Pilot Operating Guide and Reference
(Rotorcraft)
IDU-680 EFIS Software Version 9.0A
Document 64-000098-090A

This pilot guide must be carried in the aircraft and made available to the pilot at all times. It can only be used in conjunction with the Federal Aviation Administration (FAA) approved Rotorcraft Flight Manual (RFM). Refer to the applicable RFM or Rotorcraft Flight Manual Supplement (RFMS) for aircraft specific information, such as unique ground tests, limitations, and emergency procedures.

© 2021 Genesys Aerosystems All Rights Reserved

No part of this document may be reproduced in any form, or by any means, without prior written consent of Genesys Aerosystems.

FlightLogic and Virtual VFR are trademarks of Genesys Aerosystems. All other brand names and trademarks are the property of their respective holders.

For service or repairs, contact an authorized Genesys Aerosystems dealer. For product support or inquiries regarding this pilot guide, contact Genesys Aerosystems.

One S-TEC Way, Municipal Airport, Mineral Wells TX 76067
Phone: (800) 872-7832
www.genesys-aerosystems.com
Revision Record

<table>
<thead>
<tr>
<th>Rev</th>
<th>Notes/Pages changed, added, or deleted by current revision</th>
<th>Date</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Retain this record in front of pilot guide. Upon receipt of a revision, insert changes and complete table below.

<table>
<thead>
<tr>
<th>Revision or Edition</th>
<th>Revision Date</th>
<th>Insertion Date/Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1. Introduction ... 3-1
 3.1.1. IDU-680 PFD Display Basic Mode ... 3-2
 3.1.2. IDU-680 MFD Display .. 3-3

3.2. Menu Functions .. 3-4

3.3. PFD Symbology .. 3-5
 3.3.1. Altitude Display ... 3-6
 3.3.1.1. Altitude Display (Metric Units) ... 3-7
 3.3.2. Altimeter Setting .. 3-7
 3.3.3. Selected Altitude Sub-Mode (Target Altitude) .. 3-9
 3.3.4. Altitude Display (VNAV Tile) .. 3-10
 3.3.5. VNAV Sub-Mode ... 3-10
 3.3.6. Minimum Altitude ... 3-11
 3.3.7. Vertical Speed Indicator .. 3-11
 3.3.8. Normal AGL Indication .. 3-12
 3.3.9. Analog AGL Indication ... 3-13
 3.3.10. Decision Height ... 3-14
 3.3.11. Airspeed Display ... 3-15
 3.3.11.1. Airspeed Bug .. 3-16
 3.3.12. Heading Display .. 3-18
 3.3.13. Pitch Scale ... 3-20
 3.3.14. Turn Rate Indicator ... 3-20
 3.3.15. Unusual Attitude Mode .. 3-21
 3.3.16. PFD Background .. 3-22
 3.3.17. Flight Path Marker (Velocity Vector) ... 3-26
 3.3.18. Hover Vector .. 3-28
 3.3.19. Bank Angle Scale ... 3-30
 3.3.20. Timer Indication and Flight Time ... 3-31
 3.3.21. Marker Beacon Symbology ... 3-31
 3.3.22. Flight Director Symbology .. 3-32
 3.3.23. Landing Gear Indication .. 3-34
 3.3.24. Course Deviation Indicator (CDI) ... 3-34
 3.3.25. OBS Setting of CDI ... 3-37
 3.3.26. Heading/Roll-Steering Sub-Mode ... 3-37
 3.3.27. Vertical Deviation Indicator (VDI) .. 3-37
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.28.</td>
<td>Highway in the Sky/Skyway</td>
<td>3-40</td>
</tr>
<tr>
<td>3.3.29.</td>
<td>Active Waypoint and Waypoint Identifier</td>
<td>3-41</td>
</tr>
<tr>
<td>3.3.30.</td>
<td>Mini Map</td>
<td>3-42</td>
</tr>
<tr>
<td>3.3.31.</td>
<td>Runways</td>
<td>3-44</td>
</tr>
<tr>
<td>3.3.32.</td>
<td>Heliports</td>
<td>3-45</td>
</tr>
<tr>
<td>3.4.</td>
<td>MFD Symbology</td>
<td>3-46</td>
</tr>
<tr>
<td>3.4.1.</td>
<td>Ownship Symbology</td>
<td>3-46</td>
</tr>
<tr>
<td>3.4.2.</td>
<td>Clock Options</td>
<td>3-46</td>
</tr>
<tr>
<td>3.4.3.</td>
<td>Air Data and Ground Speed</td>
<td>3-47</td>
</tr>
<tr>
<td>3.4.4.</td>
<td>Moving Map</td>
<td>3-48</td>
</tr>
<tr>
<td>3.4.5.</td>
<td>Compass Rose/Boundary Circle Symbol</td>
<td>3-50</td>
</tr>
<tr>
<td>3.4.6.</td>
<td>Waypoint Distance ETE/ETA Functions</td>
<td>3-50</td>
</tr>
<tr>
<td>3.4.7.</td>
<td>Navigation Data</td>
<td>3-51</td>
</tr>
<tr>
<td>3.4.8.</td>
<td>Analog Navigation Symbology</td>
<td>3-53</td>
</tr>
<tr>
<td>3.4.9.</td>
<td>Borders</td>
<td>3-55</td>
</tr>
<tr>
<td>3.4.10.</td>
<td>Terrain/Obstructions</td>
<td>3-55</td>
</tr>
<tr>
<td>3.4.11.</td>
<td>Pan Mode</td>
<td>3-57</td>
</tr>
<tr>
<td>3.4.12.</td>
<td>Direct Point</td>
<td>3-58</td>
</tr>
<tr>
<td>3.4.13.</td>
<td>Altitude Capture Predictor/Top-of-Descent</td>
<td>3-59</td>
</tr>
<tr>
<td>3.4.14.</td>
<td>Projected Path</td>
<td>3-60</td>
</tr>
<tr>
<td>3.4.15.</td>
<td>Active Flight Plan Path/Manual Course/Runways</td>
<td>3-60</td>
</tr>
<tr>
<td>3.4.15.1</td>
<td>Parallel Track</td>
<td>3-60</td>
</tr>
<tr>
<td>3.4.15.2</td>
<td>Active Flight Plan Path</td>
<td>3-60</td>
</tr>
<tr>
<td>3.4.15.3</td>
<td>Manual Course</td>
<td>3-61</td>
</tr>
<tr>
<td>3.4.16.</td>
<td>Field of View (FOV) Indication</td>
<td>3-61</td>
</tr>
<tr>
<td>3.4.17.</td>
<td>Range</td>
<td>3-62</td>
</tr>
<tr>
<td>3.4.18.</td>
<td>HSI Page</td>
<td>3-62</td>
</tr>
<tr>
<td>3.4.19.</td>
<td>Compass Rose Symbols</td>
<td>3-64</td>
</tr>
<tr>
<td>3.4.20.</td>
<td>Conventional HSI/PTR Format</td>
<td>3-64</td>
</tr>
<tr>
<td>3.4.21.</td>
<td>HSI CDI and VDI Scale</td>
<td>3-65</td>
</tr>
<tr>
<td>3.4.22.</td>
<td>Analog Navigation Symbology</td>
<td>3-66</td>
</tr>
<tr>
<td>3.4.23.</td>
<td>Air Data and Ground Speed</td>
<td>3-68</td>
</tr>
<tr>
<td>3.4.24.</td>
<td>Clock/Options</td>
<td>3-68</td>
</tr>
</tbody>
</table>
3.4.25. Fuel Totalizer/Waypoint Distance ETE/ETA Functions .. 3-68

3.5. Navigation Log (NAV Log) .. 3-69
 3.5.1. Clock and Ground Speed ... 3-69
 3.5.2. Fuel Remaining and Fuel Flow Data .. 3-69
 3.5.3. Waypoint Identifier Column .. 3-69
 3.5.4. VNAV and VNAV Offset Column ... 3-70
 3.5.5. Path Column ... 3-70
 3.5.6. Distance Column ... 3-71
 3.5.7. Estimated Time Enroute Column ... 3-71
 3.5.8. Estimated Time of Arrival Column ... 3-72
 3.5.9. Fuel Remaining .. 3-72

3.6. Hover Page ... 3-73
 3.6.1. Hover Page Screen Range ... 3-73
 3.6.2. Clock ... 3-73
 3.6.3. Air Data ... 3-73
 3.6.4. Hover Vector ... 3-73
 3.6.5. Compass Rose Symbols ... 3-74
 3.6.6. Active Flight Plan Path/Manual Course ... 3-75
 3.6.7. Navigation Data .. 3-76
 3.6.8. Projected Path ... 3-76
 3.6.9. AGL Indication ... 3-77

Section 4 Reversionary Modes .. 4-1
 4.1. Reversionary Modes ... 4-1
 4.1.1. OAT Sensor Failure Mode ... 4-5
 4.1.2. Heading Failure Mode ... 4-5
 4.1.3. PFD Screen Auto Reversion .. 4-5
 4.1.4. OASIS EICAS Single-Action Reversion ... 4-5
 4.1.5. GPS Failure ... 4-6
 4.1.6. PFD OASIS EICAS Automatic Reversion (When Configured) .. 4-8

4.2. PFD and MFD Failure Mode Examples .. 4-8
 4.2.1. PFD Failure Mode 0 (Normal Mode) .. 4-9
 4.2.2. MFD Failure Mode 0 (Normal Mode) ... 4-10
 4.2.3. MFD Failure Mode 0 (Essential Mode) .. 4-11
4.3. PFD Failure Mode 1 (Normal Mode) 4-12
 4.3.1. MFD Failure Mode 1 (Normal Mode) 4-13
 4.3.2. MFD Failure Mode 1 (Essential Mode) 4-14
4.4. PFD Failure Mode 2 (Normal Mode) 4-15
 4.4.1. MFD Failure Mode 2 (Normal Mode) 4-16
 4.4.2. MFD Failure Mode 2 (Essential Mode) 4-17
4.5. PFD Failure Mode 3 (Normal Mode) 4-18
 4.5.1. MFD Failure Mode 3 (Normal Mode) 4-19
 4.5.2. MFD Failure Mode 3 (Essential Mode) 4-20
4.6. PFD Failure Mode 4 (Normal Mode) 4-21
 4.6.1. MFD Failure Mode 4 (Normal Mode) 4-22
 4.6.2. MFD Failure Mode 4 (Essential Mode) 4-23
4.7. PFD Failure Mode 5 (Normal Mode) 4-24
 4.7.1. MFD Failure Mode 5 (Normal Mode) 4-25
 4.7.2. MFD Failure Mode 5 (Essential Mode) 4-26
4.8. PFD Failure Mode 6 (Normal Mode) 4-27
 4.8.1. MFD Failure Mode 6 (Normal Mode) 4-28
 4.8.2. MFD Failure Mode 6 (Essential Mode) 4-29
4.9. PFD Failure Mode 7 (Normal Mode) 4-30
 4.9.1. MFD Failure Mode 7 (Normal Mode) 4-31
 4.9.2. MFD Failure Mode 7 (Essential Mode) 4-32

Section 5 Menu Functions and Step-By-Step Procedures 5-1
 5.1. Menu Functions ... 5-1
 5.1.1. Menu Philosophy ... 5-2
 5.1.2. Avoidance of Autonomous Behavior 5-2
 5.2. Menu Synchronization ... 5-3
 5.3. Top-Level Menu .. 5-7
 5.3.1. PFD Normal Mode Top-Level Menu 5-7
 5.3.2. MFD Normal Mode Top-Level Menu 5-8
 5.3.3. PFD or MFD Essential Mode Top-Level Menu 5-10
 5.3.4. Audio Radio Management Optional Page 5-11
 5.3.5. Top-Level Menu Option Descriptions 5-11
 5.3.6. Top-Level Menu Automatic Pop-Up Function Descriptions ... 5-13
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.</td>
<td>First Page (PFD) .. 5-15</td>
</tr>
<tr>
<td>5.4.1.</td>
<td>PFD Page First-Level Option Descriptions 5-16</td>
</tr>
<tr>
<td>5.5.</td>
<td>First Level (MFD) .. 5-18</td>
</tr>
<tr>
<td>5.5.1.</td>
<td>MFD Page First-Level Option Descriptions 5-19</td>
</tr>
<tr>
<td>5.5.2.</td>
<td>OASIS Page First-Level in Essential Mode 5-20</td>
</tr>
<tr>
<td>5.6.</td>
<td>Flight Plan (FPL) Menu ... 5-21</td>
</tr>
<tr>
<td>5.6.1.</td>
<td>Flight Planner Page .. 5-21</td>
</tr>
<tr>
<td>5.6.2.</td>
<td>To Create an Overfly User Waypoint (Step-By-Step) 5-22</td>
</tr>
<tr>
<td>5.6.3.</td>
<td>Flight Plan (FPL) Menu Selecting and Activate on PFD (Step-By-Step) .. 5-23</td>
</tr>
<tr>
<td>5.6.4.</td>
<td>Flight Plan (FPL) Menu Create-Edit (Step-By-Step) 5-23</td>
</tr>
<tr>
<td>5.6.5.</td>
<td>Flight Plan (FPL) Menu Selection Edit Flight Plan (Step-By-Step) .. 5-26</td>
</tr>
<tr>
<td>5.6.6.</td>
<td>Activate Flight Plan on PFD or MFD (Step-By-Step) 5-29</td>
</tr>
<tr>
<td>5.6.7.</td>
<td>Reverse Flight Plan (Step-By-Step) 5-30</td>
</tr>
<tr>
<td>5.6.8.</td>
<td>Delete Flight Plan (Step-By-Step) 5-30</td>
</tr>
<tr>
<td>5.6.9.</td>
<td>Create User Waypoint (LAT-LON) (Step-By-Step) 5-31</td>
</tr>
<tr>
<td>5.6.10.</td>
<td>Create User Waypoint (RAD-DST) (Step-By-Step) 5-32</td>
</tr>
<tr>
<td>5.6.11.</td>
<td>Edit User Waypoint (Step-By-Step) 5-34</td>
</tr>
<tr>
<td>5.6.12.</td>
<td>Delete User Waypoint (Step-By-Step) 5-35</td>
</tr>
<tr>
<td>5.6.13.</td>
<td>RAIM Prediction (Step-By-Step) 5-36</td>
</tr>
<tr>
<td>5.7.</td>
<td>Active Flight Plan (ACTV) Menu 5-38</td>
</tr>
<tr>
<td>5.7.1.</td>
<td>Active Flight Plan (ACTV) Menu Options 5-38</td>
</tr>
<tr>
<td>5.7.2.</td>
<td>Active Flight Plan (ACTV) Menu Options (Step-By-Step) 5-43</td>
</tr>
<tr>
<td>5.7.3.</td>
<td>Active Flight Plan (ACTV) Menu (Step-By-Step) 5-44</td>
</tr>
<tr>
<td>5.7.4.</td>
<td>Active Flight Plan (ACTV) Options NRST Menu Option (Step-By-Step) .. 5-45</td>
</tr>
<tr>
<td>5.8.</td>
<td>Information (INFO) Menu .. 5-46</td>
</tr>
<tr>
<td>5.8.1.</td>
<td>Information (INFO) Menu (Step-By-Step) 5-48</td>
</tr>
<tr>
<td>5.9.</td>
<td>Omnibearing Selector (OBS) Menu (without NAV Preview) 5-49</td>
</tr>
<tr>
<td>5.9.1.</td>
<td>Omnibearing Selector (OBS) Menu (Step-By-Step) 5-51</td>
</tr>
<tr>
<td>5.9.2.</td>
<td>True North and Magnetic North Menu (Step-by-Step) 5-53</td>
</tr>
<tr>
<td>5.10.</td>
<td>Heading Bug (HDG) Menu .. 5-53</td>
</tr>
</tbody>
</table>
Table of Contents

5.10.1. HDG Bug (HDG) with Analog Autopilot (Step-By-Step) ... 5-54
5.10.2. HDG Bug (HDG) (Step-By-Step) .. 5-55
5.11. Altitude Bug Menu... 5-55
5.12. Nearest (NRST) Menu ... 5-55
 5.12.1. Nearest (NRST) Menu (Step-By-Step) .. 5-57
 5.12.2. Nearest (NRST) Menu ILS (Step-By-Step) ... 5-58
5.13. Direct Menu.. 5-59
 5.13.1. Direct Menu (Step-By-Step) ... 5-61
5.14. TIME Menu.. 5-62
 5.14.1. TIME Menu (Step-By-Step) ... 5-63
5.15. PFD Source Menu ... 5-64
5.16. PFD BUGS Menu ... 5-65
 5.16.1. PFD BUGS Menu (Step-By-Step) .. 5-66
5.17. PFD Declutter (DCLTR) Menu ... 5-69
 5.17.1. PFD DCLTR Menu (Step-By-Step) .. 5-70
5.18. Altimeter (BARO) Menu ... 5-72
 5.18.1. Altimeter (BARO) Menu (Step-By-Step) .. 5-74
5.19. FAULTS Menu ... 5-75
 5.19.1. FAULTS Menu (Step-By-Step) (PFD) ... 5-77
 5.19.2. FAULTS Menu (Step-By-Step) (MFD) ... 5-77
5.20. Fuel Totalizer Quantity Setting (SET FUEL) Menu ... 5-77
5.21. PAGE Menu .. 5-78
 5.21.1. MFD Page (Step-By-Step) .. 5-79
 5.21.2. HSI Page (Step-By-Step) (MFD) ... 5-79
5.22. HSI Declutter (DCLTR) Menu ... 5-80
 5.22.1. HSI Declutter (DCLTR) Menu (Step-By-Step) ... 5-81
5.23. NAV LOG Page (PFD or MFD) ... 5-82
5.24. MFD Map Page Format Menu .. 5-82
 5.24.1. Map Page Format (Step-By-Step) .. 5-85
 5.24.1.1. Changing MFD Page Orientation .. 5-85
 5.24.1.2. Adding LAT/LON to MFD Map Page ... 5-86
Section 6 Quick Start Tutorial ... 6-1
Section 7 IFR Procedures ... 7-1
7.1. EFIS Navigation Operational Capabilities 7-1
7.2. Active Flight Plan ... 7-6
7.3. IFR Procedures ... 7-12
7.4. Overview of Procedures and Instrument Approaches 7-13
 7.4.1. Operations Outside GPS/SBAS Coverage Area 7-14
 7.4.2. Highway in the Sky (Skyway) 7-15
 7.4.3. Waypoint Sequencing ... 7-21
 7.4.4. Fly-Over Waypoints .. 7-22
 7.4.5. Fly-By Waypoints .. 7-24
 7.4.6. Direct-To ... 7-27
 7.4.6.1. Direct-To Unnamed Waypoints Inside Procedures .. 7-27
7.5. Discontinuities ... 7-27
 7.5.1. Manual Termination Legs ... 7-28
7.6. Magnetic Course .. 7-28
 7.6.1. AHRS Modes for Heading Source 7-29
 7.6.2. GPS Altitude .. 7-29
 7.6.3. Dead Reckoning ... 7-29
 7.6.4. Geodesic Path Computation Accuracy 7-30
 7.6.5. Parallel Offsets ... 7-30
7.7. Navigation Database Requirements 7-33
7.8. Default GPS/SBAS Navigation Modes 7-34
7.9. GPS/SBAS CDI Scale ... 7-36
 7.9.1. Alerting Scheme for LNAV/VNAV Procedures 7-37
 7.9.2. Alerting Scheme for LPV/LP Procedures 7-38
7.10. Approach Type Selection .. 7-41
 7.10.1. Approach Path Definition (GPS Procedures) 7-43
 7.10.2. VTF IFR Approach ... 7-43
 7.10.3. VTF VFR Approach .. 7-43
7.11. Missed Approach and Departure Path Definition 7-44
7.12. Loss of Navigation Monitoring .. 7-45
 7.12.1. Automatic RNP Mode .. 7-46
 7.12.2. Faults Menu ... 7-46
 7.12.3. Loss of Integrity Caution Monitoring 7-47
7.13. Selection of an Instrument Procedure 7-48
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.13.1</td>
<td>Standard Instrument Departure (DP) (Step-By-Step) 7-49</td>
</tr>
<tr>
<td>7.13.2</td>
<td>VFR Approach to User Waypoint (Step-By-Step) 7-51</td>
</tr>
<tr>
<td>7.13.3</td>
<td>Standard Terminal Arrival Route (STAR) (Step-By-Step) 7-55</td>
</tr>
<tr>
<td>7.13.4</td>
<td>ILS Instrument Approach (Step-By-Step) 7-58</td>
</tr>
<tr>
<td>7.13.5</td>
<td>ILS Approach with Manual Termination Leg in MAP (Step-By-Step) 7-63</td>
</tr>
<tr>
<td>7.13.6</td>
<td>LOC Back Course Instrument Approach (Step-By-Step) 7-67</td>
</tr>
<tr>
<td>7.13.7</td>
<td>RNAV (GPS) Instrument Approach to LP Minima (Step-By-Step) 7-72</td>
</tr>
<tr>
<td>7.13.8</td>
<td>RNAV (GPS) Instrument Approach to LPV Minima (Step-By-Step) 7-77</td>
</tr>
<tr>
<td>7.13.9</td>
<td>RNAV (RNP) Instrument Approach to RNP 0.30 DA (Step-By-Step) 7-83</td>
</tr>
<tr>
<td>7.13.10</td>
<td>NRST ILS Instrument Approach (Step-By-Step) 7-89</td>
</tr>
<tr>
<td>7.13.11</td>
<td>VOR/DME Instrument Approach (Step-By-Step) 7-94</td>
</tr>
<tr>
<td>7.13.12</td>
<td>ILS or LOC RWY 1 Instrument Approach with Missed Approach Flown to Alternate Fix (Step-By-Step) 7-99</td>
</tr>
</tbody>
</table>

Section 8 Terrain Awareness Warning System 8-1

8.1 HTAWS (Terrain Awareness and Warning System) Functions 8-1
8.2 Terrain Display 8-1
8.3 Forward Looking Terrain Alert Function 8-2
 8.3.1 FLTA Modes 8-3
 8.3.2 GPS/SBAS Navigation Mode Slaving 8-3
 8.3.3 Default FLTA Mode 8-3
 8.3.4 FLTA Search Envelope 8-4
 8.3.5 FLTA Alerts and Automatic Pop-Up 8-7
8.4 Excessive Rate of Descent (GPWS Mode 1) 8-8
8.5 Excessive Closure Rate to Terrain (GPWS Mode 2) 8-9
8.6 Sink Rate after Takeoff or Missed Approach (GPWS Mode 3) 8-11
8.7 Flight into Terrain when not in Landing Configuration (GPWS Mode 4) 8-11
8.8 Excessive Downward Deviation from an ILS Glide Slope (GPWS Mode 5) 8-13
Table of Contents

