3 warning is generated as defined: **"Don't Sink**" AGL = 140 % of sink rate.

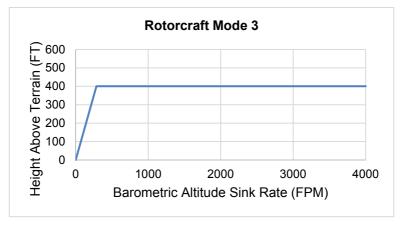
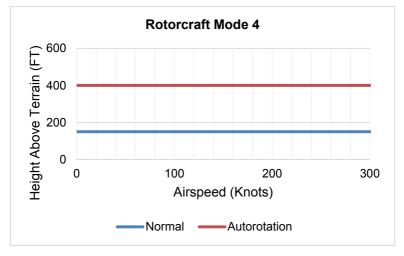


Figure 8-8: Rotorcraft GPWS Mode 3

8.7. Flight into Terrain when not in Landing Configuration (GPWS Mode 4)

GPWS Mode 4 function is present in Enhanced HTAWS and uses aircraft speed information and AGL altitude to alert when descending into terrain without properly configuring the aircraft for landing. There are two Mode 4 envelopes: Mode 4A, which gives cautions when landing gear is in other than landing configuration, and Mode 4B, which gives cautions when landing gear are in other than landing configuration. Applicability of Mode 4 envelopes to aircraft types are as follows.

Table 8-7: HTAWS GPWS Mode 4 Envelopes		
Landing Gear	Mode 4A	Mode 4B
Retractable	Landing Gear Up	Not Applicable
Fixed	Not Applicable	Not Applicable



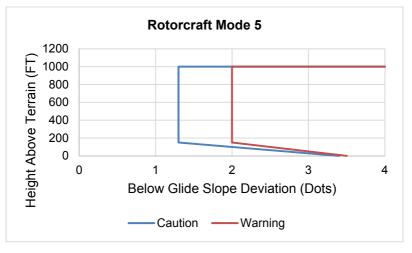
Mode 4 envelope consists of low-speed and high-speed regions.

Table 8-8: HTAWS GPWS Mode 4 Alerting Criteria			
Region	Caution Flag	Single Voice Alert	
Low-Speed		"Too Low Gear"	
High-Speed	TOO LOW	"Too Low Terrain"	
Autorotation expansion, when engaged, regardless of speed	TOO LOW	"Too Low Gear"	

Mode 4 alerting criteria require the Mode 4 envelope to be entered from above so changing aircraft configuration while within a Mode 4 envelope does not generate an alert.

Table 8-9: HTAWS GPWS Mode 4A Envelopes		
Segment	Speed (KIAS)	AGL Altitude (ft.)
4A Low-Speed	< 100	150
4A High-Speed	≥ 100	(400 in autorotation)

Figure 8-9: Rotorcraft GPWS Mode 4



8.8. Excessive Downward Deviation from an ILS Glideslope (GPWS Mode 5)

GPWS Mode 5 function is present in Enhanced HTAWS only and uses ILS glideslope deviation information and AGL altitude to alert when an excessive downward glideslope deviation is detected on the final approach segment of an ILS approach. GPWS Mode 5 is armed when a valid glideslope signal is being received, AND the aircraft is below **1000' AGL**.

GPWS Mode 5 has a caution and warning threshold. When below a threshold, a GPWS Mode 5 warning is generated. The curve compares glideslope deviation to AGL altitude.

Table 8-10: HTAWS GPWS Mode 5 Envelopes		
Caution Threshold	Warning Threshold	
Greater of:	Greater of:	
$\begin{bmatrix} 1.3 + 1.4\% \times \\ (150 - \text{AGL Altitude}) \end{bmatrix} \text{Dots}$	$\begin{bmatrix} 2+1\% \times \\ (150 - \text{AGL Altitude}) \end{bmatrix} \text{Dots}$	
or	or	
1.3 Dots	2 Dots	

Figure 8-10: Rotorcraft GPWS Mode 5

8.9. External Sensors and Switches

TAWS requires a variety of inputs from external sensors and switches to perform its functions as follows:

- GPS/SBAS Receiver: Source of aircraft position, geodetic height, horizontal figure of merit (HFOM), vertical figure of merit (VFOM), loss of integrity (LOI), and loss of navigation (LON) inputs.
- 2) Air Data Computer (ADC): Source of barometric altitude, outside air temperature, and vertical speed.
- 3) **ILS Receiver**: Glideslope receiver is the source of glideslope deviation.
- 4) Radar Altimeter (RA): Source for radar altitude.
- 5) **Gear Position Sensors**: Landing gear position discretes, as configured in the system limits, are the source of landing gear position.
- 6) TAWS Inhibit Switch: As configured in the system limits, used for manual inhibiting of TAWS alerting functions. Gives an indication of actuation (e.g., toggle/rocker or pushbutton with indicator light and TAWS INHET on the lower left corner of the PFD).
- 7) Low Altitude Mode Switch: As configured in the system limits, used for inhibiting and modifying HTAWS alerting functions to allow normal operation at low altitudes. Gives an indication of actuation (e.g., toggle/rocker or pushbutton with indicator light and TAWS LOW ALT on the lower left corner of the PFD).
- 8) **Audio Mute Switch**: Momentarily activated to silence active aural alerts is desired. It is connected directly to the EFIS IDU.
- 9) **Glideslope Deactivate Switch**: As configured in the system limits, momentarily activated to inhibit GPWS Mode 5 function.
- 10) **Low Torque Sensor**: A low torque discrete, as configured in the system limits, used for inhibiting and modifying HTAWS alerting functions during an autorotation.

Applicability of external sensors and switches for the applicable TAWS is as follows.

Table 8-11: External Sensors and Switches (ApplicableTAWS)			
Aircraft Type	Rotorcraft RG	Rotorcraft FG	Rotorcraft
HTAWS Class	Enhanced	Enhanced	Normal
GPS/SBAS	\checkmark	\checkmark	\checkmark
ADC	\checkmark	✓	✓
Gear Position Sensor	\checkmark		
TAWS Inhibit Switch	\checkmark	✓	\checkmark
Audio Cancel Switch	\checkmark	~	\checkmark
Low Altitude Mode Switch	\checkmark	~	\checkmark
Low Torque Sensor	\checkmark	~	
ILS	✓	✓	
Radar Altimeter	\checkmark	✓	
Glideslope Deactivate Switch	\checkmark	~	

Notes: RG = Retractable Gear; FG = Fixed Gear

TAWS Basic Parameter Determination 8.10.

The fundamental parameters used for TAWS functions are.

Table 8-12: HTAWS Basic Parameters Determination		
Parameter	Source	Notes
Aircraft position, groundspeed and track	GPS/SBAS	HFOM must be less than or equal to the greater of 0.3 NM or horizontal alert limit (HAL) for mode of flight.
MSL Altitude	GPS/SBAS	Geodetic height converted to MSL with the current EGM database. To be considered valid for use as MSL altitude, the VFOM must be less than or equal to 106 feet.

Table 8-1	Table 8-12: HTAWS Basic Parameters Determination		
Parameter	Source	Notes	
		Secondary source of MSL altitude is barometric altitude from an air data computer. Barometric altitude is determined based upon a barometric setting in the following order of preference:	
		 If either the pilot or co-pilot system is operating in QNH mode, the QNH barometric setting is used (i.e. on-side barometric setting preferred); or 	
		2) If GPS/SBAS geodetic height has been valid within the last 30 minutes, a barometric setting derived from the GPS/SBAS geodetic height is used.	
		If neither of the above conditions is met, MSL altitude is marked as invalid.	
		When a reporting station elevation is determined and outside air temperature is valid, a temperature correction is applied.	
		TAWS uses the lower of the barometric altitude or the temperature-corrected altitude. In the case of QNH-mode barometric setting, reporting station elevation is derived from waypoint or active runway elevations in the active flight plan using the following logic:	

Table 8-12	Table 8-12: HTAWS Basic Parameters Determination		
Parameter	Source	Notes	
		 If the aircraft is in TERMINAL, DEPARTURE, IFR APPROACH, or VFR APPROACH mode and an active runway exists, reporting station elevation is the elevation of the active runway threshold. 	
		2) Otherwise, if the aircraft is in TERMINAL mode, reporting station elevation is the elevation of the airport causing TERMINAL mode.	
		 In ENROUTE mode, no reporting station elevation is determined. 	
		In the case of GPS/SBAS geodetic height-based barometric setting, reporting station elevation is the GPS MSL altitude reported at the time the barometric setting was determined (see Section 3 Display Symbology).	
Terrain Data	Terrain Database	Considered valid for use, when the following conditions apply:	
		 Aircraft position is valid; Aircraft position is within the boundaries of the terrain database; and 	
		 Terrain database is not corrupt as determined by CRC-32 checks at system initialization and during runtime. 	

Table 8-12: HTAWS Basic Parameters Determination		
Parameter	Source	Notes
Obstacle Data	Obstacle Database	Considered valid for use, when the following conditions apply:
		1) Aircraft position is valid;
		 Aircraft position is within the boundaries of the obstacle database; and
		 Obstacle database is not corrupt as determined by CRC-32 checks at system initialization.
AGL Altitude	Radar Altitude	Secondary source for AGL altitude is MSL altitude less terrain altitude.
Vertical Speed Terrain Closure Rate	Instantaneous vertical speed Smoothed first derivative of	IVSI values come from barometric vertical speed from an ADC "quickened" with vertical acceleration from an AHRS. Secondary source for vertical speed is barometric vertical speed from an ADC. Tertiary source for vertical speed is GPS/SBAS vertical speed providing the VFOM is less than or equal to 106 feet. Due to the multiple sources for
	AGL altitude	altitude, there are multiple sources for terrain closure rate.
Runway/Refe rence point	EFIS navigation database	Considered valid for use, when the following conditions apply:
location	ualabase	 Aircraft position is valid;
		 Aircraft position is within boundaries of the navigation database; and
		 Navigation database is not corrupt as determined by a CRC-32 check at system initialization.

8.11. TAWS Automatic Inhibit Functions (Normal Operation)

The following automatic inhibit functions occur during normal TAWS operation to prevent nuisance warnings:

- FLTA function is automatically inhibited when in terminal, departure, IFR approach, or VFR approach modes and within 2 NM and 1900' of the reference point.
- 2) **GPWS Modes 1 through 4** are automatically inhibited when below 50 feet AGL (radar altimeter AGL altitude) or below 100 feet AGL (terrain database AGL altitude).
- 3) GPWS Mode 4 is inhibited while Mode 3 is armed.
- 4) GPWS Mode 5 is inhibited below 200' AGL. This form of automatic inhibit remains active until the aircraft climbs above 1000' AGL and prevents nuisance alarms on missed approach when glideslope receiver detects glideslope sidelobes.
- 5) **FLTA function** is automatically inhibited when indicated airspeed or groundspeed is below the HTAWS FLTA inhibit speed.

8.11.1. TAWS Automatic Inhibit Functions (Abnormal Operation)

The following automatic inhibit functions occur during the specified abnormal operations:

- 1) **Autorotation detection**: When the low torque sensor is active, an Enhanced HTAWS enters autorotation mode. In this mode:
 - a) FLTA is inhibited;
 - b) GPWS Mode 1 is inhibited;
 - c) GPWS Mode 2 is inhibited; and
 - d) GPWS Mode 4 uses a modified envelope (see § 8.7).
- 2) **System Sensor/Database Failures**: See Section 4 Revisionary Modes for system sensor failure results.

Table 8-13: TAWS Automatic Inhibit Functions								
	S	8			GP	WS M	ode	
Sensor	Parameters Lost	Terrain Displaced	FLTA	1	2	3	4	5
GPS/SBAS (H)	AC Position	Inhibit	Inhibit					
TD	Terrain Elev.	Inhibit	Inhibit					
ILS	Glide-slope Dev.							Inhibit
MSL	MSL Altitude	Inhibit	Inhibit					
GPS/SBAS (H) + RADLT	AC Position, AGL Altitude	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit
GPS/SBAS (V) + ADC	MSL Altitude, VSI	Inhibit	Inhibit	Inhibit		Inhibit		
TD + RADLT	Terrain Elev. AGL Altitude	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit

Table 8-13: TAWS Automatic Inhibit Functions								
	Ś				GP	WS M	ode	-
Sensor	Parameters Lost	Terrain Displaced	FLTA	1	2	3	4	5
MSL + RADLT	MSL Altitude, AGL Altitude	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit
GPS/SBAS (V) + ADC + RADLT	MSL Altitude, VSI, AGL ALT	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit	Inhibit

Notes:

- 1) Combinations listed give the minimum combinations with the worst consequences. Many other combinations are possible, but their effects are subsumed within the combinations listed.
- GPS/SBAS (H) = HFOM > max (0.3NM, HAL). Indication is loss of terrain display on PFD and ND.
- 3) GPS/SBAS (V) = VFOM > 106'.
- GPS/SBAS = GPS/SBAS (H) + GPS/SBAS (V). Indication is loss of terrain display on PFD and ND.
- 5) TD = Terrain Data invalid. This would be due to being beyond the database boundaries or database corruption.
- 6) ADC = Air Data Computer. Indication is <u>ADC1 FAIL</u> or <u>ADC2 FAIL</u> flag, or red Xs indicating a single ADC failure.
- RADALT = Radar Altimeter. Indication is lack of radar altimeter source indication on radar altimeter display, <u>RALT FAIL</u>.
- 8) ILS = ILS Glideslope Deviation. Indication is lack of glideslope needles.

or

9) MSL = MSL Altitude Invalid. Indication is PLT1 TAWS CPLT1 TAWS CPLT2 TAWS in the absence of other failures

8.11.2. TAWS Manual Inhibit Functions

The pilot may select the following manual inhibit functions:

1) **Terrain Display** function may be inhibited using an EFIS soft menu declutter control. The TAWS coloring of the Terrain Display function can be inhibited using the menu.

Figure 8-11: Terrain Display Functionality

- 2) All TAWS alerting functions (including popup functionality) are manually inhibited by actuation of the external TAWS inhibit switch. Terrain display functions, including FLTA warning (red) and caution (amber [yellow]) flags on the ND, are not affected by the TAWS inhibit switch.
- Low Altitude Mode Switch may be actuated to inhibit or modify parameters for alerting functions. This switch desensitizes HTAWS when purposefully flying VFR at low altitudes with the following effects:
 - a) GPWS Mode 1 is inhibited.
 - b) GPWS Mode 2 is inhibited.
 - c) GPWS Mode 3 is inhibited.
- GPWS Mode 5 is manually inhibited with the glideslope cancel switch when below 1000' AGL. GPWS Mode 5 manual inhibit automatically resets by ascending above 1000' AGL.

8.12. TAWS Selections on PFD

PFD declutter menu includes three option possibilities for TAWS:

- 1) SVS TAWS
- 2) SVS BASIC
- 3) None

The following figures show all possible scenarios including "None" where the aircraft pierces the TAWS FLTA terrain envelope, and SVS TAWS automatically becomes enabled for the safest possible warning alert condition.

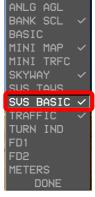


Figure 8-12: PFD SVS BASIC Option

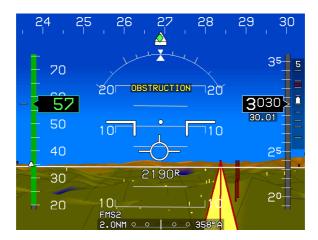


Figure 8-13: PFD SVS TAWS Option

Figure 8-14: PFD SVS TAWS Option and Obstructions

Time-Critical Obstruction within TAWS FLTA caution envelope with aural annunciation "Caution Obstruction, Caution Obstruction". The obstruction symbols flash.

Figure 8-15: PFD Obstruction Caution

Obstruction within TAWS FLTA warning envelope with aural annunciation "Warning Obstruction, Warning Obstruction." The obstruction symbols flash.

Figure 8-16: PFD Obstruction Warning

If SVS TAWS and SVS BASIC are not checked and the aircraft pierces the TAWS FLTA terrain envelope, the EFIS automatically enables SVS TAWS. **TERRAIN** or **TERRAIN** takes precedence over **OBSTRUCTION** or **OBSTRUCTION**.

Figure 8-17: Automatic PFD Terrain Warning

Terrain and obstruction symbology for FLTA alerts meet the following requirements:

- 1) Terrain cells that pierce the FLTA warning volume are colored red.
- 2) Terrain cells that pierce the FLTA caution volume are colored yellow.
- 3) Obstructions whose tops pierce the FLTA warning volume are visually distinct from the non-alerting obstructions and will flash.
- 4) Obstructions whose tops pierce the FLTA caution volume are visually distinct from non-alerting obstructions.

Section 9 Appendix

9.1. Appendix

This section contains a variety of useful information not found elsewhere in the document and includes operating tips, system specifications, and environmental requirements.

9.2. Operating Tips

With the Genesys Aerosystems EFIS installed and certified in all categories of certified aircraft, numerous tips and suggestions are available for obtaining the maximum performance and benefit from this system. Additional operating tips are available with future releases of this publication.

9.3. Domestic or International Flight Planning

Due to the differences in every aircraft avionics suite installation for the pilot to determine what equipment code is applicable for domestic or international flight plans, the aircraft operator must determine which certifications pertain to them. Visit the FAA website, <u>www.faa.gov</u>, for flight plan guidance for both domestic and international filers, as well as, information and documentation regarding FAA, ICAO, and flight services agreements and procedures.