8.9. External Sensors and Switches ... 8-13
8.10. TAWS Basic Parameter Determination .. 8-15
8.11. TAWS Automatic Inhibit Functions (Normal Operation) 8-17
 8.11.1. TAWS Automatic Inhibit Functions (Abnormal Operation) 8-18
 8.11.2. TAWS Manual Inhibit Functions .. 8-20
8.12. TAWS Selections on PFD .. 8-22

Section 9

9.1. Appendix ... 9-1
9.2. Operating Tips .. 9-1
9.3. Domestic or International Flight Planning 9-1
9.4. Descent Planning .. 9-1
9.5. Terrain Clearance .. 9-1
9.6. Departure Airport Information .. 9-2
9.7. Unique Names for Flight Plans .. 9-2
9.8. Altimeter Settings .. 9-2
9.9. Warnings, Cautions, and Advisories .. 9-2
9.11. Altitude Miscompare Threshold .. 9-4
9.15. Data Logging and Retrieval ... 9-6
 9.15.1. Delete LOG Files .. 9-7
 9.15.2. Logged Flags and Custom CAS Messages 9-7
9.16. Routes and Waypoints ... 9-8
 9.16.1. VFR Flight Planning .. 9-8
 9.16.2. Download Routes and User Waypoints 9-8
 9.16.3. Upload Routes and User Waypoints 9-9
 9.16.4. Delete Routes and User Waypoints 9-9
9.18. Changing Instrument Approach Procedure at Same Airport 9-10
9.19. EFIS NAV Source Management .. 9-12
9.20. EFIS Training Tool (ETT) .. 9-15
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.21.</td>
<td>USB Flash Drive Limitations</td>
</tr>
<tr>
<td>T 1.</td>
<td>Traffic Symbology</td>
</tr>
<tr>
<td>T 1.1.</td>
<td>Traffic Display Definitions</td>
</tr>
<tr>
<td>T 1.2.</td>
<td>Traffic Rendering Rules</td>
</tr>
<tr>
<td>T 1.3.</td>
<td>Traffic Thumbnail</td>
</tr>
<tr>
<td>T 1.4.</td>
<td>TCAS-II Traffic Resolution Advisory Indicator</td>
</tr>
<tr>
<td>T 2.</td>
<td>Dedicated Traffic Page</td>
</tr>
<tr>
<td>T 2.1.</td>
<td>MFD Page (PAGE) Menu</td>
</tr>
<tr>
<td>T 2.2.</td>
<td>PFD First-Level Menu in Normal Mode</td>
</tr>
<tr>
<td>T 2.3.</td>
<td>MFD First-Level Menu in Normal Mode (MFD Page in Both Areas)</td>
</tr>
<tr>
<td>T 2.4.</td>
<td>Traffic Page (Step-By-Step) (PFD or MFD)</td>
</tr>
<tr>
<td>T 2.5.</td>
<td>Traffic Display Format</td>
</tr>
<tr>
<td>T 2.6.</td>
<td>Traffic Page Screen Range</td>
</tr>
<tr>
<td>T 2.7.</td>
<td>Compass Rose Symbols</td>
</tr>
<tr>
<td>T 2.8.</td>
<td>Clock and Options</td>
</tr>
<tr>
<td>T 2.9.</td>
<td>Fuel Totalizer/Waypoint Distance Functions</td>
</tr>
<tr>
<td>T 2.10.</td>
<td>Air Data and Ground Speed</td>
</tr>
<tr>
<td>T 2.11.</td>
<td>MFD Traffic Format Menu</td>
</tr>
<tr>
<td>T 2.12.</td>
<td>Flight Level Option</td>
</tr>
<tr>
<td>T 3.</td>
<td>Flight Level Option PFD Declutter (DCLTR) Menu</td>
</tr>
<tr>
<td>T 4.</td>
<td>MFD Fault Display Menu</td>
</tr>
<tr>
<td>T 5.</td>
<td>Menu Synchronization</td>
</tr>
<tr>
<td>RBP 1.</td>
<td>Remote Bugs Panel</td>
</tr>
<tr>
<td>S 1.</td>
<td>WX-500 Data</td>
</tr>
<tr>
<td>S 2.</td>
<td>Dedicated Strikes Page</td>
</tr>
<tr>
<td>S 2.1.</td>
<td>MFD Page Menu</td>
</tr>
<tr>
<td>S 2.1.1</td>
<td>MFD Strikes Page (Step-By-Step)</td>
</tr>
<tr>
<td>S 2.2.</td>
<td>Page Screen Range</td>
</tr>
<tr>
<td>S 2.3.</td>
<td>Air Data and Ground Speed</td>
</tr>
<tr>
<td>S 2.4.</td>
<td>Clock and Options</td>
</tr>
<tr>
<td>S 2.5.</td>
<td>Active Flight Plan Path/Manual Course/Runways</td>
</tr>
<tr>
<td>S 2.6.</td>
<td>Fuel Totalizer/Waypoint Distance Functions</td>
</tr>
<tr>
<td>S 2.7.</td>
<td>PFD First-Level Menu in Normal Mode</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>S 2.8.</td>
<td>MFD First-Level Menu in Normal Mode</td>
</tr>
<tr>
<td>S 2.9.</td>
<td>First-Level Option Descriptions</td>
</tr>
<tr>
<td>S 2.10.</td>
<td>Strikes Format Menu</td>
</tr>
<tr>
<td>S 2.10.1</td>
<td>OASIS Strikes Page Screen Overlays</td>
</tr>
<tr>
<td>S 3.</td>
<td>MFD Fault Display Menu</td>
</tr>
<tr>
<td>S 4.</td>
<td>Menu Synchronization</td>
</tr>
<tr>
<td>D 1.</td>
<td>Datalink Symbology</td>
</tr>
<tr>
<td>D 2.</td>
<td>MFD Page (PAGE) Menu</td>
</tr>
<tr>
<td>D 2.1.</td>
<td>Ownship Symbol</td>
</tr>
<tr>
<td>D 2.2.</td>
<td>Datalink Page Legend</td>
</tr>
<tr>
<td>D 2.3.</td>
<td>Air Data and Ground Speed</td>
</tr>
<tr>
<td>D 2.4.</td>
<td>Clock/Options</td>
</tr>
<tr>
<td>D 2.5.</td>
<td>Datalink Page Screen Orientation</td>
</tr>
<tr>
<td>D 2.6.</td>
<td>Boundary Circle Symbols</td>
</tr>
<tr>
<td>D 2.7.</td>
<td>Active Flight Plan Path/Manual Course/Runways</td>
</tr>
<tr>
<td>D 2.8.</td>
<td>Borders</td>
</tr>
<tr>
<td>D 2.9.</td>
<td>Pan Mode</td>
</tr>
<tr>
<td>D 3.</td>
<td>Top-Level Menu Option Descriptions</td>
</tr>
<tr>
<td>D 4.</td>
<td>Top-Level Menu Automatic Pop-Up Function Descriptions</td>
</tr>
<tr>
<td>D 5.</td>
<td>MFD Page First-Level Option Descriptions</td>
</tr>
<tr>
<td>D 6.</td>
<td>MFD Datalink Format Menu</td>
</tr>
<tr>
<td>D 6.1.</td>
<td>MFD DATALINK Page (Step-By-Step)</td>
</tr>
<tr>
<td>D 7.</td>
<td>Information (INFO) Menu</td>
</tr>
<tr>
<td>D 8.</td>
<td>Fault Display Menu</td>
</tr>
<tr>
<td>D 9.</td>
<td>Menu Synchronization</td>
</tr>
<tr>
<td>WX 1.</td>
<td>Weather Radar</td>
</tr>
<tr>
<td>WX 2.</td>
<td>Weather Radar Page</td>
</tr>
<tr>
<td>WX 2.1.</td>
<td>MFD Page Menu</td>
</tr>
<tr>
<td>WX 2.2.</td>
<td>First-Level Menu Option Descriptions</td>
</tr>
<tr>
<td>WX 2.3.</td>
<td>Weather Radar Page Menu</td>
</tr>
<tr>
<td>WX 2.3.1</td>
<td>Managing RDR-2100 Weather Radar Menus (PFD) (Step-By-Step)</td>
</tr>
<tr>
<td>WX 2.3.2</td>
<td>Managing RDR-2100 Weather Radar Menus (MFD) (Top Area) (Step-By-Step)</td>
</tr>
<tr>
<td>WX 2.3.3.</td>
<td>Managing RDR-2100 Weather Radar Menus (MFD) (BTM Area) (Step-By-Step)</td>
</tr>
<tr>
<td>WX 2.3.4.</td>
<td>Managing RDR-2000 Weather Radar Menus (PFD) (Step-By-Step)</td>
</tr>
<tr>
<td>WX 2.3.5.</td>
<td>Managing RDR-2000 Weather Radar Menus (MFD) (Step-By-Step)</td>
</tr>
<tr>
<td>WX 2.4.</td>
<td>Horizontal/Vertical Profile Depiction</td>
</tr>
<tr>
<td>WX 2.5.</td>
<td>Weather Page Screen Range</td>
</tr>
<tr>
<td>WX 2.6.</td>
<td>Track Line</td>
</tr>
<tr>
<td>WX 2.7.</td>
<td>Active Flight Plan Path/Manual Course/Runways</td>
</tr>
<tr>
<td>WX 2.8.</td>
<td>Weather Radar Return Data</td>
</tr>
<tr>
<td>WX 2.9.</td>
<td>Air Data</td>
</tr>
<tr>
<td>WX 2.10.</td>
<td>Waypoint Distance</td>
</tr>
<tr>
<td>WX 2.11.</td>
<td>Clock/Options</td>
</tr>
<tr>
<td>WX 3.</td>
<td>MFD Fault Display Menu</td>
</tr>
<tr>
<td>WX 4.</td>
<td>Menu Synchronization</td>
</tr>
<tr>
<td>V 1.</td>
<td>Video Input Page</td>
</tr>
<tr>
<td>V 1.1.</td>
<td>Top-Level Menu Option Descriptions</td>
</tr>
<tr>
<td>V 1.2.</td>
<td>PFD Page First-Level Option Descriptions</td>
</tr>
<tr>
<td>V 1.3.</td>
<td>MFD Page First-Level Option Descriptions</td>
</tr>
<tr>
<td>V 1.4.</td>
<td>Pan Mode</td>
</tr>
<tr>
<td>V 2.</td>
<td>Menu Synchronization</td>
</tr>
<tr>
<td>RD 1.</td>
<td>Primary Flight Instrumentation</td>
</tr>
<tr>
<td>RD 1.1.</td>
<td>Pitch Scale</td>
</tr>
<tr>
<td>RD 1.2.</td>
<td>Flight Director Symbology</td>
</tr>
<tr>
<td>RD 1.3.</td>
<td>Marker Beacon Indicators</td>
</tr>
<tr>
<td>RD 1.4.</td>
<td>Unusual Attitude Mode</td>
</tr>
<tr>
<td>RD 1.5.</td>
<td>Bank Angle Scale</td>
</tr>
<tr>
<td>RD 1.6.</td>
<td>AGL Indication</td>
</tr>
<tr>
<td>RD 1.7.</td>
<td>Airspeed Display Normal and with Loss of ADC</td>
</tr>
<tr>
<td>RD 1.8.</td>
<td>Altimeter</td>
</tr>
<tr>
<td>RD 2.</td>
<td>Altitude Display</td>
</tr>
<tr>
<td>RD 3.</td>
<td>Vertical Speed Indicator</td>
</tr>
<tr>
<td>RD 4.</td>
<td>Heading Display</td>
</tr>
<tr>
<td>RD 5.</td>
<td>Turn Rate Indicator</td>
</tr>
<tr>
<td>RD 6.</td>
<td>Timer Indication .. RD-10</td>
</tr>
<tr>
<td>RD 7.</td>
<td>Vertical Deviation Indicator (VDI).. RD-11</td>
</tr>
<tr>
<td>SAR 1.</td>
<td>Search and Rescue (SAR) Patterns .. SAR-1</td>
</tr>
<tr>
<td>SAR 1.1.</td>
<td>SAR Pattern Step-by-Step Procedures SAR-1</td>
</tr>
<tr>
<td>SAR 2.</td>
<td>Expanding Square Pattern .. SAR-2</td>
</tr>
<tr>
<td>SAR 2.1.</td>
<td>Expanding Square Pattern (Step-By-Step) Procedure SAR-2</td>
</tr>
<tr>
<td>SAR 3.</td>
<td>Rising Ladder Pattern .. SAR-6</td>
</tr>
<tr>
<td>SAR 4.</td>
<td>Orbit Pattern .. SAR-8</td>
</tr>
<tr>
<td>SAR 5.</td>
<td>Race Track Pattern ... SAR-9</td>
</tr>
<tr>
<td>SAR 6.</td>
<td>Sector Search Pattern .. SAR-11</td>
</tr>
<tr>
<td>ECBU 1.</td>
<td>Electronic Circuit Breaker ... ECBU-1</td>
</tr>
<tr>
<td>ECBU 1.1.</td>
<td>Top-Level Menu (PFD/MFD Essential Mode/MFD Normal Mode) ECBU-1</td>
</tr>
<tr>
<td>ECBU 2.</td>
<td>First-Level Menu Option Descriptions ECBU-2</td>
</tr>
<tr>
<td>ECBU 3.</td>
<td>PFD Page First Level ... ECBU-3</td>
</tr>
<tr>
<td>ECBU 4.</td>
<td>MFD Page First Level ... ECBU-3</td>
</tr>
<tr>
<td>ECBU 5.</td>
<td>Warning/Caution/Advisory Alerts ... ECBU-4</td>
</tr>
<tr>
<td>ECBU 6.</td>
<td>Breakers Page ... ECBU-4</td>
</tr>
</tbody>
</table>

INDEX

GLOSSARY
List of Figures and Tables

FIGURE 1-1: IDU-680 INPUT IDENTIFICATION .. 1-1
TABLE 2-1: PERTINENT EFIS LIMITS SETTINGS ... 2-12
FIGURE 2-1: IDU-680 PRIMARY FLIGHT DISPLAY (PFD) AND MAP PAGE ... 2-15
FIGURE 2-2: IDU-680 MULTIFUNCTION DISPLAY (MFD) 2-16
FIGURE 2-3: SYSTEM DIAGRAM .. 2-17
TABLE 2-2: IDU SOFTWARE VERSION AND PART NUMBER 2-18
FIGURE 2-4: IDU-680 INITIALIZATION SCREEN .. 2-18
TABLE 2-3: CPU/IDU NUMBER DESIGNATION ... 2-18
FIGURE 2-5: LOGO SCREEN WITH “TESTING” .. 2-21
FIGURE 2-6: CRC SCREEN .. 2-22
FIGURE 2-7: TWO-MINUTE COUNTDOWN SCREEN 2-22
FIGURE 2-8: QUICK START SCREEN ... 2-23
FIGURE 2-9: IDU #1 PFI ON TOP AND MAP ON BOTTOM 2-24
FIGURE 2-10: MFD NORMAL MODE ... 2-25
TABLE 2-4: COLOR CONVENTIONS ... 2-27
FIGURE 2-11: TIME-CRITICAL WARNING AND CAUTION ALERTS 2-29
TABLE 2-5: TIME-CRITICAL WARNING AND CAUTION ALERTS IN PRIMARY FIELD OF VIEW ... 2-30
TABLE 2-6: TIME-CRITICAL WARNING AND CAUTION ALERTS 2-30
FIGURE 2-12: WARNING ALERTS .. 2-32
TABLE 2-7: WARNING ALERT ELEMENTS ... 2-32
TABLE 2-8: WARNING ALERT ELEMENTS ... 2-32
FIGURE 2-13: CAUTION ALERTS .. 2-34
TABLE 2-9: CAUTION ALERT ELEMENTS .. 2-34
TABLE 2-10: CAUTION ALERTS ... 2-34
TABLE 2-11: SIDE-SPECIFIC CAUTION ALERTS .. 2-42
FIGURE 2-14: ADVISORY ALERTS ... 2-42
TABLE 2-12: ADVISORY ALERT ELEMENTS .. 2-42
TABLE 2-13: ADVISORY ALERTS ... 2-43
TABLE 2-14: SIDE-SPECIFIC ADVISORY ALERTS .. 2-45
TABLE 2-15: AUDIO-ONLY CAUTION AND ADVISORY ALERTS 2-47
FIGURE 3-1: PFD IN NORMAL MODE .. 3-1
FIGURE 3-2: PFD IN BASIC MODE (WITH COMPASS ROSE DETECTED ON BOTTOM AREA) .. 3-2
FIGURE 3-3: PFD IN BASIC MODE (WITHOUT COMPASS ROSE DETECTED ON BOTTOM AREA) .. 3-2
FIGURE 3-4: MFD IN NORMAL MODE WITH HSI ON TOP AND MAP ON BOTTOM .. 3-3
FIGURE 3-5: MFD IN ESSENTIAL MODE .. 3-4
FIGURE 3-6: MENU FUNCTIONS ... 3-4
FIGURE 3-7: KNOB FUNCTIONS .. 3-5
FIGURE 3-8: MENU MANAGEMENT ... 3-5
FIGURE 3-9: PFD SYMBOLOGY .. 3-6
FIGURE 3-10: ALTITUDE DISPLAY ... 3-7
FIGURE 3-11: ALTITUDE DISPLAY (METRIC UNITS) 3-7
List of Figures and Tables

FIGURE 3-12: SELECTING ALTIMETER SETTING ... 3-7
FIGURE 3-13: ALTIMETER SETTING .. 3-8
FIGURE 3-14: TARGET ALTITUDE BUG (VERTICALLY INTEGRATED) 3-9
FIGURE 3-15: TARGET ALTITUDE BUG (NOT VERTICALLY INTEGRATED) 3-9
FIGURE 3-16: ALTITUDE DISPLAY (VNAV TILE) .. 3-10
FIGURE 3-17: VNAV SUB-MODE (NOT VERTICALLY INTEGRATED) 3-10
FIGURE 3-18: VNAV SUB-MODE (VERTICALLY INTEGRATED) AUTOPILOT MODE ANNUNCIATION .. 3-10
FIGURE 3-19: VNAV SUB-MODE (VERTICALLY INTEGRATED) .. 3-11
FIGURE 3-20: MINIMUM ALTITUDE .. 3-11
FIGURE 3-21: VSI .. 3-12
FIGURE 3-22: VSI BUG (VERTICALLY INTEGRATED) ... 3-12
FIGURE 3-23: NORMAL AGL INDICATION .. 3-13
TABLE 3-1: AGL INDICATION (W/RALT SOURCE) ... 3-13
FIGURE 3-24: ANALOG AGL INDICATION ... 3-13
TABLE 3-2: ANALOG AGL INDICATOR ... 3-14
TABLE 3-3: ANALOG AGL INDICATOR MARKINGS ... 3-14
FIGURE 3-25: DECISION HEIGHT ... 3-15
FIGURE 3-26: AIRSPEED DISPLAY .. 3-15
FIGURE 3-27: AIRSPEED TREND .. 3-16
FIGURE 3-28: AIRSPEED SCALE FAR PART 27/29 ... 3-16
TABLE 3-4: AIRSPEED BUG LIMITS ... 3-16
FIGURE 3-29: AIRSPEED SCALE BUG ... 3-17
TABLE 3-5: AIRSPEED BUG SETTING ANNUNCIATION AND BUG COLORS ... 3-17
FIGURE 3-30: AIRSPEED SCALE BUG INDICATION .. 3-17
FIGURE 3-31: HEADING DISPLAY .. 3-18
FIGURE 3-32: DAMPENED INTEGRAL SLIP INDICATOR ... 3-18
FIGURE 3-33: DG INDICATED WHEN AHRS IN DG MODE .. 3-18
TABLE 3-6: HEADING DISPLAY ... 3-19
FIGURE 3-34: PITCH SCALE .. 3-20
FIGURE 3-35: PITCH SCALE ZENITH AND NADIR SYMBOL ... 3-20
FIGURE 3-36: TURN RATE Indicator (SELECTED FROM DECLUTTER MENU) 3-21
FIGURE 3-37: UNUSUAL ATTITUDE MODE .. 3-21
FIGURE 3-38: PFD TERRAIN AND OBSTRUCTIONS ... 3-22
TABLE 3-7: LAT-LON RESOLUTION BOUNDARIES ... 3-23
TABLE 3-8: TERRAIN AND OBSTRUCTION RENDERING LEVELS 3-24
FIGURE 3-39: PFD WITH OBSTRUCTIONS ... 3-25
FIGURE 3-40: PFD WITH TERRAIN DESSELECT OPTIONS .. 3-26
FIGURE 3-41: FLIGHT PATH MARKER ... 3-27
FIGURE 3-42: FLIGHT PATH MARKER VIEWS .. 3-27
FIGURE 3-43: FLIGHT PATH MARKER GRAYED TO INDICATE DEGRADED CONDITION WITH GPS Failure .. 3-28
FIGURE 3-44: FLIGHT PATH MARKER ABSENT (UNUSUAL ATTITUDE MODE) 3-28
FIGURE 3-45: PFD HOVER VECTOR SYMBOLOGY ... 3-28
FIGURE 3-46: HOVER VECTOR ... 3-29
FIGURE 3-47: PFD BANK SCALE CONFIGURATION ... 3-30
FIGURE 3-48: PFD BANK SCALE ... 3-31
FIGURE 3-49: TIMER INDICATION .. 3-31
FIGURE 3-50: FLIGHT TIME .. 3-31
FIGURE 3-51: MARKER BEACONS .. 3-32
FIGURE 3-52: FLIGHT DIRECTOR FD1 SINGLE CUE 3-32
FIGURE 3-53: FLIGHT DIRECTOR FD1 SINGLE CUE (BASIC MODE WITH COMPASS ROSE DETECTED ON BOTTOM AREA) 3-33
FIGURE 3-54: FLIGHT DIRECTOR FD2 DUAL CUE (NORMAL MODE) 3-33
FIGURE 3-55: FLIGHT DIRECTOR FD2 DUAL CUE (BASIC MODE WITHOUT COMPASS ROSE DETECTED ON BOTTOM AREA) 3-34
FIGURE 3-56: LANDING GEAR INDICATION ... 3-34
FIGURE 3-57: COURSE DEVIATION INDICATOR ... 3-34
TABLE 3-9: CDI BEHAVIOR AND COLOR .. 3-35
FIGURE 3-58: VERTICAL DEVIATION INDICATOR (DUAL SENSORS) 3-37
FIGURE 3-59: VERTICAL DEVIATION INDICATOR (SINGLE SENSOR) 3-38
TABLE 3-10: VERTICAL DEVIATION INDICATOR BEHAVIOR 3-38
FIGURE 3-60: VDI COLOR DURING GPS/SBAS LON OR VLON 3-40
FIGURE 3-61: HIGHWAY IN THE SKY .. 3-40
FIGURE 3-62: ACTIVE WAYPOINT ... 3-41
FIGURE 3-63: MINI MAP ... 3-42
TABLE 3-11: MINI MAP BEHAVIOR (WHEN NOT DECLUTTERED) 3-43
FIGURE 3-64: RUNWAYS ... 3-44
TABLE 3-12: RUNWAY DRAWING CRITERIA .. 3-45
FIGURE 3-65: HELIPORTS .. 3-45
FIGURE 3-66: OWNSHIP SYMBOLOGY ... 3-46
FIGURE 3-67: CLOCK OPTIONS ... 3-46
TABLE 3-13: CLOCK OPTIONS .. 3-47
FIGURE 3-68: AIR DATA AND GROUND SPEED .. 3-47
FIGURE 3-69: BASIC MOVING MAP ... 3-48
FIGURE 3-70: MOVING MAP WITH INSTRUMENT APPROACH 3-49
FIGURE 3-71: NORTH-UP ARC MODE ... 3-49
FIGURE 3-72: NORTH-UP CENTERED MODE .. 3-49
FIGURE 3-73: HEADING-UP CENTERED MODE .. 3-50
FIGURE 3-74: COMPASS ROSE/ BOUNDARY CIRCLE SYMBOL 3-50
FIGURE 3-75: WAYPOINT DISTANCE ETE/ETA FUNCTIONS 3-50
TABLE 3-14: WAYPOINT DISTANCE ETE/ETA FUNCTIONS 3-51
FIGURE 3-76: NAVIGATION DATA AND AIRSPACE DEPICTION 3-51
TABLE 3-15: NAVIGATION SYMBOLOGY ... 3-51
TABLE 3-16: AIRSPACE DEPICTION ... 3-53
FIGURE 3-77: HSI BEARING DISTANCE READOUT 3-54
FIGURE 3-78: ANALOG NAVIGATION SYMBOLOGY, HSI OVERLAY WITH MAP IN ARC MODE ... 3-54
FIGURE 3-79: ANALOG NAVIGATION SYMBOLOGY, HSI OVERLAY WITH MAP IN CENTERED MODE .. 3-54
FIGURE 3-80: BORDERS ... 3-55
List of Figures and Tables

TABLE 3-17: TERRAIN COLOR ... 3-55
FIGURE 3-81: TERRAIN/OBSTRUCTIONS .. 3-56
TABLE 3-18: OBSTRUCTIONS ... 3-56
FIGURE 3-82: OBSTRUCTIONS ... 3-57
FIGURE 3-83: PAN MODE .. 3-58
FIGURE 3-84: DIRECT POINT .. 3-58
FIGURE 3-85: TOP-OF-DESCENT OR TOP-OF-CLIMB 3-59
FIGURE 3-86: TOP-OF-DESCENT AND BOTTOM-OF-DESCENT 3-59
FIGURE 3-87: PROJECTED PATH.. 3-60
FIGURE 3-88: PARALLEL TRACK ... 3-60
FIGURE 3-89: LOSS OF NAVIGATION .. 3-61
FIGURE 3-90: MANUAL COURSE ... 3-61
FIGURE 3-91: FIELD OF VIEW ... 3-62
FIGURE 3-92: RANGE ... 3-62
TABLE 3-19: HSI ... 3-63
FIGURE 3-93: COMPASS ROSE .. 3-64
FIGURE 3-94: CONVENTIONAL HSI/PTR FORMAT 3-65
FIGURE 3-95: HSI CDI ... 3-65
FIGURE 3-96: ANALOG NAVIGATION DISPLAY VOR1/TAC1 AND VOR2/TAC2... ... 3-66
FIGURE 3-97: HSI BEARING DISTANCE READOUT WITH DME IN HOLD 3-67
FIGURE 3-98: HSI WITH MARKER BEACON DISPLAYED 3-67
FIGURE 3-99: HSI DISPLAY AIR DATA AND GROUND SPEED 3-68
FIGURE 3-100: HSI CLOCK ... 3-68
FIGURE 3-101: HSI TOTALIZER/WAYPOINT DISTANCE ETE/ETA 3-68
FIGURE 3-102: NAVIGATION LOG .. 3-69
FIGURE 3-103: HOVER PAGE ORIENTATION 3-73
FIGURE 3-104: HOVER VECTOR SYMBOLOGY 3-74
FIGURE 3-105: HOVER VECTOR COMPASS ROSE 3-75
FIGURE 3-106: HOVER VECTOR ACTIVE FLIGHT PLAN PATH/MANUAL COURSE ... 3-75
FIGURE 3-107: HOVER VECTOR ACTIVE FLIGHT PLAN PATH/PARALLEL COURSE ... 3-76
FIGURE 3-108: HOVER VECTOR PROJECTED PATH 3-77
TABLE 3-20: HOVER VECTOR AGL INDICATION 3-77
TABLE 4-1: REVERSIONARY MODE STATUS (PFD) 4-2
TABLE 4-2: REVERSIONARY MODE STATUS (ND) 4-3
FIGURE 4-1: OAT SENSOR FAIL .. 4-5
FIGURE 4-2: GPS TRK ... 4-5
FIGURE 4-3: LOI CAUTION ... 4-6
FIGURE 4-4: FAULTS PAGE ON PFD OR MFD 4-7
FIGURE 4-5: DEAD RECKONING ... 4-7
FIGURE 4-6: LOSS OF VERTICAL NAVIGATION (VLON) 4-7
FIGURE 4-7: PFD FAILURE MODE 0 (NORMAL MODE) GPS, ADC AND AHRS NORMAL .. 4-9
FIGURE 4-8: MFD FAILURE MODE 0 (NORMAL MODE) GPS, ADC AND AHRS NORMAL ... 4-10
FIGURE 4-9: MFD FAILURE MODE 0 (ESSENTIAL MODE) GPS, ADC AND AHRS NORMAL ... 4-11
FIGURE 4-10: PFD FAILURE MODE 1 (NORMAL MODE) GPS/SBAS FAILED, ADC AND AHRS NORMAL ... 4-12
FIGURE 4-11: MFD FAILURE MODE 1 (NORMAL MODE) GPS/SBAS FAILED, ADC AND AHRS NORMAL ... 4-13
FIGURE 4-12: MFD FAILURE MODE 1 (ESSENTIAL MODE) GPS/SBAS FAILED, ADC AND AHRS NORMAL ... 4-14
FIGURE 4-13: PFD MODE 2 (NORMAL MODE) ADC FAILED, GPS/SBAS AND AHRS NORMAL ... 4-15
FIGURE 4-14: MFD FAILURE MODE 2, (NORMAL MODE) ADC FAILED, GPS/SBAS AND AHRS NORMAL ... 4-16
FIGURE 4-15: MFD FAILURE MODE 2 (ESSENTIAL MODE) ADC FAILED, GPS/SBAS AND AHRS NORMAL ... 4-17
FIGURE 4-16: PFD FAILURE MODE 3 (NORMAL MODE) AHRS FAILED, GPS/SBAS AND ADC NORMAL ... 4-18
FIGURE 4-17: MFD FAILURE MODE 3 (NORMAL MODE) AHRS FAILED, GPS/SBAS AND ADC NORMAL ... 4-19
FIGURE 4-18: MFD FAILURE MODE 3 (NORMAL MODE) AHRS FAILED, GPS/SBAS AND ADC NORMAL ... 4-20
FIGURE 4-19: PFD FAILURE MODE 4 (NORMAL MODE) GPS/SBAS AND ADC FAILED, AHRS NORMAL ... 4-21
FIGURE 4-20: MFD FAILURE MODE 4 (NORMAL MODE) GPS/SBAS AND ADC FAILED, AHRS NORMAL ... 4-22
FIGURE 4-21: MFD FAILURE MODE 4 (ESSENTIAL MODE) GPS/SBAS AND ADC FAILED, AHRS NORMAL ... 4-23
FIGURE 4-22: PFD FAILURE MODE 5 (NORMAL MODE) GPS/SBAS AND AHRS FAILED, ADC NORMAL ... 4-24
FIGURE 4-23: MFD FAILURE MODE 5 (NORMAL MODE) GPS/SBAS AND AHRS FAILED, ADC NORMAL ... 4-25
FIGURE 4-24: MFD FAILURE MODE 5 (ESSENTIAL MODE) GPS/SBAS AND AHRS FAILED, ADC NORMAL ... 4-26
FIGURE 4-25: PFD FAILURE MODE 6 (NORMAL MODE) ADC AND AHRS FAILED, GPS/SBAS NORMAL ... 4-27
FIGURE 4-26: MFD FAILURE MODE 6 (NORMAL MODE) ADC AND AHRS FAILED, GPS/SBAS NORMAL ... 4-28
FIGURE 4-27: MFD FAILURE MODE 6 (ESSENTIAL MODE) ADC AND AHRS FAILED, GPS/SBAS NORMAL ... 4-29
FIGURE 4-28: PFD FAILURE MODE 7 (NORMAL MODE) GPS/SBAS, ADC AND AHRS FAILED ... 4-30
FIGURE 4-29: MFD FAILURE MODE 7 (NORMAL MODE) GPS/SBAS, ADC AND AHRS FAILED ... 4-31
FIGURE 4-30: MFD FAILURE MODE 7 (ESSENTIAL MODE) GPS/SBAS, ADC AND AHRS FAILED ... 4-32
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>IDU-680 Input Controls</td>
<td>5-1</td>
</tr>
<tr>
<td>5-2</td>
<td>Indication of Further Menu Levels</td>
<td>5-2</td>
</tr>
<tr>
<td>5-3</td>
<td>Menu Synchronization</td>
<td>5-3</td>
</tr>
<tr>
<td>5-4</td>
<td>PFD Normal Mode Top-Level Menu</td>
<td>5-7</td>
</tr>
<tr>
<td>5-5</td>
<td>MFD Normal Mode Top-Level Menu</td>
<td>5-8</td>
</tr>
<tr>
<td>5-6</td>
<td>PFD or MFD Essential Mode Top-Level Menu</td>
<td>5-9</td>
</tr>
<tr>
<td>5-7</td>
<td>PFD or MFD Essential Mode Top-Level Menu with Audio</td>
<td>5-11</td>
</tr>
<tr>
<td>5-8</td>
<td>Top-Level Auto Pop-Up Function Descriptions</td>
<td>5-13</td>
</tr>
<tr>
<td>5-9</td>
<td>First Page PFD</td>
<td>5-15</td>
</tr>
<tr>
<td>5-10</td>
<td>CrossFill Inhibit/Arm/Sync Function</td>
<td>5-16</td>
</tr>
<tr>
<td>5-11</td>
<td>First-Level MFD</td>
<td>5-18</td>
</tr>
<tr>
<td>5-12</td>
<td>PFD Page in Top Area and Essential Mode Oasis Page</td>
<td>5-20</td>
</tr>
<tr>
<td>5-13</td>
<td>Select From Option List</td>
<td>5-21</td>
</tr>
<tr>
<td>5-14</td>
<td>Flight Plan Menu</td>
<td>5-21</td>
</tr>
<tr>
<td>5-15</td>
<td>Active Flight Plan Main Menu</td>
<td>5-38</td>
</tr>
<tr>
<td>5-16</td>
<td>Active Flight Plan Menu Options</td>
<td>5-39</td>
</tr>
<tr>
<td>5-17</td>
<td>Active Flight Plan Menu Options</td>
<td>5-40</td>
</tr>
<tr>
<td>5-18</td>
<td>Information Menu</td>
<td>5-46</td>
</tr>
<tr>
<td>5-19</td>
<td>Info Menu Information</td>
<td>5-47</td>
</tr>
<tr>
<td>5-20</td>
<td>CRS Sync</td>
<td>5-48</td>
</tr>
<tr>
<td>5-21</td>
<td>OmniBearing Selector (OBS) Menu</td>
<td>5-49</td>
</tr>
<tr>
<td>5-22</td>
<td>Select from Option List</td>
<td>5-49</td>
</tr>
<tr>
<td>5-23</td>
<td>Flight Plan Menu</td>
<td>5-49</td>
</tr>
<tr>
<td>5-24</td>
<td>Active Flight Plan Main Menu</td>
<td>5-54</td>
</tr>
<tr>
<td>5-25</td>
<td>Active Flight Plan Menu Options</td>
<td>5-55</td>
</tr>
<tr>
<td>5-26</td>
<td>Nearest (NRST) Menu</td>
<td>5-56</td>
</tr>
<tr>
<td>5-27</td>
<td>Direct Menu</td>
<td>5-60</td>
</tr>
<tr>
<td>5-28</td>
<td>Time Menu</td>
<td>5-62</td>
</tr>
<tr>
<td>5-29</td>
<td>PFD Source Menu</td>
<td>5-64</td>
</tr>
<tr>
<td>5-30</td>
<td>PFD Bugs Menu</td>
<td>5-65</td>
</tr>
<tr>
<td>5-31</td>
<td>PFD Bugs Menu (Continued)</td>
<td>5-66</td>
</tr>
<tr>
<td>5-32</td>
<td>PFD Declutter Options</td>
<td>5-69</td>
</tr>
<tr>
<td>5-33</td>
<td>Altimeter Menu</td>
<td>5-70</td>
</tr>
<tr>
<td>5-34</td>
<td>Faults Menu</td>
<td>5-73</td>
</tr>
<tr>
<td>5-35</td>
<td>Set Fuel (Totalizer Quantity Setting) Menu</td>
<td>5-76</td>
</tr>
<tr>
<td>5-36</td>
<td>MFD Page Menu</td>
<td>5-78</td>
</tr>
<tr>
<td>5-37</td>
<td>HSI Declutter Menu (PFD or MFD)</td>
<td>5-80</td>
</tr>
<tr>
<td>5-38</td>
<td>HSI Declutter</td>
<td>5-81</td>
</tr>
<tr>
<td>5-39</td>
<td>MFD Symbol Declutter</td>
<td>5-82</td>
</tr>
<tr>
<td>5-40</td>
<td>Map Page Format Menu</td>
<td>5-84</td>
</tr>
<tr>
<td>7-1</td>
<td>Navigational Operational Capabilities</td>
<td>7-1</td>
</tr>
<tr>
<td>7-2</td>
<td>VNAV Altitudes and Offsets</td>
<td>7-7</td>
</tr>
</tbody>
</table>
List of Figures and Tables