9.4. Descent Planning

Instead of performing conventional time/speed/distance/descentrate calculations, use the waypoint symbol for descent planning. Simply maintain the cruise altitude until the "X" at the bottom of the waypoint symbol is 2-3 degrees below the horizon (as indicated by the pitch scale), and then begin a 2-3 degree descent. Maintain the correct descent angle by keeping the flight path marker positioned on the waypoint "X" symbol. Following the skyway boxes assures the VNAV descent angle is maintained.

9.5. Terrain Clearance

Use the flight path marker to evaluate climb performance for terrain clearance. If climbing at the best climb speed to clear terrain and the flight path marker is overlaying the terrain, which must be cleared, the climb rate is insufficient. Either the course or climb rate must be

altered to adequately clear the terrain. If the flight path marker is well clear of the terrain (overlaying blue sky), the climb is sufficient for the present time, and no further action is necessary until level off.

9.6. Departure Airport Information

On startup, all information for the departure airport is readily available. The altimeter is automatically set to the nearest IFR runway touchdown zone elevation. Press **NRST** to reveal the nearest airports when highlighted where all important data such as frequencies are displayed.

9.7. Unique Names for Flight Plans

Multiple routes between the same airport pairs are numbered automatically (KCEW-KDHN) [0], (KCEW-KDHN) [1], etc.). The work-around is to apply this easily remembered differentiation. If a route is routinely flown from one airport to another but different routing is necessary due to weather, hot MOA areas, etc., up to 10 different flight plans may be created for the same destination.

As an example for departing Sikes on a northern routing (KCEWN) or a southern routing (KCEWS), create two different user waypoints at the departure airport named KCEWN and KCEWS followed by different routing to clear the MOA or whatever creates the necessity for specific routing.

9.8. Altimeter Settings

Use caution when setting the altimeter and inadvertently changing the transition level. If this is reset to a lower than normal altitude, may appear due to the altimeter setting not on 29.92 inHg or 1013 mbar.

9.9. Warnings, Cautions, and Advisories

Review Section 2 System Overview for the conditions precisely defining scenarios for various time-critical warning alerts, warning alerts, master visual and audio alerts, time-critical caution alerts and advisory alerts, as they appear including the conditions and time delay when applicable.

9.10. Magnetic vs. True North Modes of Operation

There are two modes for the ADAHRS:

- Slaved mode (i.e., compass rose stabilized by Earth's magnetic flux horizontal field) is the normal mode. It works well over most of the surface of the earth (i.e., areas with a horizontal field of 5000nT or above, which includes about 2/3^{rds} of Canadian NDA). ADAHRS senses magnetic flux with a 3D magnetometer. Performance in small horizontal fields is installation dependent as variable magnetic disturbances from the aircraft may begin to predominate.
- 2) Free or "DG" mode (i.e., compass rose not stabilized by the Earth's magnetic flux horizontal field and subject to drift) is used in areas of magnetic disturbances (oilrigs, MRI machines, etc.) or in areas where the horizontal field is too weak. In Free/"DG" mode, heading no longer corrects towards Earth's magnetic flux horizontal field, and the pilot may "slew" the heading solution.

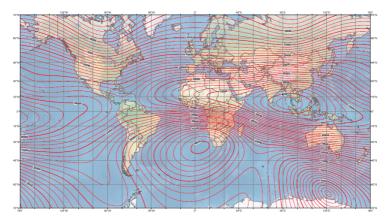


Figure 9-1: US/UK World Magnetic Model

There are two modes for the EFIS:

 Magnetic North mode: Heading from the AHRS (whether slaved or Free/"DG") is used as-is and is expected to reflect magnetic north. GPS track is converted from true north-referenced to magnetic north-referenced using a magnetic variation database. PFD scenes and compass rose symbols are aligned with magnetic north, and wind is displayed referenced to magnetic north.

2) True North mode: GPS Track is used as-is and reflects true north. When AHRS is in slaved mode, heading from the AHRS is converted from magnetic north-referenced to true northreferenced using a magnetic variation database. When AHRS is in Free/"DG" mode, heading from the AHRS is used as-is and is expected to reflect true north. PFD scenes and compass rose symbols are aligned with true north, and wind is displayed referenced to true north.

NOTE:

Designating magnetic north vs. true north mode is critical since it determines how inputs are used – i.e., the relationship between GPS track and ADAHRS heading. Mixing things up in Free/"DG" mode (i.e., slewing the compass rose to match magnetic north when in true north mode and vice-versa) may result in large errors in wind calculations and GPS track/flight path marker displays.

9.11. Altitude Miscompare Threshold

The altitude miscompare threshold is based upon allowable altitude error. There are two components to allowable altitude error, instrument error and installed system error. Allowable instrument error is based upon the values of SAE AS8002A Table 1 as follows.

Table 9-1: Allowable Instrument Error					
Altitude	Allowed Error				
Sea Level	25'				
1,000'	25'				
2,000'	25'				
3,000'	25'				
4,000'	25'				
5,000'	25'				
8,000'	30'				
11,000'	35'				
14,000'	40'				
17,000'	45'				
20,000'	50'				

Allowable installed system error is added on top of instrument error and these values are derived from the regulations as follows.

Table 9-2: Regulatory Reference

Regulation	Allowed Error
14 CFR § 27.1325	At sea level, the greater of 30' or 30% of the calibrated airspeed in knots. This
14 CFR § 29.1325	increases proportionally to SAE AS8002A Table 1 at higher altitudes.

An allowable altitude error is computed for each compared value and added together to create the altitude miscompare threshold. This accommodates for the values deviating in different directions.

Worked example for a calibrated airspeed of 100 knots and comparing a first altitude of 3,490' with a second altitude of 3,510':

- Calculate allowable instrument error based upon altitudes: Allowable Instrument Error #1 = 50' Allowable Instrument Error #2 = 50'
- 2) Calculate allowable installed system error based upon altitudes and calibrated airspeed: Allowable Installed System Error #1 = 30' Allowable Installed System Error #2 = 30'
- Calculate altitude miscompare threshold based upon sum of above allowable errors: Altitude Miscompare Threshold = 160'

9.12. Airspeed Miscompare Threshold

Airspeed miscompare threshold is based upon allowable airspeed error. There are two components to allowable airspeed error, instrument error and installed system error. Allowable instrument error is based upon the values of SAE AS8002A Table 3 as follows.

Table 9-3: Airspeed Error						
Calibrated Airspeed	Allowed Error					
50 knots	5 knots					
80 knots	3 knots					
100 knots	2 knots					
120 knots	2 knots					
150 knots	2 knots					
200 knots	2 knots					

Allowable installed system error is added on top of instrument. Error and these values are derived from the regulations as follows.

Table 9-4: Airspeed Regulatory Reference					
Regulation	Allowed Error				
14 CFR §	Starting from (0.8 x V_{CLIMB}): Greater of 5 knots or 3%.				
27.1323	Do not perform a comparison if either value is below (0.8 x V сымв).				
	For climbing flight (VSI > 250 feet per minute):				
	Starting from (VTos – 10): 10 knots				
	Do not perform a comparison if either value is below ($V_{TOS} - 10$)				
14 CFR §	For other flight regimes:				
29.1323	Starting from (0.8 x V_{TOS}): Greater of 5 knots or 3%.				
	Do not perform a comparison if either value is below (0.8 x V_{TOS}).				
	Note: System uses V_{CLIMB} as a substitute for V_{TOS} .				

An allowable airspeed error is computed for each compared value and added together to create the airspeed miscompare threshold and accommodates for the values deviating in different directions.

9.13. Jeppesen NavData Chart Compatibility

As GPS navigation, flight management systems, computer flight maps, and computer flight planning systems have gained acceptance, avionics companies and software developers have added more features. Even with the many systems available today, paper enroute, departure, arrival, and approach charts are still required and necessary for flight. Avionics systems, flight planning, computer mapping systems, and associated databases *do not* provide all of the navigation information needed to conduct a legal and safe flight. They are not a substitute for current aeronautical charts.

See <u>www.Jeppesen.com</u> for the latest information on coding instrument procedures, naming conventions, altitudes within the database, and aeronautical information compatibility.

9.14. ARINC-424 Path-Terminator Leg Types

For information, definitions, and examples, visit the FAA website, <u>www.faa.gov</u>, to view the Instrument Procedures Handbook (FAA-H-8083-16A).

9.15. Data Logging and Retrieval

The EFIS logs all data associated with a flight, including all flight instrument and navigation data, which may be downloaded for review after flight. Data from the last 5 flights or 20 hours are logged at a one-second interval.

Data logging files contain recordings of flight and engine parameters of up to five hours each from the previous five system operations. During system operation, flight and engine parameters are recorded every one second. Each time the parameters are recorded, a Zulu time stamp followed by three lines of comma delimited ASCII text data are written where the first line contains flight parameters and, the second line contains engine parameters.

With IDU powered off, open USB door, and insert USB flash drive. Power-up and select **Download LOG Files** to create a "\log" directory on the USB flash drive and copy the data logging files into the directory.

CAUTION:

Always install a valid USB flash drive in the IDU prior to activating any GMF to avoid erroneous failure indications or corruption of the IDU.

9.15.1. Delete LOG Files Delete LOG Files

 If there are problems updating a navigation database or application software due to an excessively large log file, select "Delete Log Files" to delete all log files in the log directory.

Files named "LOG00.dat" thru "LOG04.DAT" and "MSGLOG.DAT" are deleted. This does not affect operations of the EFIS, as the EFIS generates new "LOG00.DAT" and "MSGLOG.DAT" files once a flight has started.

2) Press any button on the IDU or push **0** to return to the ground maintenance menu.

9.15.2. Logged Flags and Custom CAS Messages

Flags and custom CAS messages are logged in memory to a file named "caslog00.csv" (*.csv files may be opened in Microsoft Excel or similar spreadsheet software). In addition, data from the previous four flights are saved in files "caslog01.csv" through "caslog04.csv." existina "caslog00.csv" Upon svstem start. the through "caslog03.csv" "caslog01.csv" files renamed through are "caslog04.csv," and "caslog00.csv" is opened for active logging.

The first line of the log files contains column headings related to the flag's text (for standard warning functions) or the "CAS Log File Text" parameter (for custom CAS messages). All standard warning functions are logged. Only custom CAS messages with valid "CAS Log File Text" parameters (i.e., not an empty string) are logged. Within the data fields of the log file, values are written as follows.

Table 9-5: Log File Values					
Category	Value				
NORMAL	0				
ADVISORY	1				
CAUTION	2				
WARNING	3				

9.16. Routes and Waypoints

9.16.1. VFR Flight Planning

Figure 9-2: VFR Waypoint

The navigation database includes VFR waypoints, which consist of five digits beginning with "VP." These may be found on VFR charts and should be loaded in the FMS prior to flight to ensure they are available in the database, and the INFO checked for proper location.

9.16.2. Download Routes and User Waypoints

- Select Download Routes and User Waypoints from the GMF to download all routes and user waypoints stored in the IDU to the USB flash drive. This option is useful for fleet operations where multiple aircraft fly the same routes.
- 2) Routes are stored on USB flash drive as NAME1-NAME2.RTE where NAME1 is the 1 to 5-character designation of the origin waypoint and NAME2 is the 1 to 5 character designation of the destination waypoint. User waypoints are stored on the USB flash drive as "USER.DAT."

9.16.3. Upload Routes and User Waypoints

To copy all routes and user waypoints from a USB flash drive to the IDU, select **Upload Routes and User Waypoints** from GMF. Use this option in conjunction with the "Download Routes and User Waypoints" option to upload the same routes and user waypoints in multiple aircraft.

9.16.4. Delete Routes/User Waypoints

When corrupted routes cause the IDU to continually reboot, select "Delete Routes" on the Ground Maintenance page to remove all routes and the user waypoint file (USER.DAT) from the IDU.

9.17. EFIS Training Tool (ETT)

See the Installation and User Guide distributed with the ETT install files for directions to install and use the EFIS Training Tool.

Use the ETT to create routes and user waypoints to save and upload into the aircraft mounted IDUs. When uploading a saved flight plan (route) into an aircraft mounted IDU, the following rules apply:

- Either upload flight plan (route) into each IDU to ensure flight plan (route) is saved in the route directory (all other displays); Or
- 2) Upload flight plan (route) into one display while in the ground mode. When in flight mode, activate that flight plan and on any other display, view active flight plan and press SAVE (L1) to save flight plan in the route directory. This action will save the new uploaded flight plan (route) in all other displays.

NOTE:

In a two-sided system, crossfill must be enabled to save flight plan to all other displays on each side of the system.

The ETT has a bezel with simulated buttons and encoders responsive to mouse and keyboard messages. Bezel graphics are derived from actual bezel design data, and the ETT presents an active display with 1:1 pixel correspondence to an actual IDU display. The audio output capability for the ETT matches the audio functionality in the actual IDU. This training tool simulates the functionalities of the IDU, which begins flight in Reno, Nevada at approximately 8000' MSL. If different ETT startup conditions are required, they may be edited.

Flight plans may be created (on the PFD or MFD), stored, and activated in the same manner as on the EFIS displays installed in the aircraft. This allows for moving the start point to anywhere in the world where loaded NavData is present for practicing published procedures. As with the demonstrator program, the aircraft begins flying at approximately 8000' MSL (unless the simulate.ini program is loaded) intercepting the first leg at a 45° angle.

9.18. USB Flash Drive Limitations

When powering up the IDU with a USB flash drive inserted and "Error: No updater files found on USB drive" displays, the USB is likely not acceptable for loading or transferring data.

- 1) Ensure the USB flash drive with required files is properly connected.
- 2) Try again after reboot.
- 3) Press any button to continue.
- 4) Try a different USB flash drive.

NOTE:

Maximum USB memory is not a factor, but the following should be considered:

USB must be formatted as FAT.

FAT-16 for USB Drives 2 GB or smaller

FAT-32 for any larger sized drive.

If the drive is not recognized, try another source.

9.19. Certification Basis

The following TSOs are considered applicable to the IDU-450 (depending upon the features of the installed software).

Document Number	Document Title
ARINC 429-16	Mark 33 Digital Information Transfer System (DITS)
ARINC 735A-1	Traffic Alert and Collision Avoidance System
EIA-232D	Interface between Data Terminal Equipment and Data
EIA-422A	Electrical Characteristics of Balanced Voltage Digital Interface Circuits
FAA AC 23.1311-1B	Installation of Electronic Display in Part 23 Airplanes
RTCA/DO-155	Minimum Performance Standards - Airborne Low-Range Radio Altimeters
RTCA/DO-229D	Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment
RTCA/DO-283A	Minimum Operational Performance Standards for Required Navigation Performance for Area Navigation
SAE AS396B	Bank and Pitch Instruments (Indicating Stabilized Type)
SAE AS8002A	Air Data Computer - Minimum Performance Standard
TSO-C4c	Bank and Pitch Instruments
TSO-C87	Airborne Low-Range Radio Altimeter
TSO-C106	Air Data Computer

Document Number	Document Title		
TSO-C194	Terrain Awareness and V	Varning System	
TSO-C113	Airborne Multipurpose Electronic Displays	SAE AS8034	
TSO-C52b	Flight Director Equipment	SAE AS8008	
TSO-C146a	Stand-Alone airborne navigation equipment using the Global Positioning System (GPS) Augmented by the Wide Area Augmentation System (WAAS)		
N/A	Airplane Aerodynamics and Performance, Lan and Roskam, 1981.		

9.20. Environmental Requirements

The IDU-450 meets the requirements of RTCA/DO-160F requirements, Genesys Aerosystems claims the following:

- 1) The coldest storage temperature is -55°C.
- Coldest condition in which the units can be powered up is -40°C and will take at least 4 minutes to warm up with the internal heater circuit operating.

Sec.	Condition	Cat.	Test Category Description	Notes
4.0	Temperature and Altitude	F2	Equipment intended for installation in non- pressurized and non- controlled temperature location in an aircraft that is operated at altitudes up to 55,000 ft. (16,800 m) MSL. Operating Low Temp: -55 deg C Operating High temp: +70 deg C Ground Survival Low Temp: -55 deg C Ground Survival High Temp: +85 deg C Altitude: +55,000 feet	+75°C for Short-Time Operating High Temp. Cat. V (30 minutes) for loss of cooling.

9-12

Sec.	Condition	Cat.	Test Category Description	Notes
5.0	Temperature Variation	В	Equipment in a non- temperature-controlled or partially temperature controlled internal section of the aircraft.	
6.0	Humidity	В	Equipment intended for installation in civil aircraft, non-civil transport aircraft and other classes, installed under conditions in which a more severe humidity environment than standard conditions may be encountered.	
7.0	Operational Shocks & Crash Safety	В	Equipment generally installed in fixed-wing aircraft or helicopters and tested for standard operational shock and crash safety.	Aircraft Type 5, Test Type R for Crash Safety Sustained Test
8.0	Vibration	H + R + U	H – Demonstrates performance at high-level, short duration transient vibration levels	Cat. H, curve R
			R - (Fixed-Wing) Demonstrates performance at higher, robust vibration levels and after long term vibration exposure.	Cat. R, curves B, B1 Cat. U,
			U - (Helicopter w/Unknown Frequencies) Demonstrates performance at higher vibration levels and after long term vibration exposure for fuselage and instrument panel equipment when the	curve G

Sec.	Condition	Cat.	Test Category Description	Notes
			specific rotor frequencies	
			are unknown.	
9.0	Explosive Atmosphere	Х	Not Applicable	
10.0	Waterproofness	W	Equipment is installed in locations where it may be subjected to falling water, such as condensation.	Drip proof test
11.0	Fluids Susceptibility	Х	Not Applicable	
12.0	Sand and Dust	S	Equipment is installed in locations subject to blowing sand and dust.	
13.0	Fungus Resistance	F	Demonstrate whether equipment material is adversely affected by fungi growth.	By Analysis
14.0	Salt Fog	S	Equipment is subjected to a corrosive atmosphere	
15.0	Magnetic Effect	Z	Magnetic deflection distance less than 0.3m.	
16.0	Power Input	Z	Equipment intended for use on aircraft DC electrical systems where the DC supply has a battery whose capacity is small compared with the capacity of the DC generators.	200 ms power interruption capacity
17.0	Voltage Spike	A	Equipment intended primarily for installation where a high degree of protection against damage by voltage spikes is required.	

Sec.	Condition	Cat.	Test Category Description	Notes
18.0	Audio Frequency Conducted Susceptibility- Power Inputs	Z	Equipment intended for use on aircraft DC electrical systems where the DC supply may not have a battery of significant capacity floating on the dc bus at all times.	
19.0	Induced Signal Susceptibility	ZC	Equipment intended primarily for operation in systems where interference-free operation is required on aircraft whose primary power is constant frequency or DC.	
20.0	Radio Frequency Susceptibility (Radiated and Conducted)	Y	Equipment and interconnecting wiring installed in severe electromagnetic environments and to show compliance with the interim HIRF rules.	Radiated: K Minimum level at all frequencies to be 100V/m
21.0	Emission of Radio Frequency Energy	М	Equipment in areas where apertures are EM significant but not in direct view of aircraft antennas, such as passenger cabin or cockpit.	

Sec.	Condition	Cat.	Test Category Description	Notes
22.0	Lightning Induced Transient Susceptibility	A3J 33	Equipment interconnected with wiring installed within any airframe or airframe section when structural resistance is also a significant source of induced transients, (i.e., carbon fiber composite structures). Level 3 designates equipment and interconnecting wiring installed in a moderately exposed environment.	Level 4 for MSU and OAT Probe pins.
23.0	Lightning Direct Effects	Х	Not Applicable	
24.0	Icing	Х	Not Applicable	
	Electrostatic Discharge (ESD)	A	Electronic equipment that is installed, repaired, or operated in an aerospace environment.	
26.0	Fire, Flammability	C	Non-metallic equipment, component parts, sub- assemblies installed in pressurized or non- pressurized zones and non-fire zones with largest dimension greater than 50 mm.	By Analysis

Traffic

T 1. Traffic Symbology

Figure T-1: Traffic Symbology

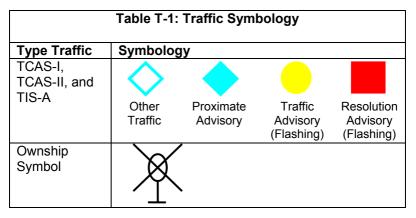
T 2. Traffic Thumbnail

When selected from declutter options, the traffic thumbnail is displayed in the lower right corner of the PFD above the active waypoint identifier and has clock face markings fixed at the 6 NM scale.

Figure T-2: Traffic Thumbnail

The traffic thumbnail is automatically enabled while there is an active traffic warning (TA or RA) and the aircraft is above 500' AGL. During a traffic warning, the traffic thumbnail scale automatically adjusts in multiple multiples of 2 NM (2 NM, 4NM, or 6NM), to optimally display the traffic. While the traffic thumbnail is mutually exclusive with the mini-map, so it too disappears in unusual attitude mode.

T 3. Traffic Display Definitions


1) Resolution Advisory (**RA**): Traffic with a dangerous closest point of approach and generates climb or descent commands as defined by internal TCAS-II sensor logic.

- 2) Traffic Advisory (**TA**): Traffic with a dangerous closest point of approach as defined by internal traffic sensor logic.
- 3) Proximate Advisory (**PA**): Traffic within 6 NM and ±1200 feet from ownship that is not a RA or TA.
- 4) Other Traffic (**OT**): Traffic beyond 6 NM or ±1200 feet from ownship that is not a RA or TA.

T 3.1. Traffic Rendering Rules

Traffic thumbnail and PFD traffic are rendered as follows.

Table T-2: Traffic Rendering Rules				
Type Traffic	Distance	Results		
OT and PA Traffic	Beyond 6 NM	Not displayed		
TAS	Within 200' of ground	Not displayed		
OT and PA Traffic with no bearing	Not displayed			

Table T-3: Pilot Selected OT and PA Traffic Altitude-Filter				
Mode	Parameter			
	If aircraft VSI is less than -500FPM, traffic within +2,700 and -9,900 feet of aircraft altitude displayed.			
AUTO	If aircraft VSI is more than +500FPM, traffic within - 2,700 and +9,900 feet of aircraft altitude displayed.			

Table T-3: Pilot Selected OT and PA Traffic Altitude-Filter		
Mode	Parameter	
	Otherwise, traffic within -2,700 and +2,700 feet of aircraft altitude displayed.	
ABOVE	Traffic within -2,700 and +9,900 feet of aircraft altitude displayed.	
BELOW	Traffic within +2,700 and -9,900 feet of aircraft altitude displayed.	
NORMAL	Traffic within -2,700 and +2,700 feet of aircraft altitude displayed.	
ALL	All received traffic displayed, no altitude filtering.	

T 4. Dedicated Traffic Page

When selected, a traffic page is available based roughly on the appearance of a TCAS display and has the following elements.

T 4.1. Traffic Display Format

The traffic page is a centered display format with the ownship symbol centered in the traffic page with data displayed out to an equal distance in all directions. When the AHRS is in DG Mode, "DG" appears to the right of the ownship symbol.

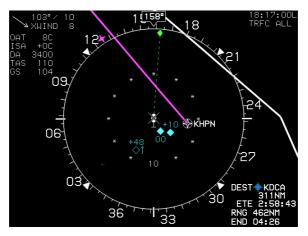


Figure T-3: Traffic Display Format

T 4.2. Traffic Page Screen Range

The following traffic screen selected ranges are available (all distances represent the distance from the ownship symbol to the compass rose): 5NM, 10NM, and 20NM.

A TCAS range ring is centered upon the ownship symbol to help the pilot judge range to displayed symbols with a 3NM radius in 5NM and 10NM ranges, has a radius of half the range in 20NM, 50NM, and 100NM ranges, and is presented on the TCAS range ring (e.g., 3NM, 10NM, 25NM, or 50NM).

T 4.3. Compass Rose Symbols

Normal Mode

The compass rose is aligned with either magnetic north or true north depending upon the status of the true north discrete input. A digital heading readout and pointer aligned with the longitudinal axis of the ownship symbol appears on the compass rose boundary circle. Compass rose symbols are as specified in Section 3 Display Symbology. A green dashed lubber line connects the center of the aircraft symbol and the track pointer.

If a target altitude is set and not captured, an altitude capture predictor arc is displayed on the lubber line at a point corresponding with predicted climb or descent distance (based upon current VSI). A top of descent symbol is shown at the point where a VNAV descent is predicted to commence. The track pointer, lubber line, altitude capture predictor arc, and top of descent symbol are not displayed when groundspeed is less than 30 knots. A pilot-settable heading bug geometrically interacting with the heading pointer appears on the compass rose. A magenta, star-shaped waypoint pointer is displayed on the heading scale at a point corresponding with the active waypoint and turns amber (yellow) in the event of GPS LON caution.

True North Mode

Figure T-4: Traffic Screen Range Compass Rose Symbols

T 4.4. Active Flight Plan Path/Manual Course/Runways

When there is an active flight plan and the GPS/SBAS OBS setting is automatic, the flight plan path, when selected, is shown on the traffic page in correct relationship to the ownship symbol. The active flight plan path depiction meets all the requirements of GPS/SBAS path definition and matches the lateral navigation guidance given on the PFD (GPS/SBAS CDI in automatic OBS mode, skyway boxes, and mini-map). Active flight plan path waypoint symbols for fly-over waypoints are distinct from fly-by waypoints and consist of the waypoint symbol within a circle. When there is a parallel offset, the active flight plan path depicts the parallel offset path, and the original flight plan path is shown with haloed gray dashed lines.

When there is an active waypoint and the GPS/SBAS OBS setting is manual, the manual course through the waypoint is shown as a pointer centered on the waypoint and matches the lateral navigation guidance given on the PFD (GPS/SBAS CDI in manual OBS mode, skyway boxes, and mini-map).

The active flight plan path's active leg/manual course and active waypoint are magenta and turn amber (yellow) in the event of a GPS LON caution. The traffic page displays airport runways in correct relationship and scale to the ownship symbol.

When traffic source is ADS-B, traffic vectors and aircraft identification data are shown. The traffic vector is a line connecting the traffic's current position with the traffic's predicted position based on its current track and groundspeed. The prediction time, in minutes, is pilot-selectable. Aircraft identification (e.g. aircraft registration number or scheduled airline flight number) is text located near the traffic symbol in the same color as the traffic symbol.

Table T-4: ADS-B and TIS-B Traffic Symbols				
Other Proximate Traffic Advisory Traffic Advisory (Flashing)				
High-Integrity Traffic with Track Information	\square		Á	
High-Integrity Traffic without Track Information	\Diamond	\blacklozenge	\diamond	

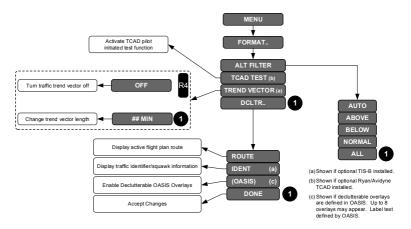
Table T-4: ADS-B and TIS-B Traffic Symbols				
Other Proximate Traffic Advisory Traffic Advisory (Flashing)				
Degraded Position Traffic with Track Information				
Degraded Position Traffic without Track Information	0			

T 4.5. Clock and Options

The following are displayed in the upper right corner of traffic page.

Figure T-5: Clock and Options

Table T-5: Clock and Options			
Feature	Options	Notes	
Zulu Time or Local Offset	hh:mm:ssZ hh:mm:ssL	Synchronized with the GPS/SBAS constellation.	
Traffic Status	Enabled or Disabled	If traffic is disabled, overlying red "X". When enabled, traffic altitude filtering is as follows (see Table T-3). AUTO = TRFC AUTO ABOVE = TRFC ABV BELOW = TRFC BLW NORMAL = TRFC NORM ALL = TRFC ALL	
ADS-B Traffic Vector Length		Length of traffic vector annunciated as VECT## (traffic vector length in minutes)	



T 4.6. Fuel Totalizer/Waypoint Bearing and Distance Functions

Figure T-6: Fuel Totalizer/Waypoint Bearing and Distance Functions

T 5. MFD Traffic Format (FORMAT) Menu

Figure T-7: MFD Traffic Format (FORMAT) Menu

Upon selecting the MFD format menu, a list appears with the following options:

- 1) ROUTE ON/ROUTE OFF: Toggles active flight plan route.
- 2) **IDENT OFF/IDENT ON**: When TCAS flag is TIS-B, toggles traffic identifier/squawk information.
- 3) **ALT FILTER**: Sets traffic altitude filter to AUTO, ABOVE, BELOW, NORMAL, or ALL.
- 4) **TCAD TEST**: Activates test function when Ryan/Avidyne TCAD.
- 5) **TREND VECTOR**: When TCAS flag is TIS-B, sets traffic trend vector length in minutes. **OFF (R4)** turns off traffic trend vector.

T 6. MFD Fault Display (FAULTS) Menu

If traffic enabled, loss of communications with traffic sensor (TRFC).

T 7. Menu Synchronization

Table T-6: Menu Synchronization			
Menu Parameter	Notes		
The following menu paramete	ers are synchronized across all		
	re bugs and fundamental aircraft		
values that should never have i	ndependence.		
Traffic Filter Setting			
The following menu parameters are only synchronized onside. These parameters are usually sensor selections or PFD options used to keep the appearance of any pilot's PFD consistent in the case of PFD reversion. The onside characteristic means that individual pilots can still adjust their PFD settings to their preference.			
PFD Traffic Thumbnail Show Flag			
The following menu parameters are independent between displays. These are used to support non-PFD display options to give the pilot maximum MFD operating flexibility.			
MFD Traffic Page Settings			

Remote Bugs Panel (RBP)

RBP 1. Remote BUGs Panel

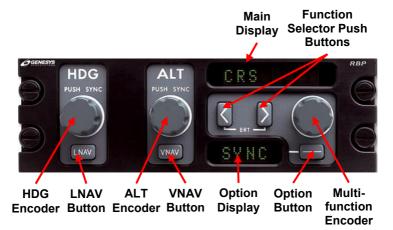


Figure RBP-1: Remote Bugs Panel

The Remote Bugs Panel (RBP) provides dedicated controls for frequently needed bugs and additional controls for setting IDU parameters such as defined in Table RBP-1.

During initialization, the RBP begins with "GENESYS RBP" on the main and option display screens. To access the internal light sensor control for brightness, press the two arrow buttons simultaneously and rotate the multifunction encoder to make adjustments. Press the Option button to exit the brightness control program and return the RBP to normal operation.

The heading (HDG) and altitude (ALT) encoders behave similarly as the encoders on the IDU-450. (See Section 5 Menu Functions and Step-By-Step Procedures for HDG and ALT encoder description).

Table RBP-1: Remote Bugs Panel (RBP)			
Button/Encoder Function Scroll Push			
HDG Encoder	Heading	Increment or	Synchronize to
TIDG Encodel	Bug	decrement	current heading

Table RBP-1: Remote Bugs Panel (RBP)			
Button/Encoder	Function	Scroll	Push
ALT Encoder	Altitude Bug	Increment or decrement target altitude	Synchronize to current altitude
Multifunction Encoder	GPS Course	Increment or decrement	Synchronize to current bearing to active waypoint
Multifunction Encoder Multifunction Encoder	VOR 1 Course VOR 2 Course	Increment or decrement	Synchronize to current bearing to the station
Multifunction Encoder	Airspeed Bug	Increment or decrement	Synchronize to current airspeed
Multifunction Encoder	Vertical Speed Bug	Increment or decrement	Synchronize to current VSI
Multifunction Encoder Multifunction Encoder	Climb Angle Set Descent Angle Set	Increment or decrement	Set to 3°
Multifunction Encoder	Decision Height Bug	Increment or decrement	Set to 200' AGL
Multifunction Encoder	Minimum Altitude Bug	Increment or decrement	Synchronize to current altitude
Option "" Button	GPS Course	N/A	Change OBS mode (manual or automatic)
Option "" Button Option "" Button	VOR 1 Course VOR 2 Course	N/A	No function
Option "" Button	Airspeed Bug	N/A	Toggle on or off
Option "" Button	Vertical Speed Bug	N/A	Toggle on or off

Table RBP-1: Remote Bugs Panel (RBP)			
Button/Encoder	Function	Scroll	Push
Option "" Button	Climb Angle Setting	N/A	No function
Option "" Button	Descent Angle Setting	N/A	No function
Option "" Button	Decision Height Bug	N/A	Toggle on or off
Option "" Button	Minimum Altitude Bug	N/A	Toggle on or off
Arrow Buttons	Function Scroll	N/A	Move through "Set" options. Press both arrow buttons simultaneously to place into dimming mode.
VNAV Button (With autopilot enabled)	VNAV	N/A	Switch autopilot pitch steering and commanded VSI between VNAV sub-mode and target altitude sub- mode
LNAV Button (With autopilot enabled)	LNAV	N/A	Switch autopilot roll steering between LNAV sub-mode and heading sub- mode

RBP 1.1. Multifunction Encoder

FMS OBS function is available:

1) On the Side in Command; OR

- 2) When side in command cannot be determined; OR
- 3) If not cross-linked; OR
- 4) When side in command is not using FMS as its NAV source.
- VOR1 OBS function is available:
- 1) On the side in command; OR
- 2) When side in command cannot be determined; OR
- 3) When side in command is not using VOR1 as its NAV source.

VOR2 OBS function is available:

- 1) On the side in command; OR
- 2) When side in command cannot be determined; OR
- 3) When side in command is not using VOR2 as its NAV source.

SPD bug function is disabled (it is driven by a control on the AFCS panel).

VSI bug function is available when the AFCS is in VNAV mode with a VSI climb or VSI descent as the current vertical control law and:

- 1) On the side in command; OR
- 2) When side in command cannot be determined.

Climb angle function is available:

- 1) On the side in command; OR
- 2) When side in command cannot be determined.

Descent angle function is available:

- 3) On the side in command; OR
- 4) When side in command cannot be determined.

Otherwise, there are no changes to the multifunction encoder functions.