FIGURE 7-1: SUPPRESSED WAYPOINT .. 7-8
TABLE 7-3: HIGHWAY IN THE SKY CONFIGURATION 7-15
FIGURE 7-2: HIGHWAY IN THE SKY FIVE BOXES 7-16
FIGURE 7-3: HIGHWAY IN THE SKY (AIRCRAFT REFERENCED) 7-18
FIGURE 7-4: HIGHWAY IN THE SKY (GEO-REFERENCED BACKWARD) 7-18
FIGURE 7-5: HIGHWAY IN THE SKY (GEO-REFERENCED FORWARD) 7-18
TABLE 7-4: FINAL SEGMENT OF IFR APPROACH, DESCENT ANGLE AND VNAV WAYPOINT .. 7-19
TABLE 7-5: VNAV PARADIGM .. 7-20
FIGURE 7-6: HIGHWAY IN THE SKY FINAL APPROACH SEGMENTS 7-21
FIGURE 7-7: FLY-OVER WAYPOINTS ... 7-22
TABLE 7-6: RNAV PATH TERMINATOR LEG TYPE 7-23
FIGURE 7-8: FLY-BY WAYPOINTS ... 7-24
TABLE 7-7: LEG SEGMENTS FOR PATHS CONSTRUCTED BY EFIS 7-25
FIGURE 7-9: UNNAMED WAYPOINTS .. 7-27
FIGURE 7-10: MAG VAR DATABASE ... 7-29
FIGURE 7-11: DEAD RECKONING .. 7-30
FIGURE 7-12: PARALLEL OFFSET PTK- .. 7-31
TABLE 7-8: PARALLEL OFFSETS SYMBOLS AND DESCRIPTION 7-32
TABLE 7-9: DEFAULT GPS/SBAS NAVIGATION MODES 7-35
TABLE 7-10: DEFAULT NAVIGATION MODES BASED UPON REGION OF OPERATION .. 7-35
TABLE 7-11: SUMMARY OF CHANGES IN CROSS-TRACK FSD 7-36
FIGURE 7-13: VERTICAL DEVIATION INDICATOR LINEAR DEVIATION 7-38
FIGURE 7-14: FSD LATERAL DEVIATION INDICATOR LINEAR DEVIATION (NOT VTF APPROACH) ... 7-39
FIGURE 7-15: FSD LATERAL DEVIATION INDICATOR LINEAR DEVIATION VTF APPROACH .. 7-40
FIGURE 7-16: GPS MODE (LPV APPR) ... 7-42
FIGURE 7-17: VTF VFR APPROACH ... 7-44
FIGURE 7-18: MISSED APPROACH AND DEPARTURE PATH 7-44
TABLE 7-12: LOSS OF INTEGRITY CAUTION MONITORING 7-45
FIGURE 7-19: LON INDICATION .. 7-46
TABLE 7-13: SUMMARY OF FAULTS MENU .. 7-46
FIGURE 7-20: STANDARD INSTRUMENT DEPARTURE (DP) 7-49
FIGURE 7-21: STANDARD TERMINAL ARRIVAL ROUTE (STAR) 7-55
FIGURE 7-22: ILS INSTRUMENT APPROACH (KPNE) 7-58
FIGURE 7-23: ILS APPROACH (EGYD) .. 7-63
FIGURE 7-24: LOC BACK COURSE APPROACH 7-67
FIGURE 7-25: RNAV (GPS) INSTRUMENT APPROACH TO LP MINIMA 7-72
FIGURE 7-26: RNAV (GPS) INSTRUMENT APPROACH TO LPV MINIMA 7-77
FIGURE 7-27: RNAV (RNP) INSTRUMENT APPROACH TO RNP 0.3 DA 7-83
FIGURE 7-28: NRST ILS INSTRUMENT APPROACH 7-89
FIGURE 7-29: VOR/DME INSTRUMENT APPROACH 7-94
FIGURE 7-30: ILS OR LOC RWY 1 INSTRUMENT APPROACH WITH MISSED APPROACH FLOWN TO ALTERNATE FIX (STEP-BY-STEP) 7-99
TABLE 8-1: TAWS FUNCTIONS PROVIDED BY THE EFIS 8-1
FIGURE 8-1: TERRAIN DISPLAY ... 8-2
FIGURE 8-2: FLTA INHBT ... 8-2
FIGURE 8-3: DEFAULT FLTA INHBT ... 8-3
FIGURE 8-4: FLTA INHBT MODE AREAS ... 8-4
TABLE 8-2: FLTA SEARCH ENVELOPE FOR HTAWS 8-4
FIGURE 8-5: FLTA SEARCH VOLUME .. 8-6
FIGURE 8-6: PFD IN POP-UP MODE ... 8-7
TABLE 8-3: HTAWS GPWS MODE 1 ENVELOPE 8-8
FIGURE 8-7: Rotorcraft GPWS Mode 1 .. 8-9
TABLE 8-4: HTAWS GPWS Mode 2 ENVELOPES 8-9
TABLE 8-5: HTAWS GPWS Mode 2A ENVELOPES (NOT IN LANDING CONFIGURATION) ... 8-10
TABLE 8-6: HTAWS GPWS Mode 2B ENVELOPES (LANDING CONFIGURATION) ... 8-10
FIGURE 8-8: Rotorcraft GPWS Mode 2 .. 8-10
FIGURE 8-9: GPWS Mode 3 Warning (Sink Rate After Takeoff or Missed Approach) ... 8-11
FIGURE 8-10: Rotorcraft GPWS Mode 3 .. 8-11
TABLE 8-7: HTAWS GPWS Mode 4 ENVELOPES 8-12
TABLE 8-8: HTAWS GPWS Mode 4 ALERTING CRITERIA 8-12
TABLE 8-9: HTAWS GPWS Mode 4A ENVELOPES 8-12
FIGURE 8-11: Rotorcraft GPWS Mode 4 .. 8-12
TABLE 8-10: HTAWS GPWS Mode 5 ENVELOPES 8-13
TABLE 8-11: Rotorcraft GPWS Mode 5 .. 8-13
TABLE 8-12: EXTERNAL SENSORS AND SWITCHES (APPLICABLE TAWS) ... 8-14
TABLE 8-13: HTAWS BASIC PARAMETERS DETERMINATION 8-15
TABLE 8-14: TAWS AUTOMATIC INHIBIT FUNCTIONS 8-18
FIGURE 8-13: TERRAIN DISPLAY FUNCTIONALITY SVS TAWS 8-20
FIGURE 8-14: TERRAIN DISPLAY FUNCTIONALITY TAWS DISABLED 8-21
FIGURE 8-15: PFD SVS BASIC ... 8-23
FIGURE 8-16: PFD SVS TAWS AND TERRAIN WARNING 8-24
FIGURE 8-17: PFD SVS TAWS AND OBSTRUCTION CAUTION 8-25
FIGURE 8-18: PFD OBSTRUCTION WARNING 8-26
FIGURE 8-19: AUTOMATIC PFD TERRAIN CAUTION 8-27
FIGURE 9-1: US/UK WORLD MAGNETIC MODEL 9-3
TABLE 9-1: ALLOWABLE INSTRUMENT ERROR 9-4
TABLE 9-2: REGULATORY REFERENCE .. 9-4
TABLE 9-3: AIRSPEED ERROR ... 9-5
TABLE 9-4: AIRSPEED REGULATORY REFERENCE 9-5
TABLE 9-5: LOG FILE VALUES ... 9-8
FIGURE 9-2: VFR WAYPOINT ... 9-8
TABLE 9-6: SUMMARY OF ASTERISK SYMBOLOGY USE 9-9
FIGURE 9-3: NAV SOURCE MANAGEMENT .. 9-12
TABLE 9-7: NAV SOURCE INDICATIONS ... 9-13
FIGURE T-1: TRAFFIC SYMBOLOGY ... T-1
Table T-1: Traffic Rendering Rules ... T-2
Table T-2: Traffic Symbolology .. T-2
Table T-3: ADS-B Traffic Symbols ... T-2
Table T-4: Pilot Selected OT and PA Traffic Altitude-Filter T-3
Figure T-2: Traffic Pop-Ups ... T-3
Figure T-3: Traffic Thumbnail ... T-4
Figure T-4: TCAS-II RA Indication .. T-4
Figure T-5: Traffic Page Access .. T-5
Figure T-6: PFD First-Level Menu in Normal Mode T-5
Figure T-7: MFD First-Level Menu in Normal Mode T-6
Figure T-8: Traffic Display Format ... T-10
Figure T-9: Traffic Page Compass Rose Symbols T-10
Table T-5: Traffic Page Examples ... T-11
Figure T-10: Clock and Options .. T-12
Table T-6: Clock and Options ... T-12
Figure T-11: Fuel Totalizer/Waypoint Distance Functions T-13
Figure T-12: Air Data and Ground Speed .. T-13
Figure T-13: MFD Traffic Format (Format) Menu T-13
Figure T-14: Flight Level Option .. T-14
Table T-7: PFD Declutter Options and Features T-15
Figure T-15: Basic Mode Mini Traffic .. T-15
Figure T-16: Menu Faults Status ... T-15
Table T-8: Menu Synchronization .. T-16
Figure RBP-1: Remote Bugs Panel .. RBP-1
Table RBP-1: Remote Bugs Panel (RBP) RBP-2
Figure RBP-2: Main and Option Messages RBP-5
Table RBP-2: Main and Option Messages - Active Nav Course Function .. RBP-5
Table RBP-3: Main and Option Messages - Preview Nav Course Function ... RBP-7
Table RBP-4: Main and Option Messages - Other Functions RBP-7
Figure S-1: PFD with Strikes Page on Bottom S-1
Table S-1: Lightning Strikes ... S-2
Figure S-2: Lightning Symbols ... S-2
Figure S-3: Air Data and Ground Speed in Upper Left Corner S-3
Figure S-4: Clock and Options ... S-4
Table S-2: WX-500 Status ... S-4
Figure S-5: Active Flight Plan Path/Manual Course/Runways S-5
Figure S-6: Fuel Totalizer/Waypoint Distance Functions S-5
Figure S-7: PFD First-Level Menu in Normal Mode S-6
Figure S-8: MFD First-Level Menu in Normal Mode S-7
Figure S-9: Strikes Format Menu ... S-8
Table S-3: Menu Synchronization .. S-9
Figure D-1: Datalink Symbolology with G Metar On D-1
Figure D-2: Datalink Symbolology with Nexrad On D-1
Table D-1: ADS-B Data ... D-2
Table D-2: Datalink NEXRAD Data ... D-2
Table D-3: Graphical METAR Symbols ... D-2
Table D-4: Graphical METARS (G METARS) Screen Range D-3
Figure D-3: NRST Airport Info ... D-3
Table D-5: Datalink Graphical METAR Precipitation D-3
Figure D-4: METAR and TAF Report for KGRB .. D-4
Figure D-5: Datalink Symbolology Rotorcraft Ownership Symbol D-5
Figure D-6: ADS-B Datalink Page Legend .. D-5
Figure D-7: Clock/Options .. D-5
Table D-6: Datalink NEXRAD Status .. D-6
Figure D-8: Datalink Screen Range .. D-7
Table D-7: Datalink Screen Ranges ... D-7
Figure D-9: Boundary Circle Symbol ... D-8
Table D-8: Top-Level Auto Pop-Up Function Descriptions D-9
Figure D-10: MFD Datalink Format Menu ... D-11
Figure D-11: Information (INFO) Menu .. D-15
Figure D-12: Faults Menu with ADS-B Status ... D-16
Table D-9: Menu Synchronization .. D-16
Figure WX-1: Weather Radar Image on Map .. WX-2
Figure WX-2: PFD Weather Radar Image on Bottom WX-2
Table WX-1: Weather Radar Inhibited Conditions WX-3
Figure WX-3: WX RDR Declutter (DCLTR) Menu WX-3
Figure WX-4: WX RDR Format Menu ... WX-4
Figure WX-5: Radar Image in Arc Format .. WX-25
Figure WX-6: Radar Image in Arc Format (STAB LIMIT) WX-25
Figure WX-7: Radar Image in Profile Depiction WX-26
Figure WX-8: Radar Image in Profile Depiction (STAB LIMIT) WX-26
Figure WX-9: Radar Track Line ... WX-27
Figure WX-10: Radar Track Line with Menus .. WX-27
Figure WX-11: Radar Active Flight Plan ... WX-28
Figure WX-12: Radar Active Flight Plan with Menus WX-28
Figure WX-13: Radar Return Data .. WX-29
Table WX-2: Weather Radar Return Data ... WX-29
Figure WX-14: Radar Clock/Options .. WX-30
Table WX-3: RDR 2100 Applicability .. WX-30
Table WX-4: RDR 2100 Mode Annunciation .. WX-30
Table WX-5: Menu Synchronization .. WX-34
Figure V-1: PFD Page First-Level Video Control V-2
Figure V-2: MFD Page First-Level Menu .. V-2
Figure V-3: Video Page Contrast and Brightness Setting V-3
Figure V-4: Video Page Saturation and Hue Setting V-3
Figure V-5: Video Status ... V-4
Figure V-6: Video Pan View .. V-4
Table V-1: Pan Mode Function Descriptions .. V-5
Table V-2: Menu Synchronization .. V-5
Figure RD-1: Pitch Scale .. RD-1
FIGURE RD-2: FLIGHT DIRECTOR ... RD-2
FIGURE RD-3: MARKER BEACON INDICATORS .. RD-2
FIGURE RD-4: UNUSUAL ATTITUDE MODE .. RD-3
FIGURE RD-5: BANK ANGLE SCALE SKY POINTER TYPE RD-3
FIGURE RD-6: AGL INDICATOR ... RD-4
TABLE RD-1: AGL ALTITUDE VALUES ... RD-4
FIGURE RD-7: AIRSPEED DISPLAY WITH ADC FAILURE RD-5
FIGURE RD-8: ROUND DIALS AIRSPEED DISPLAY LIMITS RD-5
FIGURE RD-9: ALTIMETER QNH .. RD-6
FIGURE RD-10: ALTIMETER QFE .. RD-6
FIGURE RD-11: ALTITUDE DISPLAY .. RD-7
FIGURE RD-12: AIRSPEED AND ALTITUDE WITH LOSS OF ADC RD-7
FIGURE RD-13: TARGET ALTITUDE BUG .. RD-7
FIGURE RD-14: VNAV SUB-MODE .. RD-8
FIGURE RD-15: METRIC ALTITUDE .. RD-8
FIGURE RD-16: VERTICAL SPEED INDICATOR .. RD-9
FIGURE RD-17: VSI BUGS ... RD-9
FIGURE RD-18: HEADING DISPLAY .. RD-10
FIGURE RD-19: TURN RATE INDICATOR .. RD-10
FIGURE RD-20: TIMER INDICATION .. RD-10
FIGURE RD-21: VERTICAL DEVIATION INDICATOR (VDI) RD-11
TABLE SAR-1: EXPANDING SQUARE PATTERN PARAMETERS SAR-2
FIGURE SAR-1: EXPANDING SQUARE PATTERN TURN AND LEG SPACING ... SAR-2
FIGURE SAR-2: RISING LADDER PATTERN .. SAR-6
TABLE SAR-2: RISING LADDER PATTERN PARAMETERS SAR-7
FIGURE SAR-3: RISING LADDER PATTERN PARAMETERS SAR-7
FIGURE SAR-4: RISING LADDER PATTERN-TURN, LEG, AND TRACK SAR-7
FIGURE SAR-5: RISING LADDER PATTERN-INDIVIDUAL LEG SELECTED SAR-8
FIGURE SAR-6: ORBIT PATTERN .. SAR-8
TABLE SAR-3: ORBIT PATTERN PARAMETERS SAR-8
FIGURE SAR-7: ORBIT PATTERN-TURN AND RADIUS SAR-9
FIGURE SAR-8: RACE TRACK PATTERN .. SAR-9
TABLE SAR-4: RACE TACK PATTERN PARAMETERS SAR-10
FIGURE SAR-9: RACE TRACK PATTERN-TURN, LEG, AND TRACK SAR-10
FIGURE SAR-10: SECTOR SEARCH PATTERN .. SAR-11
TABLE SAR-5: SECTOR SEARCH PATTERN PARAMETERS SAR-11
FIGURE SAR-11: SECTOR SEARCH PATTERN PARAMETERS SAR-11
FIGURE SAR-12: SECTOR PATTERN-TURN AND TRACK SAR-12
FIGURE SAR-13: SECTOR SEARCH PATTERN-INDIVIDUAL LEG SELECTED ... SAR-12
FIGURE ECB-1: TOP-LEVEL MENU (PFD/MFD ESSENTIAL MODE/MFD NORMAL MODE) ... ECBU-1
FIGURE ECB-2: ECB CONTROL MENU .. ECBU-2
<table>
<thead>
<tr>
<th>Table Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table ECB-1: Warning Alerts</td>
<td>ECBU-4</td>
</tr>
<tr>
<td>Table ECB-2: Caution Alerts</td>
<td>ECBU-4</td>
</tr>
<tr>
<td>Table ECB-3: Advisory Alerts</td>
<td>ECBU-4</td>
</tr>
</tbody>
</table>
1.1. Introduction

The Genesys Aerosystems Electronic Flight Instrument System (EFIS) is a “pilot-centered” system. While still highly automated, it presents the pilot with information necessary to make decisions and take appropriate actions. For example, the Highway-in-the-Sky (HITS) allows for highly automated approaches, but its predictive nature provides the pilot awareness of upcoming maneuvers. Instead of overloading the pilot with information and options, the Genesys Aerosystems EFIS presents only necessary information to reduce workload, decrease task complexity, and minimize confusion, which results in safer flying with less stress and fatigue.

1.2. EFIS/FMS Description

![IDU-680 Input Identification](image)
The default mode is GPS/SBAS until an RNP procedure is selected from the database when the mode changes to RNP. Each mode is clearly annunciated in each pilot's primary field of view.

The integrated display unit (IDU) has 16 buttons along the vertical sides referenced as L1 through L8 starting at the top left corner of the display moving down and R1 through R8 from the top right corner moving down the display from a pilot's perspective.

The four knobs from left to right are designated ¹, ², ³, and ⁴, but ⁴ only controls the backlighting intensity. References throughout this guide refer to which knob to push and/or rotate for desired outcomes.

On the bezel between the two center knobs, a slip indicator or blank housing acts as the USB memory door. When lifted prior to power-up, the ground maintenance mode is initiated after power-up. If a limits change, software, or database update is planned, the USB drive must be inserted prior to power-up.

A sensor on the face of the IDU bezel measures ambient light levels. Use ⁴ to control the brightness of the panel or display lighting. To adjust panel lighting (illumination of legends, encoders, inclinometer, and buttons), push and rotate ⁴ clockwise (CW) to increase or counter clockwise (CCW) to decrease. To adjust display lighting (illumination of the LCD display), rotate (without pushing) ⁴ CW to increase or CCW to decrease.

NOTE:

If entering ground maintenance mode with bright light shining or reflecting directly into the display, shield the light sensor to avoid the IDU from going directly into the flight mode.

1.3. About This Guide

Operation of the Genesys Aerosystems EFIS is described in detail and divided into sections as follows:

TABLE OF CONTENTS: Locate areas by topic

INTRODUCTION (Section 1): Basic explanation of the pilot guide.

SYSTEM OVERVIEW (Section 2): Description of system and hardware; IDU behavior during initialization; warning alerts, time-critical warning alerts, master visual and aural alerts caution alerts, and advisory alerts with
conditions; coloring conventions; abbreviations and acronyms; and database update procedures.

DISPLAY SYMBOLOGY (Section 3): Identification of each screen element of the primary flight display (PFD) and multi-function display (MFD), and explanation of symbology.

REVERSIONARY MODES (Section 4): Views of displays with various sensor failed conditions and resulting symbology, as well as, examples of various configurations and display formats used with specific tables showing affected functions. Explanation of what to expect when a particular sensor fails and what changes on the display immediately or after a specified amount of time.

MENU FUNCTIONS AND STEP-BY-STEP PROCEDURES (Section 5): Menu structure of each feature and step-by-step procedures for operation of each task. Basic description of all knob and button functions with menu tile definitions.

QUICK START TUTORIAL (Section 6): Basics necessary for flying a flight with this system. Includes simple steps to manage displays for existing flight conditions to quickly gain familiarity with where to locate controls to manipulate the system for each operation.

IFR PROCEDURES (Section 7): Detailed information and instruction about selecting and flying instrument procedures with examples of the most popular published procedures with views of referenced published procedures. Includes descriptions of selection of departure, published instrument approach, standard terminal arrival procedures, as well as, how the active flight plan quickly reflects changes to ATC clearances.

TERRAIN AWARENESS WARNING SYSTEM (Section 8): Description of Enhanced HTAWS and HTAWS functionality for this aircraft with all configurations. Defines the various parameters, which automatically apply to each mode of flight.

APPENDIX (Section 9): Contains support material and other useful information about system operation, guidance from Jeppesen, and supplemental information such as flight planning; magnetic vs. true north modes; airspeed/altitude miscompare thresholds; EFIS Training Tool; and downloading routes and user waypoints.

APPENDICES: Traffic, Remote Bugs Panel, WX-500 Lightning Strikes, Datalink, Weather Radar, Round Dials, Search and Rescue Patterns, Electronic Circuit Breaker Unit (ECBU), and Video. Sections on equipment and features not installed in every aircraft may be removed at the discretion of the end-user.
INDEX: Alphabetical listing of terms or keywords with corresponding page numbers.

GLOSSARY: Alphabetical listing of definitions for terms.
Section 2 System Overview

2.1. Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µm Hg</td>
<td>Micrometer of Mercury</td>
</tr>
<tr>
<td>0R</td>
<td>No Radius</td>
</tr>
<tr>
<td>3D</td>
<td>Three-Dimensional</td>
</tr>
<tr>
<td>AC</td>
<td>Advisory Circular</td>
</tr>
<tr>
<td>ACTV</td>
<td>Active</td>
</tr>
<tr>
<td>ADAHRS</td>
<td>Air Data Attitude Heading Reference System</td>
</tr>
<tr>
<td>ADC</td>
<td>Air Data Computer</td>
</tr>
<tr>
<td>ADF</td>
<td>Automatic Direction Finder</td>
</tr>
<tr>
<td>ADS-B</td>
<td>Automatic Dependent Surveillance-Broadcast</td>
</tr>
<tr>
<td>AFCS</td>
<td>Automatic Flight Control System</td>
</tr>
<tr>
<td>AFM</td>
<td>Aircraft Flight Manual</td>
</tr>
<tr>
<td>AGL</td>
<td>Above Ground Level</td>
</tr>
<tr>
<td>AHRS</td>
<td>Attitude Heading Reference System</td>
</tr>
<tr>
<td>AIRAC</td>
<td>Aeronautical Information Regulation and Control</td>
</tr>
<tr>
<td>AIRMET</td>
<td>Airmen’s Meteorological Information</td>
</tr>
<tr>
<td>ALT</td>
<td>Pressure Altitude</td>
</tr>
<tr>
<td>ALT SEL</td>
<td>Altitude Selection</td>
</tr>
<tr>
<td>AMLCD</td>
<td>Active Matrix Liquid Crystal Display</td>
</tr>
<tr>
<td>ANP</td>
<td>Actual Navigation Performance</td>
</tr>
<tr>
<td>ANT</td>
<td>Antenna</td>
</tr>
<tr>
<td>AOA</td>
<td>Angle of Attack</td>
</tr>
<tr>
<td>AP</td>
<td>Autopilot</td>
</tr>
<tr>
<td>APP</td>
<td>Waypoint is part of an Instrument Approach Procedure</td>
</tr>
<tr>
<td>APPR</td>
<td>Approach</td>
</tr>
<tr>
<td>APT</td>
<td>Airport</td>
</tr>
<tr>
<td>APV</td>
<td>Approach with Vertical Guidance</td>
</tr>
<tr>
<td>ARINC</td>
<td>Aeronautical Radio, Inc.</td>
</tr>
<tr>
<td>ARL</td>
<td>Auto Range Limiting (RDR-2100)</td>
</tr>
<tr>
<td>ARTCC</td>
<td>Air Route Traffic Control Center</td>
</tr>
<tr>
<td>AS</td>
<td>SAE Aerospace Standard</td>
</tr>
<tr>
<td>ASEL</td>
<td>Aircraft Selected Altitude</td>
</tr>
</tbody>
</table>
ATC Air Traffic Control
ATT Attitude
Baro Barometric setting
Baro-VNAV Barometric Vertical Navigation
BC Backcourse navigation
BFO Beat Frequency Oscillator
B-RNAV European Basic RNAV
BRT Brightness
BTM Bottom
C Celsius
CA Course to Altitude (ARINC-424 Leg)
CALC Calculate RAIM Prediction
CAS Crew Alerting System
CD Course to DME Distance (ARINC-424 Leg)
CCW Counter Clockwise
CDA Continuous Descent Approach
CDI Course Deviation Indicator
CF Course to Fix (ARINC-424 Leg)
CI Course to Intercept (ARINC-424 Leg)
CLR Clear
CNX Cancel
COM Communication
CONT Continue
CPLT Co-Pilot
CPM Computer Processor Module
CPU Central Processing Unit
CR Course to Radial Termination (ARINC-424 Leg)
CRC Cyclic Redundancy Check
CRS Course
CSA Conflict Situation Awareness (ADS-B)
CTRST Contrast
CW Clockwise
DA Decision Altitude
dB Decibel
dBZ Decibel relative to radar reflectivity (Z)
DCLTR Declutter
DCND Descend
DEC HT Decision Height Bug
DEL Delete
DESIG Designate
DF Direct to Fix (ARINC-424 Leg)
DFLT Default
DG Directional Gyro
DH Decision Height
DLNK Datalink
DME Distance Measuring Equipment
DO RTCA Document
DOD Department of Defense
DP Departure Procedure
DR Dead Reckoning
EFIS Electronic Flight Instrument System
EGM Earth Gravity Model
EGNOS European Geostationary Navigation Overlay Service
EGPWS Enhanced Ground Proximity Warning System
EQPMNT Equipment
ESSNTL Essential
ETA Estimated Time of Arrival
ETE Estimated Time Enroute
ETT EFIS Training Tool
EXCD Exceedance
EXPND Expand (also EXP)
F Fahrenheit
FA Course from a Fix to Altitude (ARINC-424 Leg)
FAA Federal Aviation Administration
FAF Final Approach Fix
FAR Federal Aviation Regulation
FAWP Final Approach Waypoint (same as FAF)
FC Course Fix to Along-Track Distance (ARINC-424 Leg)
Section 2 System Overview