RBP 2. Menu Synchronization

Table RBP-2: Menu Synchronization			
Menu Parameter	Notes		
The following menu parameters			
displays at all times. These are l			
values that should never have inde	ependence.		
AHRS 1 and 2 mode and			
slewing values			
VNAV Climb Angle			
VNAV Descent Angle			
Decision Height Setting	Used when "Dual Decision Height Flag" is false.		
Heading Bug			
Minimum Altitude Bug Value			
VLOC OBS Settings			
Airspeed Bug Setting			
Target Altitude Bug Setting			
Settable V-Speeds			
VSI Bug Setting			
Crosslink Synchronization Status			
For menue synchronization. The f			
synchronized across all displays			
Otherwise, they are only synchroni			
are FMS parameters and allow the			
operated independently when cros	slink is inhibited.		
Active Flight Plan Parameters			
The following menu parameters a			
These parameters are usually ser			
used to keep the appearance of a			
case of PFD reversion. The ons			
individual pilots can still adjust	their PFD settings to their		
preference.			
Sensor Selections			
Transition Altitude			
Barometric Setting Units			
Barometric Setting Value			
Barometric Setting Mode			
Decision Height Setting	Used when "Dual Decision Height Flag" is true.		
Navigation Source			

Table RBP-2: Menu Synchronization			
Menu Parameter	Notes		
PFD Analog AGL			
PFD Altitude (meters) Show Flag			
The following menu parameter	s are independent between		
displays. These are used to suppo	ort non-PFD display options to		
give the pilot maximum MFD opera	ating flexibility.		
MFD Selected Page	This parameter is transmitted to all other IDUs to support weather radar vertical profile mode selection.		
MFD Map Page Settings	Map scale is transmitted onside to support weather radar range selection.		
MFD Map and HSI Page Pointer Settings			
MFD Map Function Declutter Settings			
MFD Show ETA Flag			
MFD Map NavData Symbol Declutter Settings			

WX-500 Lightning Strikes

S 1. WX-500 Data

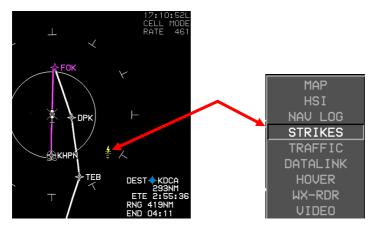


Figure S-1: Strikes Page

When selected, the ND displays cell mode or strike mode lightning strikes in correct relationship to the ownship symbol with the following limits.

Table S-1: Lightning Strikes		
Time or Distance Limit	View	
Display scale less than 25 NM	Strikes not shown	
More than 3 minutes old	Strikes not snown	
Strikes less than 20 seconds old	Lightning symbol	
Strikes between 20 seconds and 2 minutes old	Large cross symbol	
Strikes between 2 and 3 minutes old	Small cross symbol	

The pilot may select either an arced or centered display format.

Arced: Ownship displaced toward the bottom of the screen. Strike data are displayed in a larger scale while displaying all data within range ahead of the aircraft.

Centered: Ownship symbol is in the center of the ND with navigation data is displayed out to an equal distance in all directions.

The strikes page has Strikefinder markings aligned with either magnetic north or true north depending upon the status of the true north discrete input. When the AHRS is in DG mode, "DG" appears to the right of the ownship symbol.

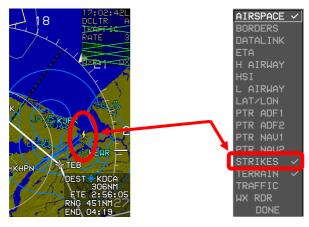


Figure S-2: Lightning Symbols

S 2. Strikes Page Screen Range

The following screen ranges may be selected with all distances representing the distance from the ownship symbol to the "Strikefinder" markings: 12.5 NM, 25 NM, 50 NM, 100 NM, and 200 NM. The range ring is centered upon the ownship symbol to help judge range to displayed symbols. The range ring has half the radius of the "Strikefinder" markings displayed indicating the range corresponding to the radius of the range ring such as (1.5 NM, 25 NM, 50 NM, 30 NM, and 10 NM.) The range ring is completely visible in arced display format for the pilot to ascertain the current strikes page setting.

S 3. Air Data and Groundspeed

\backslash	358°⁄	1
7	XWIND	0
OAT	-2C	
ISA	+0C	
DÂ	8440	
	238	
GS	237	

Figure S-3: Air Data and Groundspeed in Upper Left Corner

S 4. Clock and Options

Clock with Local Offset Time

Clock with Zulu Time

Figure S-4: Clock and Options

The following are displayed in the upper right corner of traffic screen:

- 1) **Zulu Time or LCL Time**: As specified in Section 3 Display Symbology.
- WX-500 Status: When selected, displays cell mode lightning strikes in correct relationship to the ownship symbol with the limits found in Table S-2.

Table S-2: WX-500 Status		
Condition	Annunciation	
System Normal, Strikes	RATE ### depicts current strike	
Selected	rate. Strike symbols shown	
System Normal, Strikes De- selected "Show Full Sensor Status Flag" in EFIS Limits.	STRIKES overlaid with green "X" Strike symbols removed	
System Normal, Strikes De- selected "Show Full Sensor Status Flag" in EFIS Limits.	STRIKES overlaid with red "X" Strike symbols removed	
System Failed, "Show Full Sensor Status Flag" in EFIS Limits.	STRK TST shown Strike symbols removed	

A new strike rate value is calculated every five seconds during normal operation, based upon strikes within the selected display range. The number of fresh strikes (less than 20 seconds old) is used to generate a strike rate representing strikes per minute. Strike rate increases are displayed immediately upon calculation, while decreases in strike rate are damped. Activating the strike clear function resets the strike rate to zero.

S 5. Active Flight Plan Path/Manual Course/Runways

When there is an active flight plan and the GPS/SBAS OBS setting is automatic, the flight plan path is shown on the strikes page in correct relationship to the ownship symbol.

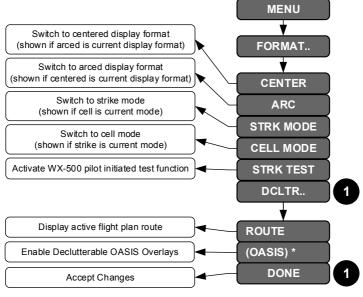
When there is an active waypoint and the GPS/SBAS OBS setting is manual, the course through the waypoint is shown as a pointer centered on the waypoint. The pointer matches the lateral navigation guidance on the PFD (GPS/SBAS CDI in manual OBS mode, skyway boxes, and mini-map).



Figure S-5: Active Flight Plan Path/Manual Course/Runways

The active flight plan path's active leg/manual course and active waypoint are magenta but turn amber (yellow) in the event of a GPS LON caution. The strikes page displays airport runways in correct relationship and scale to the ownship symbol.

S 6. Fuel Totalizer/Waypoint Bearing and Distance Functions


Active Waypoint

Active Waypoint as Destination

Figure S-6: Fuel Totalizer/Waypoint Bearing and Distance Functions

S 7. MFD Strikes Format (FORMAT) Menu

*Shown if declutterable overlays are defined in OASIS. Up to 8 overlays may appear. Label text defined by OASIS

Figure S-7: MFD Strikes Format (FORMAT) Menu

Upon selecting the MFD format menu when in the Strikes page, the following option list appears:

- 1) **CENTER/ARC**: Toggles centered and arced display format.
- 2) **ROUTE ON/ROUTE OFF**: Toggles the active flight plan route.
- 3) **STRK MODE/CELL MODE**: Toggles strike and cell mode strikes.
- 4) **STRK TEST:** Activates the WX-500 test function.

S 8. MFD Page First-Level Option Descriptions

CLR STRKS (L2) or WX LGND (L2): On ND or Strikes page with WX-500 enabled, CLR STRKS activates the strike clear option.

S 9. MFD Page (PAGE) Menu

PAGE menu allows the pilot to select which MFD page to display:

STRIKES: Shows the Strikes page.

S 10. MFD Fault Display (FAULTS) Menu

If the WX-500 option is enabled, loss of communications with the WX-500.

S 11. Menu Synchronization

Table S-3: Menu Synchronization		
Menu Parameter	Notes	
The following menu parameter displays. These are used to suppo give the pilot maximum MFD opera	ort non-PFD display options to	
MFD Selected Page	Parameter is transmitted to all other IDUs to support weather radar vertical profile mode selection.	
MFD Map Page Settings	Map scale is transmitted onside to support weather radar range selection.	
MFD Strike (WX-500) Page Settings		

Datalink

D 1. Datalink Symbology

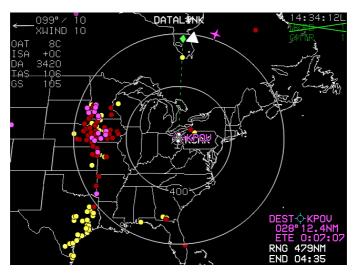


Figure D-1: Datalink Symbology with G METAR On

Figure D-2: Datalink Symbology with NEXRAD On

Table D-1: ADS-B Data

NEXRAD Data	Available if included in user subscription.
Graphical METAR Data	Available if textual METAR data is included in user subscription. Derived from textual METAR data using EFIS algorithm.

NEXRAD data is displayed on the ND in correct relationship as colored regions of precipitation using the convention.

Table D-2: Datalink NEXRAD Data		
Color	Meaning	
Gray Shading	Areas beyond the limits of radar coverage or areas with missing data	
Magenta	Rain >= 50dBZ	
Red	Rain >= 45dBZ and < 50dBZ	
Light Red	Rain >= 40dBZ and < 45dBZ	
Amber (Yellow)	Rain >= 30dBZ and < 40dBZ	
Green	Rain >= 20dBZ and < 30dBZ	
Cyan	Snow >= 20dBZ	
Light Cyan	Snow >= 5dBZ and < 20dBZ	
Magenta	Mixed Precipitation >= 20dBZ (Area is distinguishable from rain >= 50dBZ by graphical context)	
Light Magenta	Mixed Precipitation >= 5dBZ and < 20dBZ	

Graphical METARs are displayed in correct relationship to the ownship symbol as a large color-filled circle as follows.

Table D-3: Graphical METARS (GMETARS) Screen Range		
Screen Range	Display	
50 NM	All GMETARS with Airport Symbol and ID	
100 NM	All GMETARS with Airport Symbol only	
200 NM	All GMETARS	
400 NM	VFR GMETARS are decluttered	
800NM and 1,600 NM	VFR and MVFR GMETARS are decluttered	

Graphical METARs are also displayed in the menu system "nearest airport," "nearest weather," and "info" functions.

	L-CUD.	And in	30	3 3.713.	Sec. 1	
/ 03 /	🔶 5AZ3	043"	8NM	5000'	122.90	
INACKINA	🔶 КСНD	326"	9NM	4800 '	126.10	
36	🔶 KIWA	012"	11NM	10400'	120.60	
315" 21. 2NM	🔶 KCGZ	177°	11NM	5200 '	122.70	
	🔶 A39	216"	12NM	4700 '	122.90	

Figure D-3: NRST Airport INFO

If the airport has an available datalinked METAR, the circular part of the airport symbol is colored-fill with the following convention.

Table D-4: Graphical METAR Symbols		
Color	Meaning	
Sky Blue -	Visual Flight Rules (VFR)	
Green -	Marginal Visual Flight Rules (MVFR)	
Amber (Yellow)	Instrument Flight Rules (IFR)	
Red -	Low Instrument Flight Rules (LIFR)	
Magenta	Less than Category 1 Approach Minimums	
Black -	No Data	

Graphical weather conditions data are displayed in the menu system "info" function as large colored squares per the following convention.

Table D-5: Datalink Graphical METAR Precipitation		
Color	Meaning	
Sky blue	No significant precipitation	
Green	Rain	
White	Snow	
Red	Hazardous weather	
Right half gray	Obscuration to visibility	
Small black square centered in large square	High wind	
Black	No data	

Textual METAR and TAF data are displayed when appropriate in the menu system "info" function. Time of observation and forecast are contained within the text.

Figure D-4: METAR and TAF Report for KPHX

D 1.1. Ownship Symbol

D-4

When not panning with AHRS in the DG mode, "DG" appears to the right of the ownship symbol. The datalink page is always displayed in north-up orientation with a boundary circle in place of the compass rose. If not in pan mode, the ownship symbol is aligned with the aircraft heading.

Figure D-5: Datalink Symbology Rotorcraft Ownship Symbol

D 1.2. Datalink Page Legend

G METAR	NEXRAD
OVFR	NO COVERAGE
OMUFR	ABOVE 50DB
−IFR	45-50DB
OLIFR	40-45DB
⊖BLW CATI	30-40DB
●NO DATA	20-30DB

When selected, the datalink page legend depicts symbology used for graphical METARs and NEXRAD with winter colors.

Figure D-6: ADS-B Datalink Page Legend

D 1.3. Air Data and Groundspeed

Air data and groundspeed are displayed in the upper left corner of the datalink page as specified in Section 3 Display Symbology.

D 1.4. Clock/Options

Figure D-7: Clock/Options

The following are displayed in the upper right corner of the ND:

- 1) **Zulu Time or LCL Time:** As in Section 3 Display Symbology.
- 2) **Datalink Weather Status**: When status of NEXRAD, graphical METARs are displayed as follows.

Table D-6: Datalink NEXRAD Status			
Condition	tion Status Annunciation		
	*NEXRAD	Graphical METAR	
Never completely downlinked	No Annunciation		
Downlinked within last 5 minutes and selected for display*.	"NXRD ##" in green. ## is age in minutes.	"GMTR ##" in green. ## is age in minutes.	
"Show Full Sensor Status Flag" enabled.	NEXRAD shown.	GMETARS shown.	
Downlinked within last 5 minutes and deselected from	"NXRD ##" in green. ## is age in minutes.	"GMTR ##" in green. ## is age in minutes.	
display*. "Show Full Sensor Status Flag" enabled.	"NXRD ##" overlaid with green "X"	"GMTR ##" overlaid with green "X"	
	NEXRAD not shown.	GMETARS not shown.	

Table D-6: Datalink NEXRAD Status			
Condition Status Annunciation			
	*NEXRAD	Graphical METAR	
Not downlinked within last 5 minutes but downlinked within last 10 minutes and selected for display*. "Show Full Sensor Status Flag" enabled.	"NXRD ##" in amber (yellow). ## is age in minutes. NEXRAD shown.	"GMTR ##" in amber (yellow). ## is age in minutes. GMETARS shown.	
Not downlinked within last 5 minutes but downlinked within last 10 minutes and deselected from display*. "Show Full Sensor Status Flag" enabled.	"NXRD ##" in amber (yellow). ## is age in minutes. "NXRD ##" overlaid with green "X" NEXRAD not	"GMTR ##" in amber (yellow). ## is age in minutes. "GMTR ##" overlaid with green "X" GMETARS not	
Not downlinked within last 10 minutes but downlinked within last 75 minutes and selected for display*.	shown. "NXRD ##" in red. ## is age in minutes. NEXRAD shown.	shown. "GMTR ##" in red. ## is age in minutes. GMETARS shown.	
Not downlinked within last 10 minutes but downlinked within last 75 minutes and deselected from display*. "Show Full Sensor Status Flag" enabled.	"NXRD ##" in red. ## is age in minutes. "NXRD ##" overlaid with green "X" NEXRAD not	"GMTR ##" in red. ## is age in minutes. "GMTR ##" overlaid with green "X" GMETARS not	
Not downlinked within last 75 minutes (timed-out). "Show Full Sensor Status Flag" enabled.	shown. "NXRD XX" in red "NXRD XX" overlaid with red "X" NEXRAD not shown	shown. "GMTR XX" in red "GMTR XX" overlaid with red "X" GMETARS not above	
* If installed, weather radar selected for display			

D 1.5. Datalink Page Screen Range

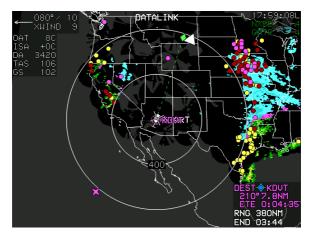


Figure D-8: Datalink Page Screen Range

When selected, the following screen ranges (all distances represent distance from the ownship symbol to the boundary circle) are available. Radius of the range ring is presented on the range ring.

Table D-7: Datalink Page Screen Ranges		
Ownship to Boundary Circle Radius Range Values		
50 NM	25 NM	
100 NM	50 NM	
200 NM	100 NM	
400 NM 200 NM		
800 NM	400 NM	
1,600 NM	800 NM	

D 1.6. Boundary Circle Symbols

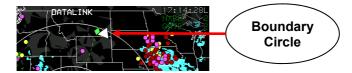


Figure D-9: Boundary Circle Symbol

A white triangular heading pointer aligned with the longitudinal axis of the ownship symbol appears on the boundary circle with a green diamond-shaped track pointer aligned with the aircraft's track across the earth. A green dashed lubber line connects the center of the aircraft symbol and the track pointer.

If a target or VNAV altitude is set and not captured, an altitude capture predictor arc is displayed on the lubber line at a point corresponding with predicted climb or descent distance (based upon current VSI). The track pointer, lubber line, and altitude capture predictor arc are not displayed when groundspeed is less than 60 knots. A pilot-settable heading bug geometrically interacting with the heading pointer appears on the boundary circle. A magenta, starshaped waypoint pointer displayed on the boundary circle at a point corresponds with the active waypoint. The waypoint pointer turns amber (yellow) in the event of GPS LON caution. Boundary circle symbols are not drawn when in pan mode.

D 1.7. Active Flight Plan Path/Manual Course/Runways

When there is an active flight plan and automatic GPS/SBAS OBS setting, the flight plan path, when selected, is shown in correct relationship to the ownship symbol. The active flight plan path depiction meets all GPS/SBAS path definition requirements and matches the lateral navigation guidance on the PFD (GPS/SBAS CDI in automatic OBS mode, skyway boxes, and mini-map). Active flight plan path fly-over waypoints symbols are distinct from fly-by waypoints and consist of the waypoint symbol within a circle. When there is a parallel offset, the active flight plan path depicts the parallel offset path, and the original flight plan path is shown with haloed gray dashed lines.

When there is an active waypoint and manual GPS/SBAS OBS setting, the course through the waypoint is shown as a pointer centered on the waypoint and matches the lateral navigation guidance on the PFD (GPS/SBAS CDI in manual OBS mode, skyway boxes, and mini-map).

The active flight plan path's active leg/manual course and active waypoint are magenta but turn amber (yellow) in the event of a GPS LON caution. The datalink page displays airport runways in correct relationship and scale to the ownship symbol.

D 1.8. Borders

National and United States state borders are drawn in white in correct relationship to the ownship symbol.