FD Course from a Fix to DME Distance (ARINC-424 Leg); Flight Director
FDE Fault Detection and Exclusion
FG Fixed Gear
FIS Flight Information Service
FIS-B Flight Information Service-Broadcast
FL Flight Level
FLTA Forward Looking Terrain Awareness
FM Course from Fix to Manual termination (ARINC-424 Leg)
FMS Flight Management System
FOV Field of View
FPL Flight Plan
fpm Feet per minute
FPM Flight Path Marker
FPNM Feet Per Nautical Mile
FRT Fixed-Radius Transition
FSD Full Scale Deflection
FT Feet
FTE Flight Technical Error
FTP Fictitious Threshold Point
FNCT Function
GAGAN India’s GPS and GEO-Augmented Navigation System
GARP GNSS Azimuth Reference Point
GBAS Australia’s Ground Based Augmentation System
GLS GNSS Landing System
GMAP Ground Map mode (RDR-2100)
GMETAR Graphical METAR (also GMTR)
GMF Ground Maintenance Function
GN Gain
GND Ground
GNSS Global Navigation Satellite System
GPI Glide Path Intercept
GPIP Glide Path Intercept Point
GPS Global Positioning System
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPSV</td>
<td>Global Positioning System Vertical Navigation</td>
</tr>
<tr>
<td>GPWS</td>
<td>Ground Proximity Warning System</td>
</tr>
<tr>
<td>GS</td>
<td>Glide Slope; Ground Speed</td>
</tr>
<tr>
<td>H</td>
<td>Hold</td>
</tr>
<tr>
<td>HA</td>
<td>Terminates at an altitude (ARINC-424 Leg)</td>
</tr>
<tr>
<td>HF</td>
<td>Holding, Pattern to Fix (ARINC-424 Leg)</td>
</tr>
<tr>
<td>HM</td>
<td>Altitude or Manual Termination (ARINC-424 Leg)</td>
</tr>
<tr>
<td>HAL</td>
<td>Horizontal Alert Limit</td>
</tr>
<tr>
<td>HAT</td>
<td>Height Above Threshold</td>
</tr>
<tr>
<td>HDG</td>
<td>Heading</td>
</tr>
<tr>
<td>HFOM</td>
<td>Horizontal Figure of Merit</td>
</tr>
<tr>
<td>hh:mm:ss</td>
<td>Hours: Minutes: Seconds</td>
</tr>
<tr>
<td>HITS</td>
<td>Highway in the Sky</td>
</tr>
<tr>
<td>HLTH</td>
<td>Health</td>
</tr>
<tr>
<td>HORIZ</td>
<td>Horizontal</td>
</tr>
<tr>
<td>HOTAS</td>
<td>Hands on Throttle and Stick</td>
</tr>
<tr>
<td>hPa</td>
<td>Hectopascal</td>
</tr>
<tr>
<td>HPL</td>
<td>Horizontal Protection Level</td>
</tr>
<tr>
<td>HSI</td>
<td>Horizontal Situation Indicator</td>
</tr>
<tr>
<td>HUD</td>
<td>Head Up Display</td>
</tr>
<tr>
<td>IAP</td>
<td>Instrument Approach Procedure; Initial Approach Point</td>
</tr>
<tr>
<td>IAS</td>
<td>Indicated Airspeed</td>
</tr>
<tr>
<td>IAWP</td>
<td>Initial Approach Waypoint (same as IAP)</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>ID</td>
<td>Identity or Identification</td>
</tr>
<tr>
<td>IDENT</td>
<td>Identification (Transponder Ident)</td>
</tr>
<tr>
<td>IDU</td>
<td>Integrated Display Unit</td>
</tr>
<tr>
<td>IF</td>
<td>Initial Fix leg</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>IM</td>
<td>Inner Marker</td>
</tr>
<tr>
<td>INFO</td>
<td>Information</td>
</tr>
<tr>
<td>INHBT</td>
<td>Inhibit</td>
</tr>
<tr>
<td>inHg</td>
<td>Inches of Mercury</td>
</tr>
</tbody>
</table>
INIT Initialize
IO Input/Output
IP Initial Point
IPV Instrument Procedure with Vertical Guidance
ISA International Standard Atmosphere
IVSI Instantaneous Vertical Speed Indicator
IWP Intermediate Approach Waypoint
K Kilo=1000
KB Kilobyte
kHz Kilohertz
KIAS Knots Indicated Airspeed
KT Knot - Nautical Mile per Hour
KTAS Knots True Airspeed
LAT Latitude
LCD Liquid Crystal Display
LCL Local
LDA Localizer-type Directional Aid
LED Light Emitting Diode
LGND Legend
LIFR Low IFR conditions (Ceiling < 100’ or visibility < 1 mile)
LIN Linear
LNAV Lateral Navigation
LOC Localizer
LOI Loss of Integrity
LON Loss of Navigation; Longitude
LP Localizer Performance
LPV Localizer Performance with Vertical Guidance
LTP Landing Threshold Point
LVL Level
MA Waypoint is part of the missed approach segment of an Instrument Approach Procedure
MAGVAR Magnetic Declination (Variation)
MAHP Missed Approach Holding Point
MAHWP Missed Approach Holding Waypoint (same as MAHP)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN</td>
<td>Manual</td>
</tr>
<tr>
<td>MAP</td>
<td>Missed Approach Point; Missed Approach Procedure</td>
</tr>
<tr>
<td>MASPS</td>
<td>Minimum Aviation System Performance Standard</td>
</tr>
<tr>
<td>MAWP</td>
<td>Missed Approach Waypoint (also MAWPT)</td>
</tr>
<tr>
<td>mbar</td>
<td>Millibars</td>
</tr>
<tr>
<td>MDA</td>
<td>Minimum Descent Altitude</td>
</tr>
<tr>
<td>MESO</td>
<td>Mesocyclonic</td>
</tr>
<tr>
<td>METAR</td>
<td>Routine hourly weather report</td>
</tr>
<tr>
<td>MFD</td>
<td>Multifunction Display</td>
</tr>
<tr>
<td>MIN</td>
<td>Minimum</td>
</tr>
<tr>
<td>MM</td>
<td>Middle Marker</td>
</tr>
<tr>
<td>MOA</td>
<td>Military Operations Area</td>
</tr>
<tr>
<td>MSAS</td>
<td>Japan’s MTSAT-based Satellite Augmentation System</td>
</tr>
<tr>
<td>MSG</td>
<td>Message</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>MVFR</td>
<td>Marginal Visual Flight Rules</td>
</tr>
<tr>
<td>NAS</td>
<td>U.S. National Airspace System</td>
</tr>
<tr>
<td>NAV</td>
<td>Navigation</td>
</tr>
<tr>
<td>NAVAID</td>
<td>Device or system providing navigational assistance</td>
</tr>
<tr>
<td>ND</td>
<td>Navigation Display</td>
</tr>
<tr>
<td>NDB</td>
<td>Nondirectional Beacon</td>
</tr>
<tr>
<td>NEXRAD</td>
<td>(Next-Generation Radar) network of weather radars operated by the National Weather Service (NWS) (also NXRD)</td>
</tr>
<tr>
<td>NIMA</td>
<td>National Imagery and Mapping Agency</td>
</tr>
<tr>
<td>NHDG</td>
<td>Same as LNAV</td>
</tr>
<tr>
<td>NM</td>
<td>Nautical Mile</td>
</tr>
<tr>
<td>NRST</td>
<td>Nearest</td>
</tr>
<tr>
<td>nT</td>
<td>Nanoteslas (ref. World magnetic Model)</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>OASIS</td>
<td>Open Architecture Systems Integration Symbology</td>
</tr>
<tr>
<td>OAT</td>
<td>Outside Air Temperature</td>
</tr>
<tr>
<td>OBS</td>
<td>Omnidirectional Selector</td>
</tr>
<tr>
<td>ODP</td>
<td>Obstacle Departure Procedure</td>
</tr>
<tr>
<td>OF</td>
<td>Over-fly</td>
</tr>
</tbody>
</table>
Section 2 System Overview

OM Outer Marker
OT Other Traffic (Traffic Function)
PA Proximate Advisory (Traffic Function)
PDA Premature Descent Alert
PFD Primary Flight Display (also refers to the primary IDU with software that only shows primary flight instrumentation)
PFI Primary Flight Information
PI Procedure Turn (ARINC-424 Leg)
PLI Pitch Limit Indicator
PLT Pilot
PM Personality Module
PN Part Number; Pan
PROC Procedure
PRN Pseudo-Random-Noise (Satellite communications)
PRS Press
PRV Previous
PSH Push
PTK Parallel offset (Parallel Track)
PTRS Pointers
PWR Power
QFE Altimeter setting provides height above reference point
QNE Altimeter setting provides pressure altitude readout
QNH Altimeter setting provides MSL altitude at a reporting point
RA Resolution Advisory (Traffic Function)
RADALT Radar Altimeter (also RALT)
RAD-DST Radial and Distance
RAIM Receiver Autonomous Integrity Monitoring
RCP Radar Control Panel
RDR Radar
REC ADF in Receive mode or DF in receiver or test mode
RF Precision Arc to Fix (ARINC-424 Leg)
RFP Radio Frequency Panel
RFM Rotorcraft Flight Manual
RFMS Rotorcraft Flight Manual Supplement
Section 2 System Overview

RHT Radar Height
RMI Radio Magnetic Indicator
RNAV Area Navigation
RNP Required Navigation Performance
RNP APCH Required Navigation Performance Approach
RNP AR-APCH RNP approach procedure that requires special aircraft and aircrew authorization.
RTC Real Time Computing
RTCA Radio Technical Commission for Aeronautics
RTD Resistive Thermal Detector
RW Runway
RX Radio Receive indication
SAE Society of Automotive Engineers
SAR Search and Rescue
SAT Saturation
SATLT Satellite
SBAS Satellite-Based Augmentation System
SCC System Configuration Card (personality module)
SIC Side-in-Command
SID Standard Instrument Departure
SIGMET Significant Meteorological Advisory
SLCT Select option in Audio/Radio Management page
SSM Sign Status Matrix
STAB Stability
STAR Standard Terminal Arrival Routes
STBY Stand-by
STD Standard
SVN Synthetic Vision (Tapes configuration in PFI area)
SVS Synthetic Vision System
SYMB Symbol
SYNC Synchronize
SYRD System Requirements Document
TA Traffic Advisory (Traffic Function)
TACAN Ultra-High Frequency Tactical Air Navigational Aid
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Term/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAFs</td>
<td>Terminal Aerodrome Forecasts</td>
</tr>
<tr>
<td>TAS</td>
<td>Traffic Advisory System; True Airspeed</td>
</tr>
<tr>
<td>TAWS</td>
<td>Terrain Awareness and Warning System</td>
</tr>
<tr>
<td>TCA</td>
<td>Terminal Control Areas</td>
</tr>
<tr>
<td>TCAD</td>
<td>Traffic Collision Alert Device</td>
</tr>
<tr>
<td>TCAS</td>
<td>Traffic Collision Alert System</td>
</tr>
<tr>
<td>TD</td>
<td>Terrain Data</td>
</tr>
<tr>
<td>T/D</td>
<td>Top of Descent</td>
</tr>
<tr>
<td>TERPS</td>
<td>Terminal Instrument Procedures</td>
</tr>
<tr>
<td>TF</td>
<td>Track to a Fix; Track from Fix to New Fix (ARINC-424 Leg)</td>
</tr>
<tr>
<td>TFR</td>
<td>Temporary Flight Restriction</td>
</tr>
<tr>
<td>TGT</td>
<td>Target</td>
</tr>
<tr>
<td>THLD</td>
<td>Radio microphone threshold</td>
</tr>
<tr>
<td>TIS</td>
<td>Traffic Information Service</td>
</tr>
<tr>
<td>TIS-B</td>
<td>Traffic information Service-Broadcast</td>
</tr>
<tr>
<td>TOAC</td>
<td>Time Of Arrival Control</td>
</tr>
<tr>
<td>TRANS</td>
<td>Transition</td>
</tr>
<tr>
<td>TRK</td>
<td>Track</td>
</tr>
<tr>
<td>TRNDO</td>
<td>Tornadic</td>
</tr>
<tr>
<td>TSO</td>
<td>Technical Standard Order</td>
</tr>
<tr>
<td>TTA</td>
<td>Time to Alert</td>
</tr>
<tr>
<td>TURB</td>
<td>Turbulence</td>
</tr>
<tr>
<td>Tx</td>
<td>Radio Transmit</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus, data storage device</td>
</tr>
<tr>
<td>USR</td>
<td>User Waypoint</td>
</tr>
<tr>
<td>UTC</td>
<td>Universal Time Coordinated</td>
</tr>
<tr>
<td>VA</td>
<td>Heading to Altitude (ARINC-424 Leg)</td>
</tr>
<tr>
<td>V_A</td>
<td>Speed above which it is unwise to make full application of any single flight control</td>
</tr>
<tr>
<td>VAL</td>
<td>Vertical Alert Limit</td>
</tr>
<tr>
<td>VD</td>
<td>Heading to DME Distance (ARINC-424 Leg)</td>
</tr>
<tr>
<td>VDI</td>
<td>Vertical Deviation Indicator</td>
</tr>
<tr>
<td>VERT</td>
<td>Vertical</td>
</tr>
<tr>
<td>VFOM</td>
<td>Vertical Figure of Merit</td>
</tr>
</tbody>
</table>
Section 2 System Overview

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency</td>
</tr>
<tr>
<td>VI</td>
<td>Heading to Intercept (ARINC-424 Leg)</td>
</tr>
<tr>
<td>VLOC</td>
<td>VOR/Localizer</td>
</tr>
<tr>
<td>VLOC</td>
<td>VOR/Localizer</td>
</tr>
<tr>
<td>VLON</td>
<td>Vertical Loss of Navigation</td>
</tr>
<tr>
<td>VM</td>
<td>Heading to Manual Termination (ARINC-424 Leg)</td>
</tr>
<tr>
<td>VNAV</td>
<td>Vertical Navigation (also VNV)</td>
</tr>
<tr>
<td>VNE</td>
<td>Never exceed speed</td>
</tr>
<tr>
<td>VNO</td>
<td>Maximum structural cruising speed or maximum speed for normal operations</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF Omnidirectional Radio</td>
</tr>
<tr>
<td>VORTAC</td>
<td>Collocated VOR and TACAN</td>
</tr>
<tr>
<td>VP</td>
<td>VFR waypoints (five digits beginning with “VP”)</td>
</tr>
<tr>
<td>VPL</td>
<td>Vertical Protection Level</td>
</tr>
<tr>
<td>VPROC</td>
<td>Procedure Speed</td>
</tr>
<tr>
<td>VR</td>
<td>Heading to Radial Termination (ARINC-424 Leg)</td>
</tr>
<tr>
<td>VS</td>
<td>Vertical Speed</td>
</tr>
<tr>
<td>VSI</td>
<td>Vertical Speed Indicator</td>
</tr>
<tr>
<td>VTF</td>
<td>Vectors to Final</td>
</tr>
<tr>
<td>VTOS</td>
<td>Minimum speed for a positive rate of climb with one engine inoperative</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Augmentation System</td>
</tr>
<tr>
<td>WGS84</td>
<td>World Geodetic System 1984</td>
</tr>
<tr>
<td>WPT</td>
<td>Waypoint</td>
</tr>
<tr>
<td>WX</td>
<td>Weather</td>
</tr>
<tr>
<td>WXA</td>
<td>Weather-alert (RDR-2100)</td>
</tr>
<tr>
<td>XFILL</td>
<td>Crossfill</td>
</tr>
</tbody>
</table>

2.2. System Overview

The IDU-680 EFIS is a complete flight and navigation instrumentation system intuitively providing information via computer-generated displays. The displays include 3D, enhanced situational awareness primary flight display (PFD) and multi-function display (MFD), which may be configured to show a moving map, HSI, terrain, traffic, datalink, strikes, nav log, hover, weather radar, ECBU, or video and open architecture systems integration symbology (OASIS) page (if configured).
At any given time, each side only has one IDU transmit-enabled to send RS-232 and RS-422 system transmissions. By default, the PFD is a transmit-enabled, but if it subsequently fails, the respective MFD becomes transmit-enabled.

Table 2-1 describes the EFIS limits set for all screen captured views for this pilot guide development except where different settings are noted.

<table>
<thead>
<tr>
<th>Category</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen Position Settings:</td>
<td></td>
</tr>
<tr>
<td>Screen Number</td>
<td>#1 or #2 as specified</td>
</tr>
<tr>
<td>Aircraft Type</td>
<td>Generic</td>
</tr>
<tr>
<td>Speed Settings:</td>
<td></td>
</tr>
<tr>
<td>Airspeed Scale Type</td>
<td>FAR 27.1545</td>
</tr>
<tr>
<td>Airspeed Units</td>
<td>Knots</td>
</tr>
<tr>
<td>Pilot-side analog configuration</td>
<td>Tapes</td>
</tr>
<tr>
<td>Digital configuration</td>
<td>Rolling (or Pure Digital where depicted)</td>
</tr>
<tr>
<td>Optional Sensor Settings:</td>
<td></td>
</tr>
<tr>
<td>Datalink Receiver</td>
<td>ADS-B</td>
</tr>
<tr>
<td>TAWS Type</td>
<td>Enhanced HTAWS (FG)</td>
</tr>
<tr>
<td>Traffic Sensor</td>
<td>TCAD/TAS (RS-232)</td>
</tr>
<tr>
<td>WX-500 (STRIKES)</td>
<td>Installed</td>
</tr>
<tr>
<td>SAR Patterns</td>
<td>Enabled</td>
</tr>
<tr>
<td>NAV Preview</td>
<td>Disabled</td>
</tr>
<tr>
<td>ADF Navigation</td>
<td>Disabled</td>
</tr>
<tr>
<td>TACAN Navigation</td>
<td>Disabled</td>
</tr>
<tr>
<td>Airframe Settings:</td>
<td></td>
</tr>
<tr>
<td>Landing Gear Configuration</td>
<td>Fixed</td>
</tr>
<tr>
<td>Same *** CAS Caution Enabled</td>
<td>Disabled (If enabled “CAUTIONS”)</td>
</tr>
<tr>
<td>Temperature Units</td>
<td>°C</td>
</tr>
<tr>
<td>Map Encoder Rotation</td>
<td>CW increase/CCW decrease Range (MAP/WX RDR)</td>
</tr>
<tr>
<td>Maximum AGL Display</td>
<td>5000’</td>
</tr>
<tr>
<td>Minimum Obstacle Height</td>
<td>0’</td>
</tr>
<tr>
<td>PLI Display</td>
<td>Enabled</td>
</tr>
<tr>
<td>Roll Indicator Type</td>
<td>Sky Pointer</td>
</tr>
<tr>
<td>Slip-Skid Display</td>
<td>Enabled</td>
</tr>
<tr>
<td>Minimum Runway length</td>
<td>0’</td>
</tr>
<tr>
<td>Positive G-Limit</td>
<td>N/A</td>
</tr>
<tr>
<td>Negative G-Limit</td>
<td>N/A</td>
</tr>
<tr>
<td>Show Full MFD Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Show MFD Density Alt</td>
<td>Enabled</td>
</tr>
<tr>
<td>Show MFD ISA Temp Deviation</td>
<td>Enabled</td>
</tr>
<tr>
<td>Show MFD True Airspeed</td>
<td>Enabled</td>
</tr>
<tr>
<td>Category</td>
<td>Setting</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Autopilot Settings:</td>
<td></td>
</tr>
<tr>
<td>Autopilot Type</td>
<td>Analog</td>
</tr>
<tr>
<td>Flight Director</td>
<td>Enabled</td>
</tr>
<tr>
<td>Flight Director on Side-in-Command</td>
<td>Disabled</td>
</tr>
<tr>
<td>Basic Sensor Settings:</td>
<td></td>
</tr>
<tr>
<td>Remote Tuning</td>
<td>Cobham CD/Honeywell ...</td>
</tr>
<tr>
<td>ADF System</td>
<td>Dual</td>
</tr>
<tr>
<td>ADC System</td>
<td>Dual</td>
</tr>
<tr>
<td>Baro Autosetting on Startup</td>
<td>Enabled</td>
</tr>
<tr>
<td>Synch pilot/Copilot Baro</td>
<td>Enabled</td>
</tr>
<tr>
<td>AHRS System</td>
<td>Dual</td>
</tr>
<tr>
<td>Analog interface unit</td>
<td>Installed</td>
</tr>
<tr>
<td>DME System</td>
<td>Dual RC DME4000</td>
</tr>
<tr>
<td>EFIS System</td>
<td>Dual (Pilot-Side defaults to #2 Sensors)</td>
</tr>
<tr>
<td>Cockpit Arrangement</td>
<td>Side-by-Side</td>
</tr>
<tr>
<td>Pilot Position</td>
<td>Right</td>
</tr>
<tr>
<td>GPS System</td>
<td>Dual</td>
</tr>
<tr>
<td>Radar Altimeter</td>
<td>Dual</td>
</tr>
<tr>
<td>Dual DH</td>
<td>Disabled</td>
</tr>
<tr>
<td>Baro Agl</td>
<td>Enabled</td>
</tr>
<tr>
<td>VOR System</td>
<td>Dual</td>
</tr>
<tr>
<td>TACAN</td>
<td>Dual</td>
</tr>
<tr>
<td>Video Input Settings:</td>
<td></td>
</tr>
<tr>
<td>VIDEO-1 Zoom = Enabled</td>
<td>Force NTSC Label = FLIR</td>
</tr>
<tr>
<td>VIDEO-2 Zoom = Enabled</td>
<td>Force NTSC Label = TAC MAP</td>
</tr>
<tr>
<td>VIDEO-3 Zoom = Disabled</td>
<td>Force NTSC Label = D-MAP</td>
</tr>
<tr>
<td>VIDEO-4 Zoom = Enabled</td>
<td>Force NTSC Label = MISSION</td>
</tr>
<tr>
<td>VIDEO-5 Zoom = Enabled</td>
<td>Force NTSC Label = <default></td>
</tr>
<tr>
<td>Weather Radar Settings:</td>
<td></td>
</tr>
<tr>
<td>WX RDR Enable Screen #1</td>
<td>Disable</td>
</tr>
<tr>
<td>WX RDR Enable Screen#2</td>
<td>Enabled</td>
</tr>
<tr>
<td>WX RDR Enable Screen#3</td>
<td>Disabled</td>
</tr>
<tr>
<td>WX RDR Enable Screen #4</td>
<td>Disabled</td>
</tr>
<tr>
<td>WX RDR Type</td>
<td>Honeywell RDR-2100</td>
</tr>
<tr>
<td>External Radar Control Panel</td>
<td>Not Installed</td>
</tr>
<tr>
<td>Radar Scan Width</td>
<td>100° (± 50°)</td>
</tr>
<tr>
<td>Discrete Input Settings:</td>
<td></td>
</tr>
<tr>
<td>GPI# 1</td>
<td>Warning/Caution Acknowledge</td>
</tr>
<tr>
<td>GPI# 2</td>
<td>Outer Marker</td>
</tr>
<tr>
<td>GPI# 3</td>
<td>Middle Marker</td>
</tr>
<tr>
<td>GPI# 4</td>
<td>Inner Marker</td>
</tr>
<tr>
<td>Category</td>
<td>Setting</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>GPI# 5</td>
<td>GPS Offside Select</td>
</tr>
<tr>
<td>GPI# 6</td>
<td>Fan Status</td>
</tr>
<tr>
<td>GPI# 7</td>
<td>AHRS Offside Select</td>
</tr>
<tr>
<td>GPI# 8</td>
<td>ADC Offside Select</td>
</tr>
<tr>
<td>GPI# 9</td>
<td>TAWS Inhibit</td>
</tr>
<tr>
<td>GPI# 10</td>
<td>HTAWS Low Altitude</td>
</tr>
<tr>
<td>GPI# 11</td>
<td>TAWS Glide Slope Inhibit</td>
</tr>
<tr>
<td>GPI# 12</td>
<td>Crossfill Inhibit</td>
</tr>
<tr>
<td>AIU# 3</td>
<td>Weight On Ground/Wheels</td>
</tr>
</tbody>
</table>

Aircraft Fuel Settings:
- Fuel Totalizer: Enabled
- Fuel Tank Count: 2
- Fuel Flow Count: 2
- Unmonitored Fuel: FALSE
- Volume Units: Lbs. (Jet Fuel)
- Aircraft Total Fuel QTY: 1000
- Aircraft Main Fuel Quantity: 1000
- Totalizer Fuel Increments: 50
- Aircraft low Fuel Caution: 200
- Aircraft Low Fuel Alarm: 50
- Wing Tank Split Caution: Disabled
- Totalizer Mismatch Caution: Disabled

Fuel Tank #1 Settings:
- Tank Type: Other Tank
- Fuel Tank QTY: 500 LBS
- Fuel Tank Caution: 160 LBS
- Fuel Tank Alarm: Disabled

Fuel Tank #2 Settings:
- Tank Type: Other Tank
- Fuel Tank QTY: 500 LBS
- Fuel Tank Caution: 160 LBS
- Fuel Tank Alarm: Disabled

The engine instruments and crew alerting system (EICAS) is an OASIS page that includes displays for engine parameters and other aircraft information for the crew to manage the aircraft systems.
NOTE:

See the Rotorcraft Flight Manual Supplement (RFMS) for OASIS information, if applicable.