D 1.9. Pan Mode

Use the pan mode to change the location of the center of the page away from current location and view weather conditions along the route of flight and at the intended destination or alternate destination. When pan mode is active, press **NORTH (L3)**, **SOUTH (L4)**, **EAST (R3)**, or **WEST (R4)** to pan in indicated direction. When pan mode is active, a line is drawn from the map center to the aircraft's current position, and bearing and distance to the map center is always displayed above the ownship symbol when the aircraft is more than 0.5 NM away. If referenced to magnetic north, (as specified in Section 3 Display Symbology) when panning, the nearest displayed graphical METAR symbol within the inner range ring is highlighted with a flashing circle. When such a point is highlighted, dedicated buttons are present to allow the pilot to view and hide the waypoint information (including datalink weather information) associated with that point.

D 2. MFD Datalink Format (FORMAT) Menu

Upon selecting the MFD format menu when in the Datalink page, an option list appears with the following options:

- 1) **PAN ON/PAN OFF**: Toggles Datalink page pan mode.
- DCLTR: Only available when datalink weather products are available for display. Allows the pilot to select individual datalink weather products for display. Only those datalink weather products available for display appear in the selection box.
- 3) **ROUTE ON/ROUTE OFF**: Toggles showing the active flight plan route on the Datalink page.

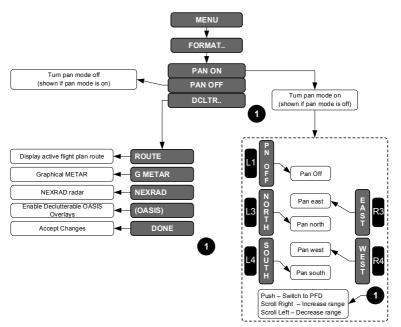
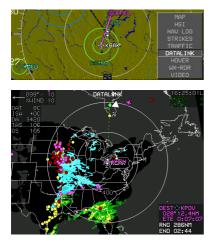



Figure D-10: MFD Datalink Format (FORMAT) Menu

D 2.1. MFD DATALINK Page (Step-By-Step)

- Press MENU (R1) then PAGE (R3) and scroll ① to DATALINK and push to enter.
- 2) Example shows MFD with DATALINK.

Datalink

- Press MENU (R1) then FORMAT (R4) to format Datalink page.
- 4) Scroll **①** to **PAN ON**,
 DCLTR.., or **ROUTE ON**,
 Push to enter.

D 3. Top-Level Auto Pop-Up Function Descriptions

Table D-8: Top-Level Auto Pop-Up Function Descriptions		
FPL (L1)	When showing Datalink page with pan mode enabled, PN OFF appears. Press to disable pan mode. RESET has precedence over PN OFF .	
ACTV (L2)	When showing ND or Datalink page with: (a) pan mode enabled; (b) information for the nearest highlighted waypoint being shown; and (c) airport weather information present in the information block; WX appears. Press to display textual METAR and TAF data for the airport.	
INFO (L3)	When showing Datalink page with pan mode enabled, NORTH appears. Press to shift the center of page in the specified direction.	
OBS (L4)	When showing Datalink page with pan mode enabled, SOUTH appears. Press to shift the center of page in the specified direction.	
BARO (R2)	When showing Datalink page with pan mode enabled, INFO or HIDE appears. Press to toggle the display of information for the nearest highlighted waypoint. Refer to the INFO Menu requirements for the amount and type of information presented.	
NRST (R3)	When showing Datalink page with pan mode enabled, EAST appears. Press to shift the center of page in the specified direction.	
(R4)	When showing Datalink page with pan mode enabled, WEST appears. Press to shift the center of page in the specified direction.	

D 4. Active Flight Plan (ACTV) Menu Options

NRST APT (R3): Datalink, **WX LGND (L2)** and **EXPND WX (L3)** are available to show a weather symbol legend and highlighted result METAR and TAF text respectively.

Identifier Entry Box: Highlighted result information includes datalinked weather information when available.

D 5. MFD Fault Display Menu

If ADS-B datalink is enabled, an indication of ADS-B position validity (ADSB POSN), an indication of whether maintenance of the ADS-B receiver is required (ADSB MAINT) and an indication of whether the Conflict Situational Awareness algorithm is working (ADSB CSA). MFD Page (PAGE) Menu

DATALINK: Shows the Datalink page.

D 6. Menu Synchronization

Table D-9: Menu Synchronization			
Menu Parameter	Notes		
The following menu parameters are independent betwdisplays. These are used to support non-PFD display optiongive the pilot maximum MFD operating flexibility.MFD Selected PageThis parameter is transmittedto all other IDUs to support			
	weather radar vertical profile mode selection.		
MFD Datalink Page Settings			

Weather Radar

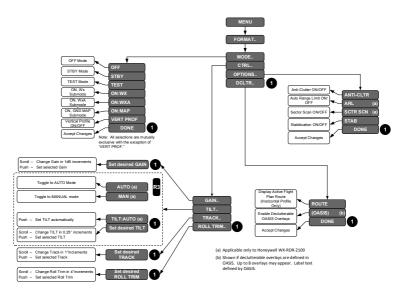
WX 1. Weather Radar

Figure WX-1: Weather Radar Image on ND

Weather radar automatically declutters when weather radar returns are selected for display on the ND map page in correct relationship to the ownship symbol unless inhibited during active FLTA alerts. When weather radar is selected, Datalink NEXRAD is automatically deselected. Table WX-1 defines all inhibited factors with display.

Table WX-1: Weather Radar Inhibited Conditions

During Active FLTA alerts


ND Moving Map Pan Mode

When North Up orientation is selected

When RDR-2100 is in vertical profile mode

When screen range is too small to effectively show the weather returns (defined as when the length of the weather radar scan line is longer than 512 pixels given current weather radar scale setting, screen range, and screen mode)

WX 2. Weather Radar Page Format (FORMAT) Menu

Figure WX-2: MFD WX RDR Format (FORMAT) Menu

Upon selecting MFD format menu in the WX RDR page when weather radar type is RDR-2000 or RDR-2100 without external RCP installed, the following list appears.

1) MODE: Set the weather radar mode to either OFF, STBY, TEST, ON: WX, ON: WXA, ON: MAP, or VERT PROF.

NOTE:

The weather radar modes are mutually exclusive and therefore selecting one turns off the other modes with the exception of vertical profile, which appears in the selection box only when the selected weather radar mode is not OFF or STBY.

- 2) **CTRL**: Activates a list to control live parameters as follows:
 - a) **GAIN**: Changes the gain in increments of 1dB.
 - b) TILT: Changes tilt in units of 0.25 degrees if tilt mode is manual for both weather radar type RDR-2000 and RDR-2100. TILT:AUTO is set when tilt is automatic (only RDR-2100 only). When weather radar type is RDR-2100, toggles AUTO/MAN tilt mode.

- c) TRACK: Changes track in increments of 1 degree.
- d) **ROLL TRIM**: Changes roll trim in increments of 4 degree.
- OPTIONS: Select or deselect available options to ANTI-CLTR, ARL (RDR-2100 only), SCTR SCN (RDR-2100 only), or STAB.
- 4) **ROUTE ON/ROUTE OFF**: Toggles active flight plan route.

In a horizontal depiction, the weather page uses an arced format with the ownship symbol centered in the bottom of the display with the weather area depicted as an arc ahead of the ownship symbol.

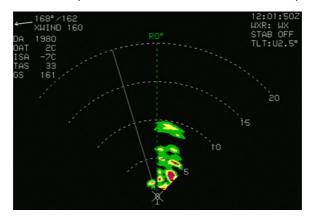


Figure WX-3: Radar Image in Arced Format

In a profile depiction, the weather page uses an arced format with the ownship symbol centered on the left side of the display and the weather area depicted as an arc to the right of the ownship symbol.

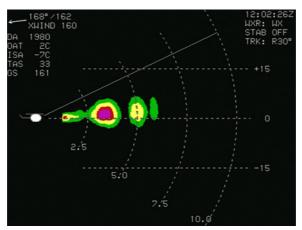


Figure WX-4: Radar Image in Profile Depiction

To select profile depiction, use the weather radar control panel connected to the IDU. The EFIS ensures at least one weather radarenabled page is showing the weather radar page prior to entering into profile depiction and disables profile depiction if the pilot sets the pages for no weather radar page on any weather radar-enabled page. The purpose is to maximize the availability of weather radar information on the ND page. The ND page only shows a horizontal depiction and disables profile depiction if the weather radar mode is set to off or standby via radar control panel.

WX 2.1. Weather Page Screen Range

Weather page screen range is pilot-selectable with either **①** (RDR-2000 and RDR-2100 weather radar types) or a control panel directly attached to the weather radar receiver-transmitter. Weather page screen range is displayed as a series of equidistant dashed arcs centered upon the ownship symbol to help judge range to the displayed weather radar returns. All distances represent the distance from the ownship symbol to the outer dashed arc: 5NM, 10NM, 20NM, 40NM, 80NM, 160NM, 240NM, and 320NM.

For most screen ranges, there are four equidistant dashed arcs. When in 2.5NM range, there are five equidistant dashed arcs. Each arc is labeled with distance in nautical miles at its right-most point (horizontal depiction) or bottom-most point (profile depiction). In profile depiction, there are also three horizontal altitude lines drawn relative to the aircraft's altitude to help judge the vertical distance to

the displayed weather radar returns. The center line is level with the ownship symbol to represent the aircraft's altitude. The other two lines are equally spaced above and below the center line to represent altitude differences above and below the aircraft. The number of feet above and below the aircraft varies with the selected range to compensate for the radar scan width at the different ranges.

WX 2.2. Track Line

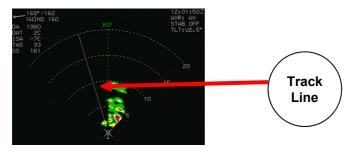
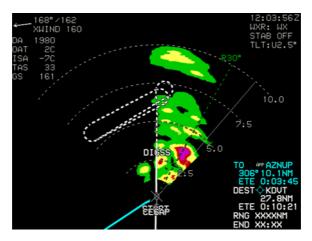



Figure WX-5: Radar Track Line

When the weather radar type is RDR-2000 or RDR-2100 and in horizontal depiction, a dashed track line emanates from the ownship symbol to the outer dashed arc. The value of the track line in whole degrees left or right of aircraft heading is displayed adjacent to the outer end of the track line.

WX 2.3. Active Flight Plan Path/ Manual Course/Runways

The active flight plan path (when selected), waypoints, and manual course appear, when the weather radar page is showing horizontal depiction. The weather radar page displays airport runways, when the weather radar page is showing horizontal depiction.

WX 2.4. Weather Radar Return Data

Weather radar return data are displayed in correct relationship to the ownship symbol as colored regions according to the value of the ARINC 453 3-bit range bins.

Table WX-2: Weather Radar Return Data				
ARINC 453 3- Bit Range Bin	Color	Meaning		
000b	Black	No returns		
001b	Green	Low-level weather or low- level ground returns		
010b	Amber (Yellow)	Mid-level weather or mid-level ground returns		
011b	Red	Third-level weather returns. color is black when in MAP mode.		
100b	Magenta	Fourth-level weather or third- level ground returns. With RDR-2000 or RDR-2100 weather radar type, color alternates between magenta and black at 1Hz when internal submode is WXA.		
101b	Cyan	Automatic range limit returns. Indicates areas of unreliable returns due to radar power absorption.		
110b	Light Gray	Moderate turbulence returns		
111b	White	Severe turbulence returns		

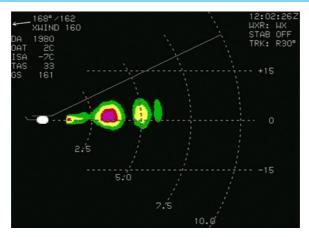


Figure WX-7: Radar Return Data

The following weather radar-specific warnings appear in a conspicuous area adjacent to weather radar return data so they do not conflict with the weather radar return data. Only one warning appears at any given time, with the following order of precedence:

- 1) **WX ALRT**: Weather alert condition is active.
- 2) **TURB ALRT**: Turbulence alert condition is active.
- 3) **STAB LIMIT**: Aircraft attitude has moved to a point where the weather radar antenna can no longer be effectively stabilized.
- 4) **ANT FAULT**: Weather radar antenna is temporarily dislodged by turbulence.

WX 2.5. Air Data and Groundspeed

Air data and groundspeed are displayed in upper left corner of the weather radar page as specified in Section 3 Display Symbology.

WX 2.6. Clock/Options

The following are displayed in the upper right corner:

Figure WX-8: Radar Clock/Options

- 1) Zulu Time or LCL Time: As in Section 3 Display Symbology;
- 2) Weather Radar Mode Annunciation: As in Table WX-3 and Table WX-4.

Table WX-3: RDR 2100 Applicability			
Mode	Annunciation		
Off	WXR:OFF		
Standby	WXR:STBY		
Weather only	WXR:WX		
Weather alert	WXR:WXA		
Ground map	WXR:GMAP		
Contour	WXR:CONT		
Test	WXR:TEST		
Not defined	WXR:		

Table WX-4: RDR 2100 Mode Annunciation			
Annunciation	Conditions		
Overlaid with	Weather radar mode is off or not defined.		
Red X	Cooling fault condition exists.		
	Attitude or range fault condition exists.		
	T/R fault condition exists.		
STAB OFF	Mode annunciation not overlaid with a red "X";		
(Stabilization)	Mode not standby or forced standby; and		
	Weather radar indicates stabilization is off.		
TGT ALERT	Mode annunciation not overlaid with a red "X";		
(Target Alert)	Mode not standby or forced standby;		
	Weather radar presenting horizontal depiction.		
"TLT:UXX.X" or	U = Up or Down (either U or D, but not both, may appear – use "U" for 0°);		

Table WX-4: RDR 2100 Mode Annunciation			
Annunciation	Conditions		
"TLT:AUTO" (TILT)	XX.X represents absolute value of the tilt angle in degrees truncated to the nearest tenth;		
	"TLT:AUTO" used where weather radar reports a value of -16°, representing automatic tilt.		
	Weather radar tilt annunciation only appears when all following conditions are true:		
	 Mode annunciation not overlaid with a red "X"; 		
	2) Mode not standby or forced standby; and		
	3) Radar not in vertical profile depiction.		
TRK:LXX (TRACK)	L = Left or Right (either L or R, but not both, may appear – use "R" for 0°); and		
	XX represents absolute value of the track angle in degrees.		
	Weather radar track annunciation only appears when all following conditions are true:		
	 Mode annunciation not overlaid with a red "X"; 		
	2) Mode not standby or forced standby; and		
	3) Radar in vertical profile depiction.		
"GN:SXXDB," "GN:CAL," or	S = Sign (either "+" or "-," but not both, may appear – use "+" for 0°); and		
"GN:MAX" (GAIN)	XXDB represents the manual gain setting in decibels.		
	"GN:CAL" represents the calibrated condition		
	"GN:MAX" represents maximum manual gain		
	Weather radar manual gain annunciation only appears when all following weather radar mode conditions are true:		
	 Mode annunciation not overlaid with a red "X"; 		
	2) Mode not standby or forced standby; and		
	3) Mode is ground map.		

WX 2.7. Fuel Totalizer/Waypoint Bearing and Distance Functions

Displayed as specified in Section 3 Display Symbology.

WX 3. MFD Fault Display (FAULTS) Menu

Upon selecting the MFD faults menu, the status of the following system parameters are displayed if weather radar is enabled:

- Indicates weather radar power/communication status (WXR PWR X or WXR PWR OK). Status failed (WXR PWR X) reflects any one of the following conditions is true:
 - a) Loss of weather radar communication.
 - b) Weather radar mode is OFF.
- Indicates weather radar fault status (WXR FAULT –, WXR FAULT X, or WXR FAULT OK). Status failed (WXR FAULT –) indicates it is not possible to determine weather radar faults. Status failed (WXR FAULT X) reflects any of the following conditions is true:
 - a) A cooling fault condition exists.
 - b) For weather radar types ARINC 708-6 or Collins 800/840, a display or control bus fault condition exists.
 - c) For weather radar types ARINC 708-6, Collins 800/840, or Honeywell PRIMUS, a calibration or air data fault condition exists.
 - d) An attitude or range fault condition exists.
 - e) A control fault condition exists.
 - f) A T/R fault condition exists.
- If weather radar type is RDR-2000 or RDR-2100, indicates radar control panel status (WXR RCP X or WXR RCP OK). Status failed (WXR RCP X) indicates loss of communication or a failure status using same test as invalid data SSM for output labels 270, 271, 273, or 275.

WX 4. Menu Synchronization

Table WX-5: Menu Synchronization		
Menu Parameter	Notes	
The following menu parameters are only synchronized onside. These parameters are usually sensor selections or PFD options used to keep the appearance of any pilot's PFD consistent in the case of PFD reversion. The onside characteristic means that individual pilots can still adjust their PFD settings to their preference.		
Weather Radar Scale	Onside because range is controlled by the weather radar.	
The following menu parameters are independent between displays. These are used to support non-PFD display options to give the pilot maximum MFD operating flexibility.		
MFD Selected Page	This parameter is transmitted to all other IDUs to support weather radar vertical profile mode selection.	
MFD Map Page Settings	Map scale is transmitted onside to support weather radar range selection.	

Video

V 1. Video Input Page

The video input page is an image of 640 by 480 pixels and accepts video input signals in the RS-170 composite format. The system is configurable to the NTSC, PAL (including the PAL-m and PAL-nc variants), or SECAM versions of RS-170 separately for each video input. In addition, an auto-detection mode, which programs the video input chip to process most standard RS-170 formats, is configurable for each video input.