Radio tuning, settings control, and audio control are managed within the IDU on the Audio/Radio Management (ARM) page (see RFMS as applicable).

Figure 2-1: IDU-680 Primary Flight Display (PFD) and Map Page
2.2.1. Functional Integration and Display Redundancy

IDUs incorporate a high-brightness liquid crystal display screen; bezel pushbuttons; four rotary knobs and enter switches; a central processing receive and transmit ports; and discrete input/output ports. Hardware and software are identical for all IDUs, and functionality is determined by configuration settings setup during installation. Because the receive ports of the IDUs are connected to the digital sensor modules in parallel, each IDU is independent from all other IDUs.
The IDUs depend upon intra-system (between IDUs on a side – “Sync”) and inter-system (between IDUs on opposite sides – “Crosslink”) to achieve synchronization of the integrated functions. The IDUs also depend upon intra-system communications to determine which IDU on a side takes over transmit-enabled responsibilities. The transmit-enabled IDU is the IDU providing data to external sensors and generating visual and audible alerts. Figure 2-3 is a typical system diagram.

Figure 2-3: System Diagram

2.3. Application Software Air Mode and Ground Mode

Numerous symbology elements change behavior depending upon whether the aircraft is on the ground (ground mode) or in flight (air mode). Mode is determined separately from the system initialization modes. This parameter is continuously calculated as follows:

1) If airspeed is valid and AGL altitude is valid, ground mode is set when indicated airspeed is less than 30 knots, and AGL altitude is less than 75 feet.

2) If airspeed is invalid but AGL altitude is valid, ground mode is set when AGL altitude is less than 75 feet.

3) Under any other circumstance, air mode is set by default.
2.4. IDU Initialization

The hardware, including file system, IO, and graphics, is initialized. Immediately after graphics initialization, a logo screen with “INITIALIZING” is displayed with the Genesys Aerosystems logo, software version number, and part number. The software version number delineates: (1) major revision number (i.e., “9.0”), and (2) minor revision letter (i.e., “A”).

Table 2-2: IDU Software Version and Part Number

<table>
<thead>
<tr>
<th>Version Number</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev 9.0A</td>
<td>25-EFIS90A-SW-0023 CPM4 or 25-EFIS90A-SW-0026 CPM5L</td>
</tr>
</tbody>
</table>

Software part numbers can change after initial certification and are amended with installation manual changes or service bulletin issuance.

Figure 2-4: IDU-680 Initialization Screen

The personality module contains the CPU/IDU number (Table 2-3) and system designation (pilot or co-pilot). The IDU number is identified below the part number on the CRC screen (Figure 2-6.)

Table 2-3: CPU/IDU Number Designation

<table>
<thead>
<tr>
<th>CPU Number/IDU#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>“0”</td>
<td>Single IDU installation</td>
</tr>
<tr>
<td>“1”</td>
<td>IDU only shows PFD</td>
</tr>
<tr>
<td>“2”</td>
<td>First MFD in multi-screen installation</td>
</tr>
<tr>
<td>“3”</td>
<td>Second MFD in a multi-screen installation</td>
</tr>
<tr>
<td>“4”</td>
<td>Third MFD in a multi-screen installation</td>
</tr>
</tbody>
</table>

Pilot IDU #1 reads aircraft configuration from its personality module. In a multi-screen installation, IDU #1 transmits this configuration to the other
IDUs. The other IDUs save the transmitted configurations to flash drive storage.

Aircraft configurations are initially read from flash drive storage to provide IDUs with a default configuration setup in the event of personality module failure. Aircraft parameters (latitude, longitude, altitude), as they existed prior to the last system shutdown, are read for a good system initialization, even if system sensors are failed or not yet initialized. For future updates (i.e., updating software version 9.0A to 9.0B), all aircraft settings re-initialize to default values. Otherwise, aircraft settings, as they existed prior to the last system shutdown, are used to initialize the system except for the following default values:

1) Selected sensors are initialized to default values.
2) Active flight plan structure and associated values are cleared.
3) ADAHRS are set to slaved mode and the slewing value is initialized to zero.
4) Timers are turned off.
5) Datalink and map panning modes are set to off.
6) Fuel caution and alarm thresholds are set to default values.
7) Heading bug is set to 360° (HeliSAS-E enabled) or turned off.
8) Heading mode is turned off.
9) HSI navigation source is set to FMS.
10) HSI Preview navigation source is turned off (If NAV PRV is enabled in EFIS limits.)
11) Horizon synchronization status is set to disabled.
12) Minimum altitude setting is turned off.
13) FMS OBS setting is set to automatic.
14) VOR/LOC 1 OBS setting is set to 360°.
15) VOR/LOC 2 OBS setting is set to 360°.
16) TAC1 OBS setting is set to 360°.
17) TAC2 OBS setting is set to 360°.
18) ADF1 OBS setting is set to 360°.
19) ADF2 OBS setting is set to 360°.
20) Parallel offset is set to 0 NM.
21) PFD zoom mode is set to off.
22) Manual RNP is set to off.
23) If in round dial mode, analog AGL is set to off.
24) PFD skyway is set to on.
25) Vertical speed bug is turned off.
26) Target and preselected altitude bugs are turned off.
27) True North mode is turned off.
28) Airspeed speed bug is turned off.
29) If using weather radar menu, weather radar mode is set to off, vertical profile is set to off and stabilization is set to on.
30) Weather radar scale is initialized to 80NM.
31) Crosslink is initialized to on.
32) Map modes are set to allowed values.
33) With DVI option, DVI is set to off.
34) Essential mode is set to off.
35) Traffic page flight level set to off.
36) All data link products selected for display.

Based upon the air/ground mode parameter value from the last system shutdown, the EFIS decides whether it is booting on the ground or in flight.

If booting on the ground, the following actions happen:

1) A logo screen with “TESTING” is displayed for a number of seconds while the various hardware subsystems are initialized.
2) CRC-32 values for application executable, limitations files, NavData® files, obstruction files, sounds database, and terrain header files are checked.

During this action, “PRESS ANY BUTTON TO QUICK START” is displayed below “TESTING.” Press any button to stop the ground booting and execute the flight booting.

3) If the built-in-test (BIT) check fails, the program exits with an error message and creates a bit result file indicating failure.

4) If the BIT check passes, the program continues to initialize and creates a bit result file indicating passage.

5) The system autosets the altimeter based on the terrain elevation at the startup point (only applicable at surveyed airports.) In QFE mode operation, the application autosets the altimeter to read zero altitude.

6) A logo screen displaying:
 a) Software CRC-32;
 b) Aircraft type;
 c) OASIS configuration name and CRC-32, if configured;
 d) Audio/Radio configuration name and CRC-32. if configured;
 e) Audio/Radio channel presets configuration name and CRC-32, if configured;
 f) ECBU configuration name and CRC-32 if configured;
 g) Sounds database name and CRC-32;
 h) Magnetic variation coefficients version and CRC-32; and
Section 2 System Overview

i) Database versions and validity dates are displayed along with “PRESS ANY BUTTON TO CONTINUE.”

REU 9.0A
P/N: 25-EFIS90A-SH-0026 (IDU-680 CPML)
SOFTWARE OK (PILOT CPU #1)
SOFTWARE CRC = 2B9FAPTC
AIRCRAFT TYPE GENERIC
SOUND CONFIG: STANDARD EFIS SOUND (DCAC54EB)
MAG VAR Data: UMM-2020 (D1CDE260)
NAVIGATION DATA: COVERAGE = WORLD (CYCLE 2002)
DATES 01-30-2020 TO 02-27-2020
OBSTRUCTION DATA: DATE 02-27-2020
TERRAIN DATA: COVERAGE = 95SW180 - N75E181
DATE 03-26-2007
IAP/APO DATA: DATES 02-27-2020 TO 03-25-2020
PRESS ANY BUTTON TO CONTINUE

Figure 2-6: CRC Screen

7) After a button is pressed, if all critical sensors (GPS, ADC, and AHRS) are in normal condition, the display screens are shown immediately. IDU #1 initializes to the PFD screen.

8) If any critical sensor is not in normal condition, a logo screen with a two-minute countdown timer is displayed along with “PRESS ANY BUTTON TO SKIP.”

Figure 2-7: Two-Minute Countdown Screen

9) The display screens initialize at the earliest of:

a) when 2 minutes have elapsed;

b) when the pilot presses any button to escape the startup countdown; or

c) when all critical sensors are in normal condition.

10) Display screens initialize as follows:
a) IDU #1: PFD Normal mode - PFI on top and an MFD page.

b) IDU #2: MFD pages on top and bottom. If OASIS configured, OASIS EICAS page on top and MFD page on bottom.

c) All other IDUs on each side (when configured for pilot and co-pilot): MFD pages on top and bottom.

11) All active alerts are automatically acknowledged for 5 seconds to reduce nuisance alerting.

If booting in the air, the following actions happen:

1) A logo screen with “QUICK START” is displayed.

![Figure 2-8: QUICK START Screen](image)

2) BIT result file created during the last ground boot is checked.
 a) Failure = indicates a failure, program exits with an error message.
 b) Passage = program continues.

3) Display screens initialize immediately as follows:
 a) IDU #1: PFD Normal mode (PFI on top and MFD page on bottom.)
 b) IDU #2: MFD pages on top and bottom. If OASIS configured, OASIS EICAS page on top and MFD page on bottom.
 c) All other IDUs: MFD pages on top and MFD on bottom.
2.5. General Arrangement

Figure 2-9: IDU #1 PFI on Top and Map on Bottom

The IDU-680 is 7.500"W x 10.250"H x 4.750"D and weighs less than 9.5 lbs. It has the capacity to accommodate integrated peripherals mechanically attached to the IDU but have electrical isolation and redundancy. These modules may include:

1) Integrated ADAHRS sensor module
2) Integrated GPS/SBAS sensor module
3) Serial protocol converters
4) Video format converters

IDU #1 is configured so only the primary flight information (PFI) in top area and MFD page in bottom area are displayed.

Data storage is sufficiently sized to hold world terrain, navigation, and obstruction databases. Because the receive ports are connected to the digital sensor modules in parallel, each IDU is independent from all others.

2.5.1. Normal and Essential Modes

Figure 2-10: MFD Normal Mode

EFIS has normal mode and essential modes. Normal mode for PFD is the PFI in the top area and an MFD page in the bottom area. If OASIS is configured, PFD Essential mode has the PFI on top and OASIS EICAS on the bottom to provide everything needed for continued safe operation.
Press (R5) to toggle Normal and Essential modes. On PFD button is labeled **TO NORMAL** or **TO ESSNTL**. On MFD, button is labeled **TO ESSNTL** or **TO MFD**. Mode change is instantaneous.

TAWS popups: When an FLTA alert is generated, a popup function enables PFI SVS and activates terrain at an appropriate scale and format on the moving map page (one of the multi-function pages). This is a required function of TSO-C194 for HTAWS (See Section 8 TAWS for more information.)

Traffic popups: When a traffic alert is generated, a popup function displays traffic on the PFI and moving map page and the traffic thumbnail on the PFI (see Traffic appendix for more information).

2.5.2. Data Source Monitors

In installations with redundant sensors, IDUs continuously monitor the following sensors to detect disagreements:

1) Airspeed
2) Altitude
3) Attitude
4) Barometric setting (pilot vs. co-pilot sides)
5) GPS position, track, and ground speed
6) Heading
7) Localizer and glide slope deviations
8) Radar altitude

2.5.3. IDU Intra-System Communications

Communication between IDUs installed on the same system is referred to as intra-system communications. In a dual side (pilot and co-pilot) configuration, the crosslink system to system communications is referred to as inter-system communications. IDUs on a system side (pilot side and co-pilot side individually) monitor each other using intra-system communications and perform the following checks:

1) Intra-system communications freshness
2) Screen counter incrementing (i.e., screen not frozen)
3) Airspeed agreement
4) Altitude agreement
5) Attitude agreement
6) Barometric setting agreement
7) GPS position, track, and ground speed agreement
8) Heading agreement
9) Localizer and glide slope deviation agreement
2.5.4. GPS Aiding Limitation

To prevent gyro drift in the roll attitude solution, continuous corrections to roll attitude are made based upon speed, accelerations, and rates. The preferred correction speed source is airspeed from the air data computer (ADC). However, airspeed data becomes noisy and inaccurate as the aircraft slows, and the system automatically transitions to GPS ground speed (at approximately 55 KIAS) under these conditions.

When flying in a GPS-denied environment, be aware that flight below 55 KIAS could result in a degraded roll attitude solution. Therefore, avoid IMC conditions and crosscheck other attitude instruments when flying below 55 KIAS and transition to flight above 55 KIAS as soon as practicable.

2.6. Color Conventions

The EFIS uses a consistent set of colors to display information. Any color representation may not be identical as it appears on the IDU.

<table>
<thead>
<tr>
<th>Color</th>
<th>Use(s)</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITE</td>
<td>Items set by pilot and held by the EFIS or items where device feedback is not expected; marker beacon receiver high/low sensitivity modes; scales, associated labels and figures; pilot action; or data entry. When used for an analog bar indication, light gray (low-intensity white) is used instead, as a large white area on the screen may be overwhelming.</td>
<td>Scales markings (airspeed, altitude, heading, VSI, pitch, map ranges, etc.) Pilot-selected values (airspeed, heading, altitude) Secondary flight data (TAS, wind, OAT, timers, etc.)</td>
</tr>
<tr>
<td>CYAN</td>
<td>VOR #1 and IFR navigation dataset items. Information received from the device that is not related to a pilot setting.</td>
<td>Airports with instrument approach procedures, VORs, and intersections.</td>
</tr>
<tr>
<td>MAGENTA</td>
<td>Indicates calculated or derived data and certain navigation database items. Light magenta for visibility</td>
<td>Active waypoint related symbols. Course data (desired track, CDI). VFR airports, NDBs, VNAV altitudes, ACTV</td>
</tr>
</tbody>
</table>
Table 2-4: Color Conventions

<table>
<thead>
<tr>
<th>Color</th>
<th>Use(s)</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray</td>
<td>Background for airspeed and altitude readout and for conformal runway depiction</td>
<td>Light gray for usable portion of active runway, dark gray for other runway surfaces</td>
</tr>
<tr>
<td>Green</td>
<td>VOR #2 and to indicate normal or valid operation (airspeed, altitude tape coloring, status indication, etc.) Light green for visibility.</td>
<td>Aircraft ground track, skyway symbology, and airspeeds in green arc.</td>
</tr>
<tr>
<td>Dark Green</td>
<td>Terrain indication on moving map (slope between adjacent terrain determines the shade used).</td>
<td></td>
</tr>
<tr>
<td>Amber (Yellow)</td>
<td>Identifies conditions requiring immediate pilot awareness and possible subsequent action. Currently used for DME hold indications.</td>
<td></td>
</tr>
<tr>
<td>Olive</td>
<td>In various shades shows terrain within 2000’ and below aircraft altitude.</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>In a variety of shades indicates earth/terrain portion of PFD or when above 100 feet less than aircraft altitude on MFD.</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>In a variety of shades indicates sky portion of PFD, bodies of water on moving map.</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Indicates aircraft limitations or conditions, which require immediate pilot action, or a device failure (red “X”).</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>Field of view angle lines on moving map, figures on a gray background, and outlining borders and certain figures/elements on backgrounds with minimal contrast, e.g., airspeed, altitude, and menu tiles on the PFD/MFD.</td>
<td></td>
</tr>
</tbody>
</table>
2.7. **AHRS Fast Slave and Erect**

If it becomes necessary to restore the heading and attitude references, the AHRS includes heading fast slave and attitude fast erect features, which can be performed when in approximately straight and level flight to ensure the best chance of providing valid observation for heading and attitude. See RFMS for nomenclature and location of switch or button.

2.8. **Warning/Caution/Advisory System**

The IDU has an integrated audio/visual warning system, which monitors a wide variety of parameters and provides alerts for conditions that demand pilot action or awareness.

The following alerts are provided and described below:

1) Warning Alerts
2) Time-Critical Warning Alerts
3) Master Visual and Audible/Voice Alerts
4) Caution Alerts
5) Advisory Alerts

All warnings, including time-critical warnings, activate the warning (red) light and master caution light. All cautions, including time-critical cautions, activate the caution (yellow) light and master caution light. Once acknowledged, the flashing behavior stops, the audio alert is interrupted, and the discrete outputs are deactivated.

2.8.1. **Time-Critical Warning and Caution Alerts**

Time-critical warning and caution alerts trigger the following elements (Table 2-5) and display in the pilot’s primary field of view with a shaded background (Figure 2-11).

![Figure 2-11: Time-Critical Warning and Caution Alerts](image)
NOTE:
The following examples show shaded backgrounds on sky and terrain backgrounds for readability.

<table>
<thead>
<tr>
<th>Alert Type</th>
<th>Text Color</th>
<th>Flash Rate</th>
<th>Audio Alert at Full Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>Red</td>
<td>2 Hz</td>
<td>Repeated until acknowledged</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Amber (Yellow)</td>
<td>1 Hz</td>
<td>Plays only once</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2-6: Time-Critical Warning and Caution Alerts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Alert</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>OBSTRUCTION</td>
</tr>
<tr>
<td>GLIDESLOPE</td>
</tr>
<tr>
<td>TRAFFIC</td>
</tr>
</tbody>
</table>
Table 2-6: Time-Critical Warning and Caution Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Voice Alert</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK GEAR</td>
<td>“Check Gear, Check Gear”</td>
<td>If enabled in EFIS limits, activates if aircraft is below or 150’ AGL, is descending, and any landing gear is not down. 2-second time delay.</td>
</tr>
<tr>
<td>CHECK GEAR</td>
<td>“Caution Terrain, Caution Terrain”</td>
<td>Terrain cell within TAWS FLTA caution envelope. Half-second time delay.</td>
</tr>
<tr>
<td>SINK RATE</td>
<td>“Sink Rate, Sink Rate”</td>
<td>Within GPWS Mode 1 caution envelope. Half-second time delay.</td>
</tr>
<tr>
<td>TOO LOW</td>
<td>“Too Low Terrain, Too Low Terrain”</td>
<td>Within GPWS Mode 2 caution envelope. Half-second time delay.</td>
</tr>
<tr>
<td>TOO LOW</td>
<td>“Too Low Gear, Too Low Gear”</td>
<td>Within GPWS Mode 3 envelope. Half-second time delay.</td>
</tr>
<tr>
<td>OBSTRUCTION</td>
<td>“Caution Obstruction, Caution Obstruction”</td>
<td>Obstruction within TAWS FLTA caution envelope. Half-second time delay.</td>
</tr>
<tr>
<td>GLIDESLOPE</td>
<td>“Glide slope, Glide slope”</td>
<td>Within GPWS Mode 4-1 “Too Low Terrain” envelope. Half-second time delay.</td>
</tr>
<tr>
<td>TRAFFIC</td>
<td>“Traffic, Traffic”</td>
<td>Not given if own aircraft below 400’ AGL nor if target is below 200’AGL (ground target). Audio not generated with TCAS-II system. **</td>
</tr>
<tr>
<td>HRZ SYNC</td>
<td>-</td>
<td>Annunciates the Horizon Synchronization function is engaged. Annunciation does not flash or illuminate a master visual alert because it is not really a caution but instead a pilot selection annunciation. It is yellow because Horizon Synchronization symbology is yellow.</td>
</tr>
</tbody>
</table>
Time-critical warning and caution alerts are prioritized so only one alert at a time is active.

1) GPWS Mode 1 Warning
2) GPWS Mode 2 Warning
3) TAWS FLTA Warning
4) Obstruction Warning
5) TAWS FLTA Caution
6) Obstruction Caution
7) GPWS Mode 4-1
8) GPWS Mode 4-2
9) GPWS Mode 1 Caution
10) GPWS Mode 2 Caution
11) GPWS Mode 3
12) GPWS Mode 5 Warning
13) GPWS Mode 5 Caution
14) Check Gear
15) Traffic Warning (Resolution Advisory)
16) Traffic Caution (Traffic Advisory)
17) Horizon Synchronization Caution

2.8.2. Warning Alerts

![Figure 2-12: Warning Alerts](image)

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Location</th>
<th>Flash Rate</th>
<th>Audio Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>PFD lower left corner*</td>
<td>2 Hz</td>
<td>Repeated at full volume until acknowledged</td>
</tr>
<tr>
<td>Master Visual Alert</td>
<td>Amber (Yellow) warning light</td>
<td>1 Hz</td>
<td></td>
</tr>
</tbody>
</table>

* In the lower-left corner of a transmit-enabled IDU (PFI showing) or left corner of transmit-enabled IDU bottom area (PFI not showing.)
Table 2-8: Warning Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Voice Alert/ Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW FUEL</td>
<td>“Fuel Low, Fuel Low”</td>
<td>One of the following conditions is true:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) One of the Low Fuel Warning discrete inputs is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) One of the sensed fuel tank quantities is below its low fuel warning threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Total aircraft fuel is below the pilot-set emergency fuel threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-minute time delay.</td>
</tr>
<tr>
<td>Duplicate Time-Critical Warning Alerts</td>
<td></td>
<td>Covers the case where IDU#0 is not displaying the PFI</td>
</tr>
<tr>
<td>OBSTRUCTION</td>
<td>“Warning Obstruction, Warning Obstruction”</td>
<td>Obstruction within TAWS FLTA warning envelope. Half-second time delay.</td>
</tr>
<tr>
<td>TERRAIN</td>
<td>“Warning, Terrain, Warning Terrain”</td>
<td>Terrain cell within HTAWS FLTA warning envelope. Half-second time delay.</td>
</tr>
<tr>
<td>PULL UP</td>
<td>“Pull Up, Pull Up”</td>
<td>Within GPWS Mode 1 warning envelope. Half second time delay.</td>
</tr>
<tr>
<td>GLIDESLOPE</td>
<td>“Glide Slope, Glide Slope”</td>
<td>Within GPWS Mode 5 warning envelope. Half second time delay.</td>
</tr>
<tr>
<td>TRAFFIC</td>
<td>“Traffic, Traffic”</td>
<td>Resolution Advisory. Not given if own aircraft at or below 400’ AGL. Not given if target is at or below 200’ AGL (ground target). Audio not generated with TCAS-II system.**</td>
</tr>
</tbody>
</table>
2.8.3. Caution Alerts

Figure 2-13: Caution Alerts

NOTE:
With an OASIS EICAS page configured, it is possible for the EICAS page to generate these caution alerts.

Table 2-9: Caution Alert Elements

<table>
<thead>
<tr>
<th>Type Alert</th>
<th>Location</th>
<th>Flash Rate</th>
<th>Audio Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
<td>PFD lower left corner of transmit-enabled IDU</td>
<td>1 Hz</td>
<td>Plays only once at full volume</td>
</tr>
</tbody>
</table>

Table 2-10: Caution Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Voice Alert/Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>** No time delay</td>
<td>** No time delay</td>
</tr>
<tr>
<td>ADC1 FAIL</td>
<td>Alert Tone</td>
<td>Indicates no valid IAS, pressure altitude, nor VSI received from numbered ADC(s) for more than 1 second. ** [1]</td>
</tr>
<tr>
<td>ADC2 FAIL</td>
<td>Alert Tone</td>
<td>Mode-S transponder indicates bad ADS-B out status. 2-second time delay. Also, set by audio/radio interface with NGT-9000R transponder. 2-second time delay.</td>
</tr>
<tr>
<td>ADC1/2 FAIL</td>
<td>Alert Tone</td>
<td></td>
</tr>
<tr>
<td>ADS-B FAIL</td>
<td>Alert Tone</td>
<td></td>
</tr>
</tbody>
</table>
Table 2-10: Caution Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Voice Alert/Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>** No time delay</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>[1] Only active in dual-sensor installation with neither sensor in failure condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2] Only active in dual-sided system (pilot and co-pilot)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3] Only active when single-pilot mode discrete not asserted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4] Only active when CAUTION mode is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** AHRS1 FAIL</td>
<td>Alert Tone</td>
<td>Indicates no valid bank, pitch, nor heading received from enumerated AHRS(s) for more than 1 second. Inhibited during and for 10 seconds after unusual attitude mode. ** [1]</td>
</tr>
<tr>
<td>** AHRS2 FAIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** AHRS1/2 FAIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** AUX SENSOR</td>
<td>Alert Tone</td>
<td>No valid message or bad status received from installed optional sensors. Sensor status displayed in faults menu. 5-second time delay. Inhibited during and for 10 seconds after unusual attitude mode. Applies to the following optional sensors:</td>
</tr>
<tr>
<td>[1] RS-232 TAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2] ADS-B system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3] WX-500 Strikes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4] Analog interface system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** PLT1 OURTMP</td>
<td>Alert Tone</td>
<td>IDU core temperature greater than 95°C. 2-second time delay.</td>
</tr>
<tr>
<td>** PLT2 OURTMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** PLT3 OURTMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** PLT4 OURTMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** CPLT1 OURTMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** CPLT2 OURTMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** CPLT3 OURTMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** CPLT4 OURTMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** PLT MISCOMP</td>
<td>Alert Tone</td>
<td>Only when fresh intra-system monitor messages are received. Indicates critical parameters used by displays on the indicated side exceed miscompare thresholds. Compares the following critical parameters:</td>
</tr>
<tr>
<td>** CPLT MISCOMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** PLT MISCOMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** CPLT MISCOMP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-10: Caution Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Voice Alert/Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
</table>
| **No time delay** | 2) Heading
3) Pressure altitude
4) Indicated airspeed
5) Localizer (both inputs)
6) Glide slope (both inputs)
7) Radar altitude
8) Latitude
9) Longitude
10) Track
11) Ground speed | 1-second time delay. Inhibited during and for 10 seconds after unusual attitude mode. [2] |
| [1] Only active in dual-sensor installation with neither sensor in failure condition | “Check Range, Check Range” Based on flight plan in use on indicated side, less than 30 minutes buffer (at current ground speed) between calculated range and distance to:
1) last waypoint if it is active; or
2) airport if on a missed approach; or
3) along-route distance to destination. Not activated in climbing flight nor if below 60 knots ground speed. 5-minute time delay. |
| [2] Only active in dual-sided system (pilot and co-pilot) | Alert Tone Indicates no valid message received from numbered GPS/SBAS for more than 5 seconds. ** Inhibited during and for 10 seconds after unusual attitude mode. |
| [3] Only active when single-pilot mode discrete not asserted | Alert Tone Indicates pressure altitude difference between ADCs is beyond limits. 10-second time delay. Inhibit for 5 minutes after startup. [1] |
| [4] Only active when CAUTION mode is enabled | Alert Tone Indicates no valid message received from numbered GPS/SBAS for more than 5 seconds. ** Inhibited during and for 10 seconds after unusual attitude mode. |

1. [1] Only active in dual-sensor installation with neither sensor in failure condition
2. [2] Only active in dual-sided system (pilot and co-pilot)
4. [4] Only active when CAUTION mode is enabled
Table 2-10: Caution Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Voice Alert/Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>** No time delay</td>
<td>** No time delay</td>
<td>Indicates pitch or roll difference between AHRS is beyond limits (6°). 10-second time delay. Inhibit for 5 minutes after startup. [1]</td>
</tr>
<tr>
<td>[4] Only active when CAUTION mode is enabled</td>
<td>[4] Only active when CAUTION mode is enabled</td>
<td></td>
</tr>
<tr>
<td>ATT MISCOMP</td>
<td>Alert Tone</td>
<td>Indicates personality module for designated IDU (side and IDU #) could not be read upon power-up. Internal limits are in use by the system. Only active on the ground.</td>
</tr>
<tr>
<td>PLT1 SCC</td>
<td>Alert Tone</td>
<td>Indicates pitch or roll difference between AHRS is beyond limits (6°). 10-second time delay. Inhibit for 5 minutes after startup. [1]</td>
</tr>
<tr>
<td>PLT2 SCC</td>
<td>Alert Tone</td>
<td>Indicates personality module for designated IDU (side and IDU #) could not be read upon power-up. Internal limits are in use by the system. Only active on the ground.</td>
</tr>
<tr>
<td>PLT3 SCC</td>
<td>Alert Tone</td>
<td>Indicates pitch or roll difference between AHRS is beyond limits (6°). 10-second time delay. Inhibit for 5 minutes after startup. [1]</td>
</tr>
<tr>
<td>PLT4 SCC</td>
<td>Alert Tone</td>
<td>Indicates pitch or roll difference between AHRS is beyond limits (6°). 10-second time delay. Inhibit for 5 minutes after startup. [1]</td>
</tr>
<tr>
<td>CPLT1 SCC</td>
<td>Alert Tone</td>
<td>Indicates pitch or roll difference between AHRS is beyond limits (6°). 10-second time delay. Inhibit for 5 minutes after startup. [1]</td>
</tr>
<tr>
<td>CPLT2 SCC</td>
<td>Alert Tone</td>
<td>Indicates pitch or roll difference between AHRS is beyond limits (6°). 10-second time delay. Inhibit for 5 minutes after startup. [1]</td>
</tr>
<tr>
<td>CPLT3 SCC</td>
<td>Alert Tone</td>
<td>Indicates pitch or roll difference between AHRS is beyond limits (6°). 10-second time delay. Inhibit for 5 minutes after startup. [1]</td>
</tr>
<tr>
<td>CPLT4 SCC</td>
<td>Alert Tone</td>
<td>Indicates pitch or roll difference between AHRS is beyond limits (6°). 10-second time delay. Inhibit for 5 minutes after startup. [1]</td>
</tr>
<tr>
<td>PLT1 TAWS</td>
<td>Alert Tone</td>
<td>Indicates on the designated IDU (side and IDU #), aircraft is currently beyond extent of terrain database or a failure condition is preventing TAWS FLTA function from operating. Half-second time delay. Inhibited during and for 10 seconds after unusual attitude mode.</td>
</tr>
<tr>
<td>PLT2 TAWS</td>
<td>Alert Tone</td>
<td>Indicates on the designated IDU (side and IDU #), aircraft is currently beyond extent of terrain database or a failure condition is preventing TAWS FLTA function from operating. Half-second time delay. Inhibited during and for 10 seconds after unusual attitude mode.</td>
</tr>
<tr>
<td>PLT3 TAWS</td>
<td>Alert Tone</td>
<td>Indicates on the designated IDU (side and IDU #), aircraft is currently beyond extent of terrain database or a failure condition is preventing TAWS FLTA function from operating. Half-second time delay. Inhibited during and for 10 seconds after unusual attitude mode.</td>
</tr>
<tr>
<td>PLT4 TAWS</td>
<td>Alert Tone</td>
<td>Indicates on the designated IDU (side and IDU #), aircraft is currently beyond extent of terrain database or a failure condition is preventing TAWS FLTA function from operating. Half-second time delay. Inhibited during and for 10 seconds after unusual attitude mode.</td>
</tr>
<tr>
<td>CPLT1 TAWS</td>
<td>Alert Tone</td>
<td>Indicates on the designated IDU (side and IDU #), aircraft is currently beyond extent of terrain database or a failure condition is preventing TAWS FLTA function from operating. Half-second time delay. Inhibited during and for 10 seconds after unusual attitude mode.</td>
</tr>
<tr>
<td>CPLT2 TAWS</td>
<td>Alert Tone</td>
<td>Indicates on the designated IDU (side and IDU #), aircraft is currently beyond extent of terrain database or a failure condition is preventing TAWS FLTA function from operating. Half-second time delay. Inhibited during and for 10 seconds after unusual attitude mode.</td>
</tr>
<tr>
<td>CPLT3 TAWS</td>
<td>Alert Tone</td>
<td>Indicates on the designated IDU (side and IDU #), aircraft is currently beyond extent of terrain database or a failure condition is preventing TAWS FLTA function from operating. Half-second time delay. Inhibited during and for 10 seconds after unusual attitude mode.</td>
</tr>
<tr>
<td>CPLT4 TAWS</td>
<td>Alert Tone</td>
<td>Indicates on the designated IDU (side and IDU #), aircraft is currently beyond extent of terrain database or a failure condition is preventing TAWS FLTA function from operating. Half-second time delay. Inhibited during and for 10 seconds after unusual attitude mode.</td>
</tr>
<tr>
<td>COOLING FAN</td>
<td>Alert Tone</td>
<td>Triggered when external cooling fan is commanded on by discrete output, but the cooling fan status discrete input indicates the cooling fan is not rotating. 1-minute time delay.</td>
</tr>
<tr>
<td>FUEL_SPLIT</td>
<td>Alert Tone</td>
<td>Compares volume of fuel designated left wing tank fuel vs. right wing tank fuel to fuel split caution threshold. Issued if the difference exceeds fuel split caution threshold. Only performed if the fuel split caution threshold is non-zero and both left and right wing tank fuel is monitored and valid. 1-minute time delay.</td>
</tr>
</tbody>
</table>
Table 2-10: Caution Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Voice Alert/Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
</table>
| **No time delay** | **Low fuel warning is not active and one of the following conditions is true:** | **1** A low fuel caution discrete inputs is active.
| **[1]** Only active in dual-sensor installation with neither sensor in failure condition | **2** A sensed fuel tank quantity is below its low fuel caution threshold.
| **[2]** Only active in dual-sided system (pilot and co-pilot) | **3** Total aircraft fuel is below the pilot-set minimum fuel threshold.
| **[3]** Only active when single-pilot mode discrete not asserted | 1-minute time delay.
| **[4]** Only active when CAUTION mode is enabled | |
| **LOW FUEL** | “Fuel Low, Fuel Low” | |
| **GPS MISCMP** | Alert Tone | Indicates position, track, or ground speed difference between GPS/SBAS units is beyond the following limits:
| | | **Position:**
| | | Enroute Mode 4NM
| | | Terminal Mode 2NM
| | | Departure Mode .6NM
| | | IFR Approach Mode .6NM
| | | VFR Approach Mode .6NM
| | | **Track:** If ground speed is greater than 30 kts, miscompare if difference is more than 4°.
| | | **Ground speed:** If difference between GPS#1 and GPS#2 miscompare is more than 10 kts.
| | | 10-second time delay. Inhibited during and for 10 seconds after unusual attitude mode. [1] |
| **GS MISCMP** | Alert Tone | Indicates at least one glide slope is receiving a signal within 1 dot of center and difference between glide slope signals is beyond limits (0.25 dots).
| | | 10-second time delay. [1] |
Table 2-10: Caution Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Voice Alert/Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>No time delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1] Only active in dual-sensor installation with neither sensor in failure condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2] Only active in dual-sided system (pilot and co-pilot)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3] Only active when single-pilot mode discrete not asserted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4] Only active when CAUTION mode is enabled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alert Tone</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HDG FAIL</td>
<td>Alert Tone</td>
<td>“HDG FAIL” applicable to single AHRS installation. “HDG# FAIL” applicable to dual AHRS installation. Indicates that Heading is invalid but other AHRS data parameters are normal (i.e., attitude is not Red-X’d). Half-second time delay. [1]</td>
</tr>
<tr>
<td>HDG1 FAIL</td>
<td>Alert Tone</td>
<td>With neither AHRS failed nor in DG mode. Indicates heading difference between AHRS is beyond the heading miscompare threshold limit. 10-second delay. Inhibited during and for 10 seconds after unusual attitude mode. Inhibit for 5 minutes after startup. [1]</td>
</tr>
<tr>
<td>HDG2 FAIL</td>
<td>Alert Tone</td>
<td>Indicates IAS difference between ADCs is beyond limits. 10-second time delay. Inhibit for 5 minutes after startup. [1]</td>
</tr>
<tr>
<td>HDG1/2 FAIL</td>
<td>Alert Tone</td>
<td>Indicates at least one localizer is receiving a signal within 1 dot of center and difference between localizer signals is beyond limits (0.25 dots). 10-second time delay. [1]</td>
</tr>
<tr>
<td>RALT MISCOMP</td>
<td>Alert Tone</td>
<td>Only in dual-radar altimeter installation with neither failed. Indicates radar altitude difference between radar altimeters is beyond the following limits: >= 500’ AGL Δ14% 100 – 500’ AGL Δ10% < 100’ AGL Δ10’ 10-second time delay. [1]</td>
</tr>
<tr>
<td>LOC MISCOMP</td>
<td>Alert Tone</td>
<td>“OAT FAIL” applicable to single ADC installation. “OAT# FAIL” applicable to dual ADC installation. Indicates OAT indication is invalid but other air data parameters are normal (i.e., air data is not red-X’d). Half-second time delay. [1]</td>
</tr>
</tbody>
</table>
Table 2-10: Caution Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Voice Alert/Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>No time delay</td>
<td>“RALT FAIL” applicable to single-radar altimeter installation. “RALT# FAIL” applicable to dual-radar altimeter installation. For analog radar altimeter, indicates the aircraft is below 2000’ AGL in air mode without a valid radar altimeter reading. 2-second time delay. [1]</td>
<td></td>
</tr>
<tr>
<td>RALT FAIL</td>
<td>Alert Tone</td>
<td>RALT1 FAIL</td>
</tr>
<tr>
<td>RALT2 FAIL</td>
<td>Alert Tone</td>
<td>RALT1/2 FAIL</td>
</tr>
<tr>
<td>SAME ADC</td>
<td>Alert Tone</td>
<td>Indicates both sides are operating from same ADC source. ** [1] [4]</td>
</tr>
<tr>
<td>SAME AHRS</td>
<td>Alert Tone</td>
<td>Indicates both sides are operating from same AHRS source. ** [1] [4]</td>
</tr>
<tr>
<td>SAME DME</td>
<td>Alert Tone</td>
<td>Indicates both sides are operating from same DME source ** [1] [3] [4]</td>
</tr>
<tr>
<td>SAME GPS</td>
<td>Alert Tone</td>
<td>Indicates both sides are operating from same GPS/SBAS source. **[1][2][3][4]</td>
</tr>
<tr>
<td>SAME NAV</td>
<td>Alert Tone</td>
<td>Indicates both sides are operating from same navigation source. **[1][2][3][4]</td>
</tr>
<tr>
<td>SAME RALT</td>
<td>Alert Tone</td>
<td>Indicates both sides are operating from same radar altimeter source. **[1][2][3][4]</td>
</tr>
<tr>
<td>TAWS AUTOROT</td>
<td>Alert Tone</td>
<td>TAWS autorotation mode activated through discrete input. **</td>
</tr>
<tr>
<td>TAWS INHBT</td>
<td>Alert Tone</td>
<td>TAWS inhibited through use of discrete input. **</td>
</tr>
<tr>
<td>TCAS FAIL</td>
<td>Alert Tone</td>
<td>Only with ARINC 735A-1 TCAS-II, TCAS-I, or TAS. Indicates lack of communications with system or failure indication from system. **</td>
</tr>
</tbody>
</table>

[1] Only active in dual-sensor installation with neither sensor in failure condition
[2] Only active in dual-sided system (pilot and co-pilot)
[3] Only active when single-pilot mode discrete not asserted
[4] Only active when CAUTION mode is enabled
Table 2-10: Caution Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Voice Alert/Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>No time delay</td>
<td>Alert Tone</td>
<td>Compares volume of sensed fuel to fuel totalizer calculation. Issued if difference exceeds totalizer mismatch caution threshold. Only performed if:</td>
</tr>
<tr>
<td>[1] Only active in dual-sensor installation with neither sensor in failure condition</td>
<td></td>
<td>1) Totalizer mismatch caution threshold is non-zero;</td>
</tr>
<tr>
<td>[2] Only active in dual-sided system (pilot and co-pilot)</td>
<td></td>
<td>2) Fuel totalizer is enabled;</td>
</tr>
<tr>
<td>[3] Only active when single-pilot mode discrete not asserted</td>
<td></td>
<td>3) Unmonitored fuel flag is false;</td>
</tr>
<tr>
<td>[4] Only active when CAUTION mode is enabled</td>
<td></td>
<td>4) Fuel totalizer has a valid value; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5) Fuel levels are valid.</td>
</tr>
<tr>
<td>TOTALZR QTY</td>
<td>Alert Tone</td>
<td>1-minute time delay.</td>
</tr>
<tr>
<td>XFILL FAIL</td>
<td>Alert Tone</td>
<td>Indicates lack of inter-system communications. 2-second time delay. Inhibit for 30 seconds after startup.</td>
</tr>
<tr>
<td>XPDR FAIL</td>
<td>Alert Tone</td>
<td>Indicates the interfaced transponder reports internal failure.</td>
</tr>
<tr>
<td>CHECK GEAR</td>
<td>“Check Gear, Check Gear”</td>
<td>If configured in EFIS limits as Retractable Gear, when the aircraft is below 150’ AGL, the aircraft is descending, and any landing gear is not down. 2-second time delay.</td>
</tr>
<tr>
<td>TERRAIN</td>
<td>“Caution, Terrain, Caution Terrain”</td>
<td>Terrain cell within TAWS FLTA caution envelope. Half second time delay.</td>
</tr>
<tr>
<td>SINK RATE</td>
<td>“Sink Rate, Sink Rate”</td>
<td>Within GPWS Mode 1 caution envelope. Half second time delay.</td>
</tr>
<tr>
<td>TOO LOW</td>
<td>“Too Low Terrain, Too Low Terrain”</td>
<td>Within GPWS Mode 3 envelope. Half second time delay.</td>
</tr>
<tr>
<td></td>
<td>“Too Low Gear, Too Low Gear”</td>
<td>Within GPWS Mode 4-1 “Too Low Terrain” envelope. Half second time delay.</td>
</tr>
<tr>
<td></td>
<td>“Too Low Gear, Too Low Gear”</td>
<td>Within GPWS Mode 4-2 “Too Low Gear” envelope. Half second time delay.</td>
</tr>
</tbody>
</table>
Table 2-10: Caution Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Voice Alert/Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>** No time delay</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>[1] Only active in dual-sensor installation with neither sensor in failure condition</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>[2] Only active in dual-sided system (pilot and co-pilot)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>[3] Only active when single-pilot mode discrete not asserted</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>[4] Only active when CAUTION mode is enabled</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>** GLIDESLOPE **</td>
<td>“Glide Slope, Glide Slope”</td>
<td>Within GPWS Mode 5 caution envelope. Half second time delay.</td>
</tr>
<tr>
<td>** OBSTRUCTION **</td>
<td>“Caution, Obstruction, Caution Obstruction”</td>
<td>Obstruction within TAWS FLTA caution envelope. Half second time delay.</td>
</tr>
<tr>
<td>** TRAFFIC **</td>
<td>“Traffic, Traffic”</td>
<td>Traffic Advisory. Not given if own aircraft at or below 400’ AGL. Not given if target is at or below 200’AGL (ground target). Audio not generated with TCAS-II system. **</td>
</tr>
</tbody>
</table>

2.8.4. Side-Specific Caution Alerts

Side-specific caution alerts are displayed on all IDUs where the condition is detected. These types of alerts are used for critical monitoring functions that cannot take credit for the presence of other IDUs.