When no video signal is detected, the video input page is black and **NO VIDEO IMAGE AVAILABLE** is displayed in white on the center of the page. To aid in diagnosing problems with undetected video signals, the following annunciations are also displayed:

- 1) NO INTERLACED SIGNAL: No interlaced signal detected.
- NO HORIZ OR VERT SYNC: No horizontal or vertical synchronization detected.
- 3) NO COLOR SIGNAL: No video chroma signal detected.
- 4) LOAD ERROR DETECTED: Video chip reports a load error.
- 5) **TRIGGER ERROR DETECTED**: Video chip reports a trigger error.
- 6) **PROGRAMMING ERROR DETECTED**: Video chip reports a programming error.

V 1.1. ZOOM Level

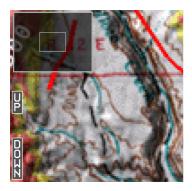

Scroll **①** CW to increase or CCW to decrease zoom levels from 1 (no pixel replication) to 10 in increments of 1.

Figure V-1: Encoder Functions for MFD Video Page

V 1.2. Pan Mode

When the ZOOM level is greater than 1, the Video Input page has a pan mode for selecting the portion of the video image displayed by replicating pixels. When pan mode is active, controls are present to allow moving the portion displayed up, down, left, and right.

Figure V-2: Video Pan View

A mini-map of the displayed image's position in the full video image is displayed for 10 seconds after:

- 1) Entering pan mode;
- 2) Changing the zoom level to a value greater than 1;
- 3) Panning the zoomed image.

Exiting pan mode removes pan mode controls and mini-map, if any.

Table V-1: Top-Level Auto Pop-Up Function DescriptionsWith Pan Mode Enabled		
	Tile Legend	Action
L2	UP	
L3	DOWN	Press to move the section of video
R2	LEFT	image displayed in specified direction.
R3	RIGHT	

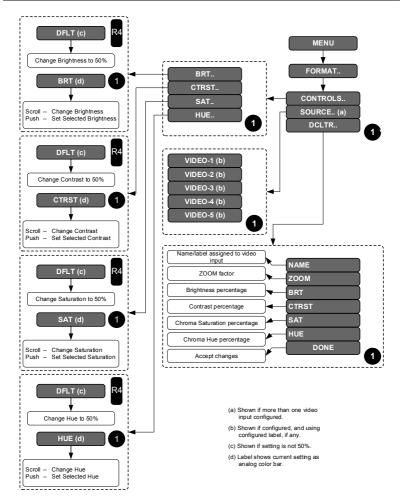
V 2. Video Input Status Display

When selected, the following are optionally displayed in the upper right corner of the Video Input page:

- Label: Identifies video input source and is configurable to one of a set of predefined labels. If no label is configured, the label is VIDEO-n where n is the video input source number.
- 5) **ZOOM**: Amount of pixel expansion is displayed as **ZOOM nnX** where **nn** is the ZOOM level.

- 6) **Brightness**: Displayed as **BRT nnn%** where **nnn** is the brightness setting as a percentage of the maximum value.
- 7) **Contrast**: Displayed as **CTRST nnn%** where **nnn** is the contrast setting as a percentage of the maximum value.
- 8) **Saturation**: Chroma saturation is displayed as **SAT nnn%** where **nnn** is the saturation setting as a percentage of the maximum value.
- 9) **Hue**: Chroma hue is displayed as **HUE nnn%** where **nnn** is the hue setting as a percentage of the maximum value.

Figure V-3: Video Status


V 3. MFD Video Input Format (FORMAT) Menu

Upon selecting the MFD format menu when in the Video Input page, a list appears with the following options.

Table V-2: Video Input Controls			
Controls Settings	Definition	Notes	
BRT	Adjust brightness setting	DFLT (R4) resets to nominal default (50%) value.	
CTRST	Adjust contrast setting	DFLT (R4) resets to nominal default (50%) value.	
SAT	Adjust chroma saturation (color intensity) setting	DFLT (R4) resets to nominal default (50%) value.	
HUE	Adjust chroma hue (red-green balance) settings	DFLT (R4) resets to nominal default value (50%) value.	

Table V-2: Video Input Controls		
Controls Settings	Definition	Notes
SOURCE	Select optional video source	Displays selected video input, only if more than one video input is enabled.
DCLTR	Activate option list to select video input status	Video input status settings as in V 2.

Figure V-4: MFD Video Input Format (FORMAT) Menu

V 4. Menu Synchronization

Table V-3: Menu Synchronization			
Menu Parameter	Notes		
The following menu parameters are independent between displays. These are used to support non-PFD display options to give the pilot maximum MFD operating flexibility.			
MFD Video Page Settings	 Video hardware settings Selected Input Brightness Contrast Saturation Hue 		

Round Dials

RD 1. Airspeed Display

Figure RD-1: Round Dials Airspeed Display

The airspeed display digitally displays indicated airspeed in knots, miles, or kilometers per hour (as per aircraft "Speed Units" system limit) and is scaled to show the entire operating range of the aircraft. Clockwise movement indicates increasing speed. When an ADC sensor fails, the display appears as shown in Figure RD-8.

Without airspeed bugs

IAS bug set to 80 and indicating 80 KIAS

IAS bug set to 80 and indicating 70 KIAS

Figure RD-2: Round Dials Airspeed Display Limits

1) Gray safe-operating area from bottom of dial to **VMIN**. Airspeed is gray at 0 (indicating "dead" airspeed) but otherwise green.

- Green safe operating range area from V_{MIN} to V_{NO}. V_{MIN} refers to the minimum speed for effective airspeed indication (usually 20KIAS, depending on the connected ADC). Airspeed readout is gray at 0 (indicating "dead" airspeed) but otherwise green.
- Amber (yellow) caution range area from V_{NO} to V_{NE} (power-on). Airspeed readout is yellow.
- Red radial line at V_{NE} (power-on). Airspeed readout is red at or above the red radial line.

The airspeed dial for Part 27 and Part 29 rotorcraft has additional specific airspeed markings as follows:

A red cross-hatched radial line at **V**_{NE} (power-off).

RD 2. Round Dials PFD

Figure RD-3: Round Dials PFI Area (QNH)

RD 3. Round Dials PFI Configuration

Altitude display and changing altimeter setting:

- 1) Press **BARO (R2)** to enter BARO mode and view the inches of mercury (inHg) or millibars (mbar) value in the lower right corner.
- 2) Scroll **●** CW to increase or CCW to decrease QNH. (As shown encircled in red in Figure RD-3, Figure RD-4, and Figure RD-5.)

3) Push **0** or press **EXIT (R1)** to enter the new value.

The altimeter setting digitally displays the altimeter setting in either inches of mercury (inHg) or millibars (mbar) according to the pilot-selected units.

Figure RD-4: Altimeter QNH

The mode is annunciated as QFE operations otherwise, no mode is annunciated

Figure RD-5: Altimeter QFE

QFE: Barometric setting resulting in the altimeter displaying height above a reference elevation (i.e., airport or runway threshold).

QNE: Standard barometric setting (29.92 inHg or 1013 mbar) used to display pressure altitude for flight above the transition altitude.

QNH: Barometric setting resulting in the altimeter displaying altitude above mean sea level at the reporting station.

RD 4. Altitude Display

The altitude readout digitally displays barometric altitude to the nearest ten feet as adjusted by an altimeter setting and shows a 1000-foot range with labels and graduations every 100 feet. CW rotation of the pointer indicates increasing altitude. All graduations are removed when below sea level.

Figure RD-6: Altitude Display

Figure RD-7: Altitude Display (When Below Sea Level)

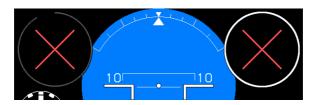


Figure RD-8: Airspeed and Altitude with Loss of ADC

Altitude sub-mode user-selectable triangular target altitude bug shown here at 4,400'. The bug is limited to -1,000' up to the service ceiling and is removed when more than 500' away from current altitude.

Figure RD-9: Target Altitude Bug

The target altitude bug can be used as a visual reference or when vertically integrated with the Genesys HeliSAS-E or other autopilot, the bug characteristics indicate the following modes:

- 1) Filled-white when in altitude hold mode.
- 2) Hollow-white when in a climb or descent mode.
- 3) Filled-white during altitude hold capture.

When not vertically integrated with the Genesys HeliSAS-E or other autopilot, the target altitude bug is filled-white at all times.

Round Dials

When in VNAV sub-mode, the VNAV altitude bug appears when within 500' from the current altitude. In this example, the VNAV altitude is 5,100'.

Figure RD-10: VNAV Sub-Mode

The VNAV bug can be used as a visual reference or when vertically integrated with the Genesys HeliSAS-E or partially integrated through use of the vertical mode discrete input as a control parameter for climbs or descents with another autopilot. The following bug characteristics indicate the following modes:

- 1) Filled-magenta when in altitude hold mode.
- 2) Hollow-magenta when in a climb or descent mode.
- 3) Filled-magenta during altitude hold capture.

When not vertically integrated with an autopilot, the VNAV bug is filled-white at all times.

Metric altitude values may be selected from within the declutter menu with a resolution of 1 meter.

Figure RD-11: Metric Altitude

RD 5. Vertical Speed Indicator

The VSI is located below the altitude display with a readout and dial pointer and scale of $\pm 6,000$ feet per minute. The integral scale graduations are $\pm 500, \pm 1,000, \pm 3,000$, and $\pm 6,000$ feet per minute. CW (upward) rotation of the pointer indicates increasing vertical speed while CCW indicates decreasing speed.

Figure RD-12: Vertical Speed Indicator

VSI bug set to +1,000 fpm with HeliSAS enabled

VSI bug set to +1,000 fpm without autopilot enabled.

Figure RD-13: VSI Bugs

The vertical speed bug is mutually exclusive with the IAS bug and can be used either as a visual reference or when vertically integrated with the HeliSAS-E or other autopilot as a control parameter for climbs or descents. When vertically integrated, the vertical speed bug is filled-white when in VSI climb or descent mode. Otherwise, the vertical speed bug is hollow-white as shown above on the left. When not vertically integrated with an autopilot, the vertical bug is filled-white at all times.

RD 6. Heading Display

The heading display appears in a blacked-out area on the bottom to emulate a "Basic-T."

Figure RD-14: Heading Display

RD 7. Turn Rate Indicator

The turn rate indicator is displayed below the airspeed display. This standard turn needle displays marks representing a standard rate turn. The full scale for the turn needle is beyond the standard rate turn mark. This allows the pilot to fly a standard rate turn. The balance ball is driven from accelerometers within the AHRS.

Figure RD-15: Turn Rate Indicator

Table RD-1: PFD Declutter Options and Features				
Docluttor	Configuration			
Declutter Options	Tapes	Basic	Round Dials	Notes
PFD Analog AGL Indicator	~	~		
Full-Time or Auto Decluttered Bank Scale Display	✓			
Basic Mode	✓	✓		
PFD Mini-Map	✓	\checkmark		
PFD Traffic Thumbnail	~	~		
Skyway Guidance	~			
Perspective Traffic Depiction	~			
Turn Rate Indication	~	~		
Single Cue Flight Director	~	\checkmark	~	
Dual Cue Flight Director	~	~	~	
METERS	\checkmark	\checkmark	\checkmark	

INDEX

	٦
^	1

Abbreviations and Acronyms2-1
About This Guide1-3
ADAHRS
ADF #1 Pointer5-64
AGL Indication 3-9 to 10, 3-74 to 75
Air Data 2-1, 2-22, 2-37, 3-45, 3-64, 3-74, 4-9, 5-59, 8-14 to 16,
Aircraft
In the Air1-4, 2-20, 2-51, 5-42 to 43, 5-61, 6-2, 9-10
On the Ground2-17, 2-34, 2-41, 2-52 to 53, 3-38, 3-54, 3-73,
Referenced7-9
Airport
Airspace
Depiction
Airspeed
Bug3-9, 3-13, 5-4, 5-47 to 48, RBP-2, RBP-5, RD-1
Display3-12 to 14, RD-1, RD-7
Miscompare Threshold9-5 to 6
True 2-6, 2-10, 3-46, 4-3 to 5, 7-11 to 12
Airways
High-Altitude5-64
Low-Altitude5-64

Victor	5-29
Altimeter	
Menu	5-55 to 56
Setting	3-3 to 4, 6-2, 9-2
Altitude	
Aircraft Selected (ASEL)	2-2
Capture Predictor	3-55, T-4, D-8
Display	, T-2 to 3, RD-3 to 5
Minimum2-45, 3-8, 5-3, 5-47, 7-4	1, 7-45, RBP-2 to 5
Miscompare Threshold	1-4, 9-4 to 5
Select Menu (ALT SEL)	2-1
Target3-4 to 6, 3-37, 5-48, T-	4, RBP-2 to 3, RD-4
Amber (Yellow) 2-24, 2-45 to 46, 3-8, 3-7 3-47, 3-50, 3-57 to 58, 3-63 to 66, 3-71 to 72	, 7-1, 7-51, T-4 to 5,
Analog AGL	
Indication	3-10
Indicator (ANLG AGL)	5-53 to 54
Analog Navigation Symbology	3-54
Appendix	3-65, 5-62, 7-20, 9-1
Approach 2-1 to 7, 2-36, 3-30, 3-42, 6-6 to 7, 7-24 to 32, 7-35, 7-39, 7-43, 7-48, 7-52, 7-58	, 7-63, 8-1, 8-4 to 6,
APPR2-1, 6-6 to	0 7, 7-24, 7-27, 7-55
APV	2-1, 7-5
ARM 2-44, 3-31, 5-9, 7-6, 7-37, 7-40, 7-	46, 7-50, 7-55, 7-61
Atmospheric Perspective	

В	
BACK	3-3, 5-2, 5-18 to 23
Bank Scale (BANK SCL)	3-26 to 27, 5-54
BARO2-2, 2-18, 3-4, 5-	7, 5-10 to 13, 5-55 to 57, 6-2, 7-5, D-11, RD-2
BARO-VNAV	7-5
Basic Mode	3-2, 3-18 to 19, 3-27, 5-53, 7-7
Blue	9 to 21, 3-63, 7-43, 7-48, 9-2, D-3
Borders	2-24, 3-51, 5-64, D-9
Brown	
BUGS	. 2-52, 5-12, 5-47 to 50, 7-4, 7-45
Button/Menu Functions1-3, 3-	-2 to 3, 3-57, 5-1, 5-6, 8-2, RBP-1
С	
CENTER/ARC	5-63, S-5
Color Conventions	2-23
Compass Rose 3-42 to 4	4, 3-59 to 64, 3-69 to 71, 4-3 to 5, 7-20, 9-3 to 4, T-4, D-4
CONT2-2, 2-44, 5-8 to 9,	7-6, 7-37, 7-47, 7-51, 7-64, WX-8
	2-2, 2-23, 3-9 to 11, 3-18, 72, 4-2, 4-5, 5-67, 6-3, 7-6, 7-12, 8, 7-45, 7-50, 7-55, T-5, S-4, D-8
Scale	
CRS SYNC	5-35 to 36, 5-40
Cyan	2-23, 3-49, 3-62
D	
Data Logging and Retrieval	9-7
Database	
Jeppesen	1-4, 2-48, 3-23, 9-6
Rev A Mar, 2018 IDU-450 EFIS Softwa	re Version 8.0F (Rotorcraft) Index-3

NavData®2-17, 2-48, 3-37, 5-5,	7-2 to 4, 7-12, 9-6, 9-10, RBP-6, S-7
Obstruction	2-21, 2-48 to 53
Terrain	2-34, 2-52, 8-17 to 19
Update	1-2 to 3
Datalink1-4, 2-3, 3-3, 3-41, 3-49, 3	3-65, 5-1 to 7, 5-13, 5-35, 5-62, D-1 to 13, WX-1
DCLTR 2-3, 3-45, 5-12 to 14, 5-5	2 to 54, 5-64 to 67, 7-60, D-9 to 11, V-4
DCND	2-3, 5-51
Dead Reckoning2-3, 2	2-43, 2-46, 4-7 to 8, 7-21
Decision Height (DEC HT)2-3, 2-46, 3	
DELETE	5-20, 5-23, 5-31, 6-5
Demonstrator	2-52 to 53, 9-10
Density Altitude	3-46, 4-3 to 5
Departure	
DESIG	2-3, 5-12 to 16, 6-4
DG Mode	3-15, 5-47, T-3
Direct 2-3, 3-55, 5-7 to 9, 5-31 to	33, 5-42 to 43, 6-2, 7-13, 7-18 to 22, 7-54, 9-16
Direct-To3-55,	5-9, 6-2, 7-13, 7-18 to 22
Discontinuity 3-68, 5-31, 5-42, 7-13 to 7	14, 7-18 to 23, 7-29 to 30
DISCONT	
DISCONT	3-67
•	3-67 3-3, D-5, D-9, WX-7 to 10 3, 7-12 to 15, 7-19, 7-32,
DISCONT Display Symbology 3-1, 8-2, 8-17, T-4, S DME2-2 to 4, 2-11, 3-48 to 50, 3-55, 3-6	3-67 3-3, D-5, D-9, WX-7 to 10 3, 7-12 to 15, 7-19, 7-32, 7-43, 7-57 to 60

DP 2-3, 3-38, 3-57, 3-66 to 67, 3-73, 7-2 to 4, 7-12 to 14, 7-21,
E
EFIS Training Tool (ETT)1-4, 2-3, 2-53, 9-9 to 10
EFIS/FMS Description1-1
EICAS
Encoder Functions
Enroute1-1, 2-3, 2-36, 2-49, 3-30, 3-37, 3-48 to 49, 7-4, 7-24 to 26, 8-3 to 6, 9-6
Estimated Time Enroute (ETE)2-3, 3-46, 3-68 to 69, 7-37
Estimated Time of Arrival (ETA) 2-3, 3-46, 3-68 to 69, 5-5, 5-25,
EXIT 2-21, 3-3, 5-2, 5-18 to 20, 5-24 to 25, 5-32, 5-47, 5-54 to 56,
EXPAND CAS
F
FAF 2-3, 3-66, 5-8 to 9, 7-2, 7-10, 7-14, 7-29, 7-37 to 40, 7-46,
FAULTS 4-7, 5-13, 5-24, 5-57, 5-60, T-8, S-6, WX-10
FAWP 2-3, 2-45, 2-50, 3-30, 4-8, 7-2, 7-14, 7-25 to 26, 7-29 to 31
Field of View 2-4, 2-26, 3-18 to 19, 3-53, 3-58, 5-12
Zoom Mode5-4, D-13
ZOOM ON/ZOOM OFF5-12
Fixes
Flight Path Marker 2-4, 3-17, 3-23 to 24, 4-2, 9-1, 9-4
Flight Plan
Activate
Active (ACTV) 2-1, 3-56 to 58, 3-71 to 72, 4-3, 5-4 to 8,
Rev A Mar, 2018 IDU-450 EFIS Software Version 8.0F (Rotorcraft) Index-5

Create6-4
CREATE-EDIT5-17 to 24, 6-4
Delete
Edit5-19
FPL
Path
Reverse
Flight Planning 1-4, 6-1, 9-1, 9-6 to 8
FLT TIME
FLTA 2-4, 2-26 to 30, 2-34, 2-45, 2-48, 3-21, 3-53, 5-3, 5-7, 7-56,
FMS2-4, 2-13, 2-16, 2-42, 3-28, 3-31, 3-34, 3-59 to 60, 3-63, 3-67, 5-4, 5-9, 5-36 to 38, 5-62, 5-67, 6-3 to 6, 7-2 to 7, 7-41, 7-46 to 47, 7-56, 9-8, T-8, RBP-3 to 5, S-6, D-12, WX-11, V-5
FORMAT 3-73, 5-13 to 14, 5-63, 5-66, T-7, S-5, D-9 to 11, WX-2,
Fuel Remaining
G
General Arrangement2-21
Geodesic Path7-16 to 18
Geo-Referenced
Backward7-9
Forward7-9
Glideslope

GPS2-4 to 5, 2-19 to 22, 2-36 to 40, 2-43 to 46, 3-10, 3-16, 3-25,
Aiding2-22
ALMANAC5-58
Altitude 3-34, 7-21
FDE5-58
HFOM5-58
HPL5-58
LOI5-58
LON3-35 to 37, 3-47, 3-57 to 58, 3-61, 3-64 to 66, 3-71 to 72, 7-1, T-4 to 5, S-4, D-8
PWR5-58
SATLT5-58
VPL5-58
GPS/SBAS2-21, 2-36 to 40, 2-43 to 46, 3-10, 3-30 to 31, 3-35, 3-45, 3-53, 3-56 to 57, 3-61, 3-71 to 72, 4-1, 4-4, 4-10 to 16, 5-24 to 26, 7-5 to 7, 7-12, 7-21, 7-24 to 26, 7-29 to 31, 7-50,
Default GPS/SBAS Navigation Modes7-24
GPWS2-5, 2-27 to 30, 2-42, 2-48, 8-1, 8-8 to 14, 8-19 to 22
Gray
Green2-24, 3-5 to 6, 3-9 to 10, 3-14 to 15, 3-32, 3-36, 3-50, 3-55, 3-61 to 64, 3-71, 7-46, 7-59, T-4, S-3, D-5 to 8, V-3, RD-1 to 2
Groundspeed 2-21 to 36, 3-25 to 26, 3-45 to 47, 3-56, 3-64 to 74, 4-3, 4-8, 7-7, 7-34, 8-3 to 7, 8-15, 8-19, T-4 to 5, S-2, D-5, D-8,

Н

Display	3-14, RD-6
HDG UP/N UP	5-63
North Up	5-63, WX-1
Pointer	3-15, 3-54, 3-64, 3-71, T-4, D-8
Up	
Heading Bug. 3-15 to 16, 3-32, 3-64 7-3 to 4, T-4, RBI	9, 3-71, 5-3, 5-7 to 8, 5-39 to 40, P-1, RBP-5, S-6, D-8, D-12, V-5
(HDG) Menu	5-38 to 39
Hidden Surface Removal Technique	e 3-19, 3-37 to 39, 7-7
Highway in the Sky (HITS). 1-1, 2-5	
Skyway	2-24, 3-36, 5-5, 5-53, 7-7, RD-7
HOLD	3-63, 7-2, 7-36 to 37, 7-47, 7-63
Holding Pattern 2-44, 3-67, 5-8,	
Hover 3-25 to 26, 3-	69 to 74, 4-2, 5-1, 5-5 to 7, 5-52
Page	5-5
Screen	3-69
Vector	3-25 to 26, 3-70 to 74, 4-2
I	
IAP	2-5, 7-12
IAS2-5, 2-31, 2-37, 2-52, 3-12, 4-	3, 5-47 to 51, 7-46, RD-1, RD-6
IFR	
APPR	6-7, 7-36, 7-40, 7-44, 7-49, 7-59
Procedures	.3-55, 3-64, 5-26 to 28, 7-1, 7-4

	9 41, 6-7, 7-5, 7-29 to 36, 7-39, 7-52 to 55, 7-63 to 64, 8-1, 8-13 to 15, 8-20 to 21
CONFIRM ACTIVATE.	
	2-6, 5-7 to 13, 5-22, 5-25, 5-29 to 30, 5-33 to 36, 5-40 to 43, 9-8, D-3, D-11
inHg/mbar	2-6 to 7, 2-43, 3-4, 5-56, 9-2, RD-2 to 3
Initialization 1-3, 2-	14 to 16, 2-21, 2-52 to 53, 6-1, 8-17 to 18,
International Standard At	mosphere2-6, 3-46
Introduction	
L	
	6, 2-16, 2-33, 2-49, 3-20, 3-42, 5-20 to 21,
	to 44, 2-50, 3-31 to 34, 3-67, 4-8, 5-7 to 8, 7-5 to 7, 7-24 to 28, 7-55, 7-65, RBP-3
Approach	
LNAV/VNAV	. 2-44, 2-50, 3-34, 4-8, 7-5 to 6, 7-24 to 28
Approach	
Log Files	9-7
Logo Screen	2-17
	-6, 2-11, 2-46, 3-16, 3-31, 3-58, 3-62, 4-6, 5-58, 7-31, 8-14
LP2-6, 2-	44, 2-50, 3-30, 3-34, 7-5, 7-24 to 28, 7-65
Approach	
	3-30, 3-34 to 35, 7-5 to 6, 7-24 to 28, 7-32,
Approach	
Lubber Line	

М

Magenta 3-31, 3-34, 3-60, D-2 to 3, WX-6 Map 2-16 to 17, 4-2, 5-5, 5-53, T-9, RBP-6, S-6, D-13, WX-11, Menu Synchronization 5-3, T-8, S-6, D-12, WX-11, V-5 MENU...... 1-3, 5-7, 5-10 to 11, 5-16, 5-45 to 47, 5-50, 5-54, 5-60 to 62, 5-66 to 67, 6-3 to 8, 7-34, 7-44 to 45, 7-50, 7-55, Metric Display (METERS) 5-53 to 54, RD-7 MFD......1-3, 2-7, 2-12, 2-15, 2-19 to 21, 2-24, 3-1 to 3, 3-22, 3-26, 3-40, 3-52, 4-5 to 16, 5-1 to 7, 5-13 to 23, 5-32, 5-45, 5-57 to 67, ... 6-2 to 7, 7-18, 7-37 to 38, 7-41, 7-50, 7-55, 8-2, 9-10, T-7 to 8, Fault Display......5-57, 5-60, T-8, S-6, D-12, WX-10 ND Page Format.....5-63 to 66 Minimums (MINS)2-45, 3-8, 5-47, 5-50 to 51, 7-45, 7-51, D-3 MISS......2-44, 5-8, 7-6, 7-46, 7-55, 7-61 Modes

Mode	0	4-1, 4-9
Index-10	IDU-450 EFIS Software Version 8.0F (Rotorcraft)	Rev A Mar, 2018

Mode 12-27 to 30, 2-48, 4-1, 4-10, 8-1, 8-8, 8-19, 8-2
Mode 22-28 to 30, 2-36, 2-48, 4-1, 4-11, 8-1, 8-9 to 10, 8-19
Mode 32-27 to 28, 2-48, 4-1, 4-12, 8-1, 8-10 to 11, 8-19, 8-2
Mode 42-27 to 28, 2-36, 2-48, 4-1, 4-13, 8-1, 8-11 to 12, 8-1
Mode 52-27 to 30, 2-42, 2-48, 4-1, 4-14, 8-1, 8-13 to 14, 8-19
Mode 6 4-1, 4-1
Mode 7 4-1, 4-1
Mute8-1
N
Navigation Data2-50, 3-47, 3-7
Navigation Log
Distance Column3-6
Estimated Time Enroute Column3-6
Estimated Time of Arrival Column3-6
ETE/ETA3-4
Fuel Remaining Column3-6
Path Column3-6
VNAV Offset Column3-6
Waypoint Identifier Column3-6
NDBs
Nearest (NRST) Menu 2-7, 3-55, 5-7 to 9, 5-12 to 13, 5-17 .5-29 to 30, 5-33, 5-39 to 41, 6-4 to 7, 7-32, 7-52 to 54, 9-2, D-3 D-11 to 1
NIMA GEOMAG7-2
NO RESULTS

Normal/Essential 2-3, 3-9 to 10, 3-17, 3-31, 3-58, 3-63, 4-9 to 15,
NRST ILS
0
Obstruction2-26 to 30, 2-48 to 50, 3-20, 8-3, 8-24 to 25
OFF 5-7 to 12, 5-21, 5-28, 5-40, 5-44 to 45, 5-51, 5-59, T-7, S-5,
Olive2-24, 3-52
Omnibearing Selector (OBS)2-8, 2-16, 2-44, 3-31, 3-56 to 57, 3-60, 3-71 to 72, 5-4, 5-7 to 9, 5-12 to 13, 5-36 to 41, 6-5 to 6, 7-6 to 7, 7-43 to 45, 7-54, T-5, T-8, RBP-2 to 5, S-4, D-8, D-11, V-5
AUTO5-37
Manual6-6
Menu5-36 to 38
SYNC5-37, 6-6
Operation FROM5-9, 7-11, 7-19
Outside Air Temperature (OAT)2-8, 2-23, 2-37, 3-46, 4-3 to 5,9-16
Ownship Symbol
Ownship Symbol3-41, T-2, D-4
Ownship Symbol
Ownship Symbol
Ownship Symbol
Ownship Symbol

PFD 1-3, 2-8, 2-12, 2-15 to 16, 2-19 to 21, 2-24, 2-29 to 31, 2-41, 2-45, 3-1 to 3, 3-7, 3-10, 3-14 to 29, 3-33, 3-37 to 38, 3-52 to 60,
Background3-19
Declutter5-52 to 54, RD-7
Symbology3-7
Pitch Scale 3-16 to 20, 3-29, 4-2, 5-45, 9-1
Nadir Symbol3-17
Zenith Symbol
Popup
Procedure Turn2-8, 3-67, 7-3, 7-12 to 16
Projected Path
PTK 2-8, 2-45, 3-67, 5-28, 7-22 to 24
PTR
Q
QFE
QNE
QNH2-9, 3-4, 5-55 to 56, 6-2, 8-16, RD-2 to 3
Quick Start Tutorial
R
RAIM2-2, 2-9, 5-15, 5-24 to 25
CALC
Prediction
Range 2-34, 2-48, 3-20, 3-47, 3-59, 3-69, 3-75, 5-58, 8-5, 9-11,

Red
Remote Bugs Panel (RBP) 1-4, 2-9, 5-3, RBP-1, RBP-5
Required Navigation Performance (RNP) 2-9, 2-49 to 50, 3-29,
Automatic (AUTO)3-29, 5-37
Manual (MAN) 2-16, 3-29, 5-37
Reversionary Modes4-1
RNAV 2-9, 2-49, 7-4 to 5, 7-13, 7-29, 7-32, 7-48
DPs2-49
Runway (RW)2-9, 2-23, 3-4, 3-30, 3-40, 3-48, 3-73, 5-29, 5-35, 5-40, 5-56, 6-6 to 7, 7-3 to 4, 7-12 to 13, 7-25 to 27, 7-30 to 31, 7-34 to 36, 7-40, 7-44 to 46, 7-49 to 51, 7-59 to 61, 8-3 to 4, 8-10, 8-16 to 17, 9-2, RD-3
S
SAVE
SBAS
HLTH5-58
MSG5-58
Search Envelope
STAR
Start Point3-55
STD2-10, 5-56
SUSPEND7-46
SYMB DCLTR
SYNC
System Overview
Index-14 IDU-450 EFIS Software Version 8.0F (Rotorcraft) Rev A Mar, 2018

Т

Terminal2-10, 2-36, 3-30, 3-49, 7-24 to 26, 7-31 to 33, 8-4 to 6,
Terrain2-4, 2-10, 2-27, 2-30, 2-52, 3-2, 3-18 to 22, 3-45, 3-52 to 54, 4-2 to 3, 5-3 to 5, 5-64, 8-1 to 3, 8-6, 8-9 to 12, 8-17 to 22, 8-25 to 26, 9-1, 9-12
Terrain and Obstruction Rendering 3-18 to 21, 3-37 to 39, 3-53,
TESTING 2-17 to 18
Time
COUNT DN5-45
COUNT UP5-45
Menu5-12 to 13, 5-44 to 45
STORE5-45
Timer Indication3-28
Zulu Time3-44 to 45, 3-65 to 66, 5-45, 9-7, T-6, S-3, D-5, WX-8
Too Low
Top of Descent (TOD)
Top-Level Menu 5-6 to 7
Traffic1-4, 2-1 to 2, 2-8 to 10, 2-28 to 30, 2-48, 3-3, 3-9, 3-18, 3-41, 3-65, 4-2 to 3, 5-1 to 7, 5-53, 5-62 to 64, 9-11, T-1 to 8, S-6, V-5, RD-7
TRANS ALT
Transmit Enabled 2-12, 2-24, 2-29 to 31, 2-41 to 42, 2-48, 4-3,
TSO 2-11, 3-30, 5-3, 7-5 to 7, 8-1 to 3, 9-11 to 12
U
Unusual Attitude Mode 2-32 to 37, 2-40, 2-43, 2-46 to 47, 3-10,

Upload9-9
USB1-2, 2-11, 2-51 to 52, 9-7 to 11
v
Vertical Deviation Indicator (VDI)
Vertical Speed Indicator (VSI)2-6, 2-12, 2-23, 2-31, 2-47 3-8 to 9, 4-2, 5-4, 5-47 to 50, 6-3, 8-20 to 21, 9-6, T-2 to 4 RBP-2 to 5, D-8, RD-5 to 6
VFR
Video 1-4, 2-21, 5-1 to 3, 5-7, 5-62, V-1 to 5
VNAV 2-2, 2-11, 2-23, 2-46 to 47, 2-50 to 52, 3-5 to 8, 3-34 to 37
CDA5-47, 5-50 to 51
Sub-Mode 3-5 to 6, RD-5
VOR.2-11, 2-16, 2-23 to 24, 2-49, 3-38, 3-48 to 49, 3-54, 3-62, 4-5 5-14, 5-17, 5-30, 5-33, 5-37, 5-40, 5-64, 5-67, 6-4 to 5, 7-20
VTF
w
WAAS2-12, 7-5, 7-49, 9-12
Warnings, Cautions, and Advisories9-2
Water2-24, 3-20 to 21, 3-53, 9-14
Waypoint2-1 to 7, 2-11 to 12, 3-37, 3-46 to 48, 3-65 to 68
Active
ADD 5-17, 5-28, 6-4
APP
Index-16 IDU-450 EFIS Software Version 8.0F (Rotorcraft) Rev A Mar, 2018

Confirm Delete (CONFIRM DEL WPT)6-5
Create User 5-20 to 22
Create User (LAT-LON)5-20
Create User (RAD-DST)5-22
Delete User5-23
Edit User5-23
Fly-By 3-37, 3-56, 3-72, 7-12 to 14, T-5, D-8
Fly-Over
Identifier3-10, 3-66, 6-5, T-1
INSERT 5-28, 5-33, 5-41, 6-5, 7-63
MA
MAHWP 2-7, 2-50
MAWP2-7, 2-50, 7-25, 7-30, 7-37, 7-41, 7-46, 7-51
NO RADIUS7-3
OFLY/AUTO7-2
OVERFLY7-3
Overfly User5-17
Phantom
Pointer
Routes and User1-4, 9-9
Sequencing
Skipped Waypoint7-1
Suppressed Waypoint 3-66, 3-69, 7-1, 7-19, 7-56
USER WPT5-12, 5-16 to 17, 5-21 to 24, 6-4
WGS-84

White	2-23, 3-13, D-3, WX-6
Wind	
WX-5001-4, 2-	32, 3-40, 4-3, 5-13, 5-59, 5-64, S-1 to 6
WX-RDR	
X	
XFILL SYNC	5-10 to 12, 6-8

Glossary

- AGL Indication (Rad Alt, GPS Alt, Baro Alt) Display of altitude above the ground, with designation of the altitude source as R (radio altitude), G (GPS WAAS geodetic altitude less local ground elevation), or B (barometric altitude less local ground elevation).
- Air Data and Groundspeed Display of density altitude, outside air temperature, ISA temperature deviation, true airspeed, and groundspeed.
- Airspeed Information Display of airspeed is the indicated airspeed tape and airspeed readout with associated data. The airspeed function includes color-coded caution bands for minimum and maximum speeds based on V-speeds set in the EFIS limits.
- Altitude Information Display of altitude information is the altitude tape and altitude readout.
- Approach Mode Signal Output Conventional autopilot approach mode signals are course error output, the left/right deviation signal (localizer output) and the up/down deviation signal (glideslope output). Signals are based on the selected ILS source.
- Attitude Information Display of attitude information includes pitch and roll. The bank angle scale may be set to auto-declutter by the pilot when the bank angle is less than 2.8° . The pitch ladder is limited to $\pm 10^{\circ}$ from the flight path marker or aircraft waterline, whichever is greater. The unusual attitude display appears when the aircraft pitch exceeds $\pm 30^{\circ}$ or bank angle exceeds 65° (fixed wing) or 50° (rotorcraft).
- Autoset Automatically selects features or settings.
- Azimuth Angle between the north vector and the perpendicular projection of the star down onto the horizon. Usually measured in degrees (°).
- **Barometric Altimetry** Measurement of altitude based on the atmosphere (pressure and temperature).
- **Barometric Correction** Display and altitude correction for local barometric pressure.

- **Bezel** Faceplate of the IDU comprised of pushbuttons along the pushbuttons along the sides and rotary encoders along the bottom.
- Chroma Colorfulness relative to the brightness.
- **Conformally** Angle-preserving. Example: Traffic appears conformally on the PFD.
- **Course Deviation Indicator** Display of course deviation from selected course, including a To-From indicator.
- **Critical Flight Phase** Phase(s) of flight where the failure mode would result in a hazard condition using flight phases. For example, failure of ILS would only be a hazard condition during approach and landing.
- **Crossfill** Transfer of data and information between IDUs in a dual system with two PFDs configured.
- Cross-linked Synchronized across both EFIS systems.
- **Datalinked** Display of received data such as weather or traffic from peripheral systems such as ADS-B.
- **dBZ** Decibel relative to radar reflectivity (Z). Composite reflectivity shows the highest dBZ (strongest reflected energy) at all elevations. Unlike base reflectivity, which only shows reflected energy at a single elevation scan of the radar, composite reflectivity displays the highest reflectivity of ALL elevations scans. If there is heavier precipitation in the atmosphere over an area of lighter precipitation (i.e. rain has yet to reach the ground), the composite reflectivity displays the stronger dBZ level.
- **Deadband** Neutral zone where no action or changes are made.
- Directional Scale (Compass Rose or Arc) and Ownship Symbol – Display of general directional information. All MFD pages include a form of the compass rose with current heading pointer and aircraft "ownship" symbol.
- **Discrete** A logic input or output that identifies a condition or status of or for an ancillary system. Discretes are defined by the operating software or settings programmed specifically for the aircraft.

- **Display of ADF** Display of single ADF bearing information in the form of an RMI needle.
- **Display of Glideslope** Display of Glideslope 1 or Glideslope 2 in the form of vertical deviation dots and deviation on PFD or MFD HSI page.
- **Display of Lightning Cell Information** Display of lightning information from a WX-500 system and shown in the form of lightning cells. The pilot may show individual lightning strike data by selecting the dedicated WX-500 page.
- **Display of Localizer** Display of Localizer 1 or Localizer 2 in the form of horizontal deviation dots and deviation.
- **Display of Marker Beacon** Display of outer, middle, and inner marker beacons in the form of a color-coded circle with the corresponding letter (O, M, I).
- **Display of Traffic Information** When integrated with an appropriate traffic system, the PFD and MFD display traffic information in two formats. One format is via traffic symbols as shown on the PFD and MFD Map page and Traffic page. The second format is with the traffic pop-up thumbnail display showing traffic position in a full 360° format on the PFD.
- **Display of VOR RMI** Display of VOR1 and VOR2 bearing in the form of RMI needles.
- **Dot** (CDI scale referenced) represents an additional 2° for VOR and 1.25° for Localizer.
- **EFIS-Coupled** The EFIS is coupled to an autopilot and controls the lateral and vertical modes of the autopilot.
- **Failure Condition Hazard Description** A description of the failure mode to be analyzed.
- Flight Director (Selectable Function) Display of flight director in a single or dual cue format when selected for display on the PFD.
- Flight Path Marker (Velocity Vector) Display of aircraft's actual flight path, showing where the aircraft is going as opposed to where the aircraft is pointed.

- Flight Plan and Navigation Display Display of the active GPS WAAS/SBAS-based flight plan, including course line, waypoints, ground track, glide range, projected path, altitude capture predictor, approach procedure, missed approach procedure, and the aircraft present position on the active leg.
- **Geodetic** Set of reference points used to locate places on the earth.
- **Geodesic** A generalization of the notion of a straight line to curved spaces. The shortest route between two points on the Earth's surface.
- Geoid Global mean sea level.
- **G-Force and Fast/Slow Indicator** Indications to show the G-force on the aircraft or, for aircraft equipped with a compatible angle of attack computer, the deviation from the reference speed while in the landing configuration.
- Glideslope Sidelobes False glideslope signals.
- **GPS WAAS Course Deviation Indicator (CDI)** Display of CDI relative to selected course, either automatic based on active flight plan or manual based on pilot-selected OBS.
- **GPS WAAS Functions** The EFIS meets the GPS WAAS navigation and flight planning/management requirements of TSO-C146a (RTCA/DO-229D) for Class Gamma 3 equipment. These functions include navigation, flight planning (function select, flight plan generation and editing, selected waypoints, user waypoints, etc.), path definition including approach and departure paths, GPS altitude, dead reckoning, navigation modes with automatic mode switching, loss of navigation monitoring, loss of integrity monitoring, etc. The database used with the GPS WAAS functions meets the integrity requirements of RTCA/DO-200A.
- **Heading Bug** Display and control of selected heading using a bug. May be used to drive heading bug output to autopilot for HSIbased heading mode.
- **Heading Display** Display of heading with directional scale is provided at the top of the PFD. This is the same heading information provided on the MFD.

- Heading Mode Signal Output Conventional autopilot heading mode signal is a heading error output based on the difference between the EFIS desired heading and the actual aircraft heading. The EFIS desired heading is either the pilot-selected heading bug or a heading designed to achieve and maintain the active GPS-based flight plan.
- **Hectopascal (hPa)** International System of Units (SI) unit measure of pressure, equals one millibar (mbar).
- **HeliSAS** Genesys Aerosystems' helicopter autopilot and stability augmentation system.
- Horizontal Situation Indicator (Selectable Function) Display of VOR or localizer and glideslope deviation when selected for display on the PFD.
- HOTAS Hands On Throttle And Stick
- Hover Vector Display (Rotorcraft Only) Display of hover drift in a rotorcraft installation when the helicopter is traveling less than 30 knots airspeed.
- **Inches of Mercury (inHg)** Unit of atmospheric pressure used in the United States. Named for the use of mercurial barometers which equate height of a column of mercury with air pressure.

Inhibit – Prevention of activity or occurrence. Examples are:

XFILL INHBT and TAWS INHBT

- Integrated Peripherals Internal devices of the essential unit.
- **lonosphere** Region of the atmosphere between the stratosphere and exosphere, 50 to 250 miles (80 to 400 km) above the surface of the earth.
- International Standard Atmosphere (ISA) Standard model of the change of pressure, temperature, density, and viscosity over a wide range of altitudes or elevations.
- **Landing Gear Indication** When enabled on retractable landing gear aircraft, PFD shows indication of landing gear extended.
- **Lubber Line** Line marked on the compass showing the direction straight ahead.

- Mach Display Display of Mach number when the aircraft is traveling at or above 0.35 Mach. This function may be deselected by a setting in the IDU configuration (limits) file.
- **Magnetic Declination (MAGVAR)** Sometimes called magnetic variation; the angle between magnetic north and true north.
- Map Data Display of map data, including airspace, VFR/IFR airports, VHF navaids such as VOR/NDB/DME, jet/victor airways, and display range rings.
- **Menu Functions** The EFIS includes menus to access functions on both the PFD and the MFD.
- **Mesocyclonic** Contains a vortex of air within a convective; air rises and rotates around a vertical axis, often in the same direction as low pressure systems.
- Millibar (mbar) Metric (not SI) unit of pressure, one thousandth of a bar, which is about equal to the atmospheric pressure on Earth at sea level 1013 millibars.

Miscompare – Disparity of data or information. Examples are:

ALT MISCOMP	ATT MISCOMP
GS MISCOMP	HDG MISCOMP
LOC MISCOMP	PLT MISCOMP
	CPLT MISCOMP

GPS MISCOMP
IAS MISCOMP
RALT MISCOMP
and BARO MISCOMP

- **NavData®** Jeppesen's aeronautical database to navigate the global airspace system.
- Navigation Data Display Display of active waypoint, bearing to waypoint, and ground track based on active flight plan. The pilot may also select flight plan information as a mini-map (thumbnail map). These functions are analyzed as part of the GPS WAAS functions not the PFD functions.
- Navigation Log Display of navigation information based on active flight plan, including next waypoint, destination, estimated time remaining, and fuel totalizer-based range and endurance. This function may be deselected by a setting in the IDU configuration (limits) file. These functions are analyzed as part of the GPS WAAS functions not the MFD functions.

Navigation Mode Signal Output – Conventional autopilot Navigation mode signals are the course error output and the leftright deviation signals. Course error output is based on the difference between the EFIS selected course (OBS) and the actual aircraft heading. These signals are based on the selected navigation signal (VOR, GPS).

Nondirectional – Functions in all directions.

- **Noodle** Navigation Display (ND) projected path; curving path based upon the aircraft bank angle and groundspeed used effectively to assist in course interception and making small adjustments to bank angle for proper roll out.
- Nanoteslas (nT) A unit of measurement of the strength of the magnetic field. Earth's strongest magnetic field is located at the poles, and the weakest field is near the equator.
- **Obstructions Display** Display of obstructions identified in the embedded obstruction database which are within 8.5 NM of the aircraft present position. Non-threatening obstructions are displayed by color to identify altitude relative to the aircraft's current altitude (amber [yellow] < 2000' below, light red < 500' below, bright red = at or above aircraft). Threatening obstructions, defined as those that pierce the TAWS envelope, are identified by highlight when producing a caution and identified by flashing highlight when producing a warning. The database used with the obstruction functions meets the integrity requirements of RTCA/DO-200A.
- **Omnibearing** Magnetic bearing of an omni-range station.
- **Offset** When referring to parallel track of an active flight plan, "offset" implies the distance paralleling the original track. When referring to VNAV altitudes, "offset" refers to the distance before or after the waypoint the VNAV altitude must be reached.
- **Ownship** Principal eye-point; referring to icon of aircraft represented on display.
- Pitch Limit Indicator Appears when the aircraft is within 10 knots of stall speed, based on the VSI setting in the EFIS limits. The intent is to notify the pilot of a possible stall condition so corrective action is taken before the stall occurs. This function may be deselected by a setting in the IDU configuration (limits) file.

- Q-Routes Published RNAV routes, including Q-Routes and T-Routes, can be flight planned for use by the Genesys EFIS, subject to any limitations or requirements noted on enroute charts, in applicable advisory circulars, or by NOTAM. RNAV routes are depicted in blue on aeronautical charts and are identified by the letter "Q" or "T" followed by the airway number, e.g., Q35, T-205. Published RNAV routes are RNAV-2 except when specifically charted as RNAV-1.
- **QFE** Barometric setting that results in the altimeter displaying height above a reference elevation (e.g., airport or runway threshold).
- **QNE** Standard barometric setting (29.92 inHg or 1013 mbar) used to display pressure attitude for flight above the transition attitude.
- **QNH** Barometric setting that results in the altimeter displaying altitude above mean sea level at the reporting station.
- **Recency** State of occurrence, appearance, or origin.
- Selection and Display of Selected Course Omni-Bearing Select (OBS) function for the pilot to select the course for navigation. Selected course is displayed for reference.
- Settable V-Speeds, Targets The pilot may set certain V-speeds for reference during flight. In addition, the pilot may set certain information at any time for reference during flight, including target airspeed (with corresponding bug) and target altitude (with corresponding bug).
- Side in Command Side of aircraft control responsible for its operation.
- Skipped Waypoint A skipped waypoint is a waypoint associated with a dynamic termination leg with a zero length. These are either:
 - 1) An altitude termination leg when current aircraft altitude is above the termination altitude; or
 - System-created (i.e., not NavData® specified) intercept to a "Course to a Fix" leg where there is insufficient distance to calculate an intercept heading.

- Skyway VNAV/LNAV Guidance (Synthetic Vision) Display of GPS-based active navigation route, flight plan, procedure, or OBS course in a three-dimensional series of skyway boxes. Also known as Highway in the Sky (HITS).
- Slip Indicator Display of aircraft lateral accelerations via an integral slip/skid indicator function. The slip indicator is a rectangle just below the heading pointer that moves left and right to indicate the lateral acceleration sensed by the AHRS in the same manner as the ball in a mechanical slip indicator.
- **Strikefinder** Lightning detector system (WX-500) connected to EFIS and enabled through factory program settings.
- Suppressed Waypoint A suppressed waypoint (designated by brackets) is an airport associated with an IFR or VFR approach procedure.
- Symbology Use of symbols.
- T-Routes T-Routes are available for use by GPS or GPS/SBAS equipped aircraft from 1,200 feet above the surface (or in some instances higher) up to but not including 18.000 feet MSL. T-Routes are depicted on enroute low altitude charts and considered to include the same attributes of Low altitude airways in the Genesys Aerosystems EFIS declutter menus.
- Talker IDU providing data to external sensors and generating aural alerts. IDUs depend upon intra-system communications to determine which IDU on a side takes over "talker" responsibilities. Only one talker (transmit enabled) per side, two talkers in a two sided system, and a master talker PFD when considering aircraft limits. Any IDU may become a talker through auto reversionary means in the event of the PFD failing.
- **Terrain Display (PFD Artificial Horizon)** Conformal display of surrounding terrain presented with the artificial horizon, shown in the correct scale and perspective for the aircraft's current position and altitude. Includes conformal display of known runway locations, direction, scale, and perspective based on aircraft's current position and altitude.
- **Terrain Display and TAWS/HTAWS** Display of terrain, including identification and annunciation of threatening terrain in accordance with Terrain Awareness Warning System (TAWS)

requirements. Coloring scheme for SVS-TAWS PFD and MAP has been simplified as follows:

Non-alerting Terrain below aircraft – Olive Shades

Non-alerting terrain above aircraft – Brown Shades

TAWS FLTA Caution Terrain – Amber (Yellow)

TAWS FLTA Warning Terrain - Red

Obstacles Below aircraft – Amber (Yellow)

Obstacles above aircraft - Red

When over water – Deep Blue

Threatening terrain is determined by the requirements of TAWS TSO-C151b (fixed wing) and TSO-C194 HTAWS (rotorcraft). Threatening terrain is shaded amber (yellow) for caution situations or shaded red for warning situations per TSO-C151b and TSO-C194. TAWS cautions and warnings are accompanied by an amber (yellow) or red flag and an aural annunciation. TAWS Class A, TAWS Class B, TAWS Class C, Enhanced HTAWS, or HTAWS functions may be activated in the system prior to installation. The database used with the TAWS functions meets the integrity requirements of RTCA/DO-200A.

- **Timer Indication** Pilot-selected function for a count-up or countdown timer.
- **Traffic Display** When integrated with an appropriate traffic system, traffic is shown using standard TCAS symbology showing relative position, altitude, climb/decent, and color. The pilot may also show traffic information by selecting the dedicated traffic display page.
- Vertical Speed Display Display of altitude rate of change (vertical speed or climb rate).
- **V**_{PROC} (**Procedure Speed**) The aircraft's normal speed (in airspeed units and configured in EFIS limits) for flying instrument approaches (DPs, IAPs, STARs). This value is used for calculating the turn radius used for instrument procedure legs. This speed is not seen on the airspeed tape and only found in the aircraft speed settings inside the limits.

- Warning, Caution, and Advisory Flags Display of, warning, caution, and advisory indications accompanied by aural indications. The flags are stacked in the lower left corner of the PFD. Warnings are always shown at the top of the flag stack, followed by cautions and then advisories. These flags remain in view for as long as the situation exists.
- Waterline Indication of the aircraft's longitudinal axis or waterline (attitude).
- Wide Area Augmentation System (WAAS) Developed by Federal Aviation Administration to provide accurate positioning part of the Satellite Based Augmentation System (SBAS). Other countries have similar systems: Europe: European Geostationary Overlay System (EGNOS); Japan: MTSAT Satellite-based Augmentation System (MSAS); India: GPS Aided GEO Augmented Navigation system (GAGAN).
- **Wind Information** Display of wind direction, wind speed, and cross wind component.
- **Zulu Clock, Timers** Display of Zulu time (based on GPS data) and pilot-selected timer.

IDU-450 Version 8.0F Pilot Guide (Rotorcraft)

PRECISE PERFORMANCE. PROVEN EXPERIENCE. PERSONALIZED ATTENTION.

genesys-aerosystems.com | 1-817-215-7600

Genesys Aerosystems One S-TEC Way, Municipal Airport, Mineral Wells, TX 76067 USA