Table 2-11: Side-Specific Caution Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Alert Tone</th>
<th>Condition ** No time delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>** CHECK IDU 1 **</td>
<td>Alert Tone</td>
<td>IDU status has not been received from another same-side IDU in the last second ± 0.1 seconds. # indicates which IDU is failing the check. **</td>
</tr>
<tr>
<td>** CHECK IDU 2 **</td>
<td>Alert Tone</td>
<td></td>
</tr>
<tr>
<td>** CHECK IDU 3 **</td>
<td>Alert Tone</td>
<td></td>
</tr>
<tr>
<td>** CHECK IDU 4 **</td>
<td>Alert Tone</td>
<td></td>
</tr>
</tbody>
</table>

2.8.5. Advisory Alerts

![FLTA INHIBIT TERMINAL Figure 2-14: Advisory Alerts]
Table 2-12: Advisory Alert Elements

<table>
<thead>
<tr>
<th>Type Alert</th>
<th>Location</th>
<th>Appearance</th>
<th>Audio Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVISORY</td>
<td>PFD lower left corner of transmit-enabled IDU</td>
<td>While condition persists</td>
<td>Single advisory chime played at 80% volume</td>
</tr>
</tbody>
</table>

Table 2-13: Advisory Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
</table>
| **No time delay** | **[1]** Only active in dual-sensor installation with neither sensor in failure condition
[2] Only active in dual-sided system (pilot and co-pilot)
[3] Only active when single-pilot mode discrete not asserted
[4] Only active when CAUTION mode is not enabled |

ADC INIT	Chime	“ADC INIT” applicable to single ADC installation. “ADC# INIT” applicable to dual ADC installation. Indicates ADC not at full accuracy during warm-up. **[1]**
ADC1 INIT	Chime	Indicates numbered AHRS in DG mode. **[1]**
ADC2 INIT	Chime	Only active with EFIS control of an audio controller and call notice is received from the controller.
ADC1/2 INIT	Chime	Indicates a dual redundant power supply within the designated IDU (side and IDU #) is not functioning correctly. Only active on the ground. 1-minute time delay. **[2]**
CREW CALL	Chime	Flight path marker inhibit function activated through momentary discrete input. **
PLT PWR	Chime	Only in dual-side installation. Indicates mismatch of altimeter settings or altimeter modes between sides. 10-second time delay. **[2][3]**
CPLT PWR	Chime	TAWS low altitude mode activated through use of discrete input. **
SAME ADC	Chime	Indicates both sides are operating from same ADC source. **[1][4]**
Table 2-13: Advisory Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>No time delay</td>
<td>Chime</td>
<td>Indicates both sides are operating from same AHRS source. [1] [4]</td>
</tr>
<tr>
<td>[1] Only active in dual-sensor installation with neither sensor in failure condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2] Only active in dual-sided system (pilot and co-pilot)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3] Only active when single-pilot mode discrete not asserted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4] Only active when CAUTION mode is not enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAME AHRS</td>
<td>Chime</td>
<td>Indicates both sides are operating from same DME source [1] [3] [4]</td>
</tr>
<tr>
<td>SAME DME</td>
<td>Chime</td>
<td>Indicates both sides are operating from same GPS/SBAS source. [1] [2] [3] [4]</td>
</tr>
<tr>
<td>SAME GPS</td>
<td>Chime</td>
<td>Indicates both sides are operating from same navigation source. [1] [2] [3] [4]</td>
</tr>
<tr>
<td>SAME NAV</td>
<td>Chime</td>
<td>Indicates both sides are operating from same radar altimeter source. [1] [2] [3] [4]</td>
</tr>
<tr>
<td>SAME RALT</td>
<td>Chime</td>
<td>Indicates both sides are operating from same navigation source. [1] [2] [3] [4]</td>
</tr>
<tr>
<td>TAS INHBT</td>
<td>Chime</td>
<td>TAS audible inhibited through activation of TCAS/TAS audio inhibit discrete input. **</td>
</tr>
<tr>
<td>TAWS GS CNX</td>
<td>Chime</td>
<td>Class A TAWS and Enhanced HTAWS only. TAWS glide slope cancel (GPWS Mode 5) activated through discrete input. **</td>
</tr>
<tr>
<td>TCAS STBY</td>
<td>Chime</td>
<td>Only with TCAS-II. Indicates system is in standby or executing functional test in flight. **</td>
</tr>
<tr>
<td>TA ONLY</td>
<td>Chime</td>
<td>Only with TCAS-II. Indicates TCAS-II is unable to display resolution advisories. **</td>
</tr>
<tr>
<td>TCAS TEST</td>
<td>Chime</td>
<td>Only with TCAS-II. Indicates system is in functional test on ground. **</td>
</tr>
<tr>
<td>XFILL ARM</td>
<td>Chime</td>
<td>Only in dual-sided system with good inter-system communications and crossfill not inhibited. Indicates sides are not synchronized and synchronization function is available. [2] [3]</td>
</tr>
<tr>
<td>XFILL INHBT</td>
<td>Chime</td>
<td>Only in dual-sided system with good inter-system communications. Indicates crossfill is manually inhibited through discrete input. [2] [3]</td>
</tr>
</tbody>
</table>
2.8.6. Side-Specific Advisory Alerts

Side-specific advisory alerts have the same characteristics as advisory alerts except they always appear in the lower-left corner of the transmit-enabled IDU bottom area (PFI showing) or lower-left corner of the transmit-enabled IDU bottom area (PFI not showing).

These types of alerts are used where the pilot and co-pilot systems can generate different alerts, such as when the pilot and co-pilot systems are not crossfilled and are operating on different FMS flight plans.

Table 2-14: Side-Specific Advisory Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Alert Tone</th>
<th>Condition **</th>
<th>No time delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHK BARO</td>
<td>Chime</td>
<td>Ascending through transition level: Altimeter not set to 29.92 inHg or 1013 mbar. Descending through transition level: Altimeter set to 29.92 inHg or 1013 mbar. Descent warning times out in 10 seconds. Disabled during QFE operation. 2-second time delay.</td>
<td></td>
</tr>
<tr>
<td>ANP: 0.01</td>
<td>Chime</td>
<td>GPS/SBAS actual navigation performance in nautical miles based upon current GPS/SBAS HPL. Value ranges from 0.01 to 15.0 NM.</td>
<td></td>
</tr>
<tr>
<td>ANP: 15.0</td>
<td>Chime</td>
<td>GPS/SBAS automatic required navigation performance in nautical miles as acquired from navigation database. Value ranges from 0.01 to 15.0 NM.</td>
<td></td>
</tr>
<tr>
<td>RNP: 0.10A</td>
<td>Chime</td>
<td>GPS/SBAS manual required navigation performance in nautical miles. Value ranges from 0.01 to 15.0 NM.</td>
<td></td>
</tr>
<tr>
<td>RNP: 15.0A</td>
<td>Chime</td>
<td>GPS/SBAS in dead reckoning mode with valid ADC and AHRS data. Timer shows time since loss of position (mm:ss) to indicate quality of DR solution. Valid range is from 00:00 to 59:59. Inhibited during and for 10 seconds after unusual attitude mode.**</td>
<td></td>
</tr>
<tr>
<td>DR 00:00</td>
<td>Chime</td>
<td>GPS/SBAS in LNAV approach mode.**</td>
<td></td>
</tr>
<tr>
<td>DR 01:23</td>
<td>Chime</td>
<td>GPS/SBAS in LNAV/VNAV approach mode.**</td>
<td></td>
</tr>
<tr>
<td>LP APPR</td>
<td>Chime</td>
<td>GPS/SBAS in LP approach mode. **</td>
<td></td>
</tr>
</tbody>
</table>
Table 2-14: Side-Specific Advisory Alerts

<table>
<thead>
<tr>
<th>Visual Alert</th>
<th>Alert Tone</th>
<th>Condition ** No time delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPU APPR</td>
<td>Chime</td>
<td>GPS/ SBAS in LPV approach mode.**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic waypoint sequencing is suspended under any of the following conditions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) Pilot has selected a manual GPS/ SBAS OBS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Active waypoint is the missed approach waypoint, and missed approach procedure has not been armed (ARM) nor initiated (MISS).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Aircraft is in a published or manually created holding pattern, and pilot has not chosen to continue (CONT) out of the holding pattern.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) Leg following active waypoint is a manual termination leg, and the pilot has not chosen to resume (RESUME) to the waypoint following the manual termination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5) Aircraft is in a repeating SAR pattern (see SAR appendix), and the pilot has not chosen to continue out of the SAR pattern.**</td>
</tr>
<tr>
<td>SUSPEND</td>
<td>Chime</td>
<td>GPS/ SBAS in terminal mode. **</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>Chime</td>
<td>GPS/ SBAS in VFR approach mode. **</td>
</tr>
<tr>
<td>VFR APPR</td>
<td>Chime</td>
<td>GPS/ SBAS in vectors to final approach mode prior to sequencing FAWP. **</td>
</tr>
<tr>
<td>VECTORS</td>
<td>Chime</td>
<td>GPS/ SBAS parallel offset path advisory. *** is nautical miles left (L) or right (R) of main path. PTK ENDING if within the parallel offset distance from a parallel offset exit waypoint. **</td>
</tr>
<tr>
<td>PTK = L 1NM</td>
<td>Chime</td>
<td>Appears when FLTA function is automatically inhibited during normal operation. TAWS INHBT, PLT TAWS, and CPLT TAWS cautions have priority. **</td>
</tr>
<tr>
<td>PTK = L 20NM</td>
<td>Chime</td>
<td></td>
</tr>
<tr>
<td>PTK = R 1NM</td>
<td>Chime</td>
<td></td>
</tr>
<tr>
<td>PTK = R 20NM</td>
<td>Chime</td>
<td></td>
</tr>
<tr>
<td>PTK ENDING</td>
<td>Chime</td>
<td>System operating in true north mode. **</td>
</tr>
</tbody>
</table>
2.8.7. Audio-Only Caution and Advisory Alerts

Audio-only caution alerts trigger a single audio-only message played at the full volume and audio-only advisory alerts trigger a single audio-only message played at 80% volume.

<table>
<thead>
<tr>
<th>Caution or Advisory Alert</th>
<th>Voice Alert/Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Altitude Caution Alert</td>
<td>“Minimums, Minimums”</td>
<td>Deviation from above to below minimum altitude bug. Minimum altitude readout turns amber (yellow) and flashes. **</td>
</tr>
<tr>
<td>Selected Altitude Deviation Caution Alert</td>
<td>“Altitude, Altitude”</td>
<td>Deviation greater than 150’ from selected altitude after capture (within 100’ of altitude). 2-second time delay.</td>
</tr>
<tr>
<td>VNAV Altitude Deviation Caution Alert</td>
<td>“Decision Height”</td>
<td>If not on a descending VNAV profile, deviation greater than 150’ from altitude of the current or prior VNAV waypoint after capture (within 100’ of altitude). 2-second time delay.</td>
</tr>
<tr>
<td>Decision Height Caution Alert</td>
<td>Alert Tone</td>
<td>Deviation from above to below decision height bug. Decision height readout turns amber (yellow) and flashes. **</td>
</tr>
<tr>
<td>GBS/SBAS Failure Caution Alert</td>
<td>Alert Tone</td>
<td>No valid position data available from selected GPS/SBAS for more than 5 seconds and dead reckoning not available. Inhibited during and for 10 seconds after unusual attitude mode. Loss of position data is obvious from symbology changes associated with reversionary modes. **</td>
</tr>
<tr>
<td>GPS/SBAS Loss of Integrity Caution Alert</td>
<td>Alert Tone</td>
<td>GPS/SBAS loss of integrity caution. Inhibited during and for 10 seconds after unusual attitude mode. LOI indication is integrated with lateral deviation indicator. **</td>
</tr>
<tr>
<td>GPS/SBAS Loss of Navigation Caution Alert</td>
<td>Alert Tone</td>
<td>GPS/SBAS loss of navigation caution. Inhibited during and for 10 seconds after unusual attitude mode. LON indication is integrated with lateral deviation indicator. **</td>
</tr>
</tbody>
</table>
Table 2-15: Audio-Only Caution and Advisory Alerts

<table>
<thead>
<tr>
<th>Caution or Advisory Alert</th>
<th>Voice Alert/Alert Tone</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of Vertical Navigation Caution Alert</td>
<td>Alert Tone</td>
<td>Loss of vertical navigation caution. Inhibited during and for 10 seconds after unusual attitude mode. VLON indication is integrated with vertical deviation indicator. **</td>
</tr>
<tr>
<td>Countdown Timer Chime</td>
<td>Chime</td>
<td>Sounds when countdown timer reaches 00:00:00. **</td>
</tr>
<tr>
<td>Level-off Advisory Alert</td>
<td>Altitude Alert Tone</td>
<td>Within the greater of 500’ or 50% of VSI from uncaptured selected or VNAV waypoint altitude. Inhibited in approach procedures. **</td>
</tr>
</tbody>
</table>

2.8.8. Voice Alerts and Muting

Only the highest priority (in criticality and recency), unacknowledged voice alert is played at any given time. Any playing audio message is immediately muted by activating the warning/caution acknowledge switch.

2.8.9. Visual Alert Prioritization and Declutter

Visual alerts are visually prioritized, so warnings are displayed above cautions, which are displayed above advisories. Within categories, visual alerts are stacked in chronological order, so the most recent alert appears on top.

Only the highest priority (in criticality and recency), unacknowledged audible annunciation is played at a time. In addition, to further minimize cockpit confusion, annunciations are grouped and prioritized so only one annunciation is active.

The maximum number of visual alerts that can be simultaneously displayed in the standard location is 11. In the event there are more than 11 visual alerts, MORE-PRS MENU appears for guidance in accessing the EXPAND CAS menu.

In addition, flags are decluttered from all IDUs, which are not transmit-enabled i.e. transmit enabled. Flags only appear on these IDUs if they are IDU-specific (i.e., CHECK IDU #).
2.9. Database and Software Updates

2.9.1. Navigation and Obstruction Databases

The EFIS uses Jeppesen Sanderson NavData® for the navigation database and Jeppesen Sanderson obstacle data for the obstruction database.

Visit www.jeppesen.com to place the order for the correct database.

NOTE:

When ordering, review the EFIS Equipment-Database Compatibility Matrix (document 01-000062) on the Genesys Aerosystems website. This document specifies the compatibility of Genesys Aerosystems EFIS equipment and software versions to navigation database versions.

Three available coverage areas of navigation databases may be used on this EFIS:

- **Americas** - Major airports and navigation for Alaska, Canada, Continental U.S., Hawaii, Puerto Rico, Bahamas, Bermuda, Mexico, Central, and South America.
- **International** - All available coverage except North and South America.
- **World** - Major airports and navigation with the Americas.

2.9.2. Update Requirements

Scheduled updates for databases are as follows:

1) Navigation Database - Every 28 days
2) Obstruction Database - Every 28 days
3) MAGVAR Database - Every 5 years (updated as described in a Genesys Aerosystems Service Bulletin)

CAUTION:

Failure to update the EFIS with the correct NavData® causes the IDU to remain in continual reboot mode and does not allow any display page to appear.
The EFIS is updated through the ground maintenance function (GMF). To gain access to the GMF, prior to applying power, slide the slip indicator or non-slip blank door cover at the bottom-center of the IDU bezel upward to the first detent position to expose the USB port.

When an update is performed, the following procedures must be performed separately on every IDU installed in the aircraft.

To update the databases:

1) Load the navigation database (navdata.exe) and obstruction database (obst.exe) on USB flash drive.

2) With the power off, insert the USB flash drive into USB port.

CAUTION:
Always install a valid USB flash drive in the IDU prior to activating any ground maintenance function. Operation of the GMF without a valid USB flash drive installed may cause erroneous failure indications or corruption of the IDU.

3) Power on the system. If after entering Update Databases or any other option, rotate 1 to Run Simulators, push to enter. Then Run Demonstrator/Training Program and push to enter.

4) Rotate 1 to Update Databases and push to enter.

Figure 2-15: Ground Maintenance Page

5) Once each database is loaded, press any button to continue to complete the process.

6) Once both databases have been uploaded, power down the IDU, remove the USB flash drive, and lower the USB door.
7) Once each IDU has been updated, power up the entire EFIS in normal flight mode and verify each IDU successfully updated with the latest database by noting the new navigation database and obstruction database cycle expiration dates before acknowledging the CRC screen (Figure 2-6). Because the obstruction database is advisory in nature, there technically is no expiration date. The listed date is the effective date of the next available obstruction database.

8) A CRC self-test verifies the data at every step of the process, thereby ensuring the data installed into the system has not been corrupted at any point during the process.

2.9.3. Software and Terrain Database Update

Software updates and terrain databases are provided on an as-needed basis and performed as per a service bulletin.

2.10. Run Demonstrator/Training Program

The EFIS has a built-in demonstration application to fly anywhere in the world while performing any procedure (except takeoff and landing) based on the current Jeppesen navigation database. Use this feature on the ground in ground-mode as follows:

1) With power off, lift the USB flash drive door and insert a USB flash drive.

2) Power on the system. If after entering Update Databases or any other option, rotate to Run Simulators, push to enter. Then Run Demonstrator/Training Program and push to enter.

Use the demonstrator to gain familiarity with the EFIS menu structure and location of button tiles for each operation. Load an instrument procedure before take-off to view the expected sequence of events.

The demonstrator begins flying over Reno, Nevada, USA at an altitude of approximately 8000’ MSL. Altitude may be changed with altitude bug, VNAV profiles or navigation database procedures. Airspeed remains relatively constant but may be controlled with the IAS bug in the BUGS menu. The simulated aircraft may be positioned anywhere in the world, by activating a flight plan stored in the memory.

All appropriate navigation signals are simulated, allowing for precision and non-precision instrument approaches found within the current navigation database. All obstructions in the latest obstruction database and all warning, caution, and advisory audible and flag annunciations are presented as appropriate during simulated flights.
NOTE:

When the IDU is operating in the Demonstrator mode, the IDU is isolated from all sensors and other IDUs. The creation of a flight plan results in that flight plan being stored on that IDU alone. To have that new flight plan available on all other displays, the following action must be taken. While in flight mode, activate the flight plan created in the Demonstrator mode. With crossfill enabled (in dual-sided systems) view active flight plan on any other IDU and press **SAVE (L1)** to save this flight plan on all displays.

1) While in flight mode, activate the flight plan created in the Demonstrator mode.

2) With crossfill enabled, view active flight plan on any other IDU and press **SAVE (L1)** to save this flight plan on all displays.

2.11. **EFIS Training Tool**

In addition to the demonstrator program, the EFIS Training Tool (ETT) is available to load on a personal computer. The ETT is compatible with 32- or 64-bit versions of Microsoft Windows®. It serves as a multi-purpose tool for training pilots and provides features to record and capture images, and playing back log files from previous flights. See the Installation and User guide distributed with the ETT installer for further details.
Section 3 Display Symbology

3.1. Introduction

This section details the symbology used on the PFD and MFD in normal and essential modes. Not all combinations of possible views are represented.

Figure 3-1: PFD in Normal Mode
3.1.1. IDU-680 PFD Display Basic Mode

When selected, basic mode is a traditional attitude display with airspeed, altitude, and heading scales appearing in blacked-out areas in a “Basic-T” arrangement but is disabled in unusual attitude mode. The following are no longer present in basic mode:

1. Atmospheric perspective
2. Airspeed Trend
3. Terrain rendering
4. Obstruction rendering
5. Flight Path Marker
6. Airport runways/Helipads
7. Highway in the Sky
8. Bank Scale Declutter

![Figure 3-2: PFD in Basic Mode (with Compass Rose Detected on Bottom Area)]

![Figure 3-3: PFD in Basic Mode (without Compass Rose Detected on Bottom Area)]
3.1.2. IDU-680 MFD Display

Figure 3-4: MFD in Normal Mode with HSI on Top and Map on Bottom
3.2. Menu Functions

Soft menu function tiles appear in the margins next to IDU buttons and indicate further menu levels with a filled triangle or no further menu levels with a hollow triangle. The triangles point to the associated button.

Figure 3-6: Menu Functions
Menu messages are displayed adjacent to the knobs when appropriate for five seconds. Menu messages are cleared if any IDU button is pressed or knobs 1, 2, or 3 are pushed or rotated. On MFD pages with an adjustable display (e.g., map, strikes, traffic, WX radar, or datalink), rotate 1 CW to increase scale or CCW to decrease scale (as set in EFIS limits).

When the menu system is beyond the top-level, EXIT (R1) escapes to the top-level. When a menu level is deeper than the first level, BACK (L1) returns back one level through the menu system.

3.3. PFD Symbology

The PFD combines pitot-static information, heading, attitude, 3D navigation data, and more overlaid on a virtual background of the outside world. Other objects in the background, including terrain, obstructions, traffic (if enabled), and runways, are presented as if seen directly in front of the aircraft while looking outside.
Section 3 Display Symbology

3.3.1. Altitude Display

The PFD altitude box with altitude scale on the right side of the display. The altitude box digitally displays barometric altitude as adjusted by an altimeter setting. The digital display of altitude is either purely digital (to nearest 10 feet) or rolling digits (to nearest 20 feet) as defined in aircraft limits. The altitude box has a pointer that interacts with the altitude scale, which has graduations every 100 feet and labels every 500 feet. The altitude scale background has a gray region and a brown region where the junction...
between the gray and brown regions indicates ground level. When the ADC sensor fails, a red “X” is displayed in place of the altitude scale.

![Pure Digital](image1)
![Rolling Digital](image2)
![ADC Failure](image3)

Figure 3-10: Altitude Display

3.3.1.1 Altitude Display (Metric Units)

Pilot-selectable altitude values may be presented in metric units with a resolution of one meter.

![Figure 3-11: Altitude Display (Metric Units)](image4)

3.3.2 Altimeter Setting

The altimeter setting is displayed digitally below the altitude readout box in inches of mercury (inHg) or millibars (mbar) according to the pilot-selected units. Press **BARO (R2)** to enter altimeter setting mode and view the altimeter setting in inHg or mbar value in the lower right corner. Rotate 🔄 CW to increase or CCW to decrease QNH. Push 🔄 to enter the new value.

![Figure 3-12: Selecting Altimeter Setting](image5)

NOTE:

Altimeter setting limits are 801-1100 (mbar) or 22.00-32.00 (inHg).
Digital display of altitude is either purely digital (nearest 10 feet) or incorporates rolling digits (nearest 20 feet) as determined by EFIS limits.

QFE: Barometric setting resulting in the altimeter displaying height above a reference elevation (e.g., airport or runway threshold). When in QFE mode on the ground, system automatically sets to read zero altitude.

QNE: Standard barometric setting (29.92 inHg or 1013 mbar) used to display pressure altitude for flight above the transition altitude.

QNH: Barometric setting resulting in the altimeter displaying altitude above mean sea level at the reporting station.

![Figure 3-13: Altimeter Setting](image-url)
3.3.3. Selected Altitude Sub-Mode (Target Altitude)

When in selected altitude sub-mode, the altitude scale has a pilot-settable target altitude bug geometrically interacting with the altitude box pointer. The target altitude bug value has a resolution of 100 feet and a range from -1000 feet to 20,000 feet.

When in altitude hold mode, the target altitude bug setting annunciation is green, while the target altitude bug is filled-white.

During altitude hold capture, the target altitude bug setting annunciation is green and flashes, while the target altitude bug is filled-white.

When in a climb or descent mode, the target altitude bug setting annunciation is white, and the target altitude bug is hollow-white.

Figure 3-14: Target Altitude Bug (Vertically Integrated)

When not vertically integrated with an autopilot, the target altitude bug setting annunciation is white, and the target altitude bug is filled-white at all times.

Figure 3-15: Target Altitude Bug (Not Vertically Integrated)
3.3.4. Altitude Display (VNAV Tile)

When enabled for performing VNAV with a manually selected altitude entered, VNAV (L6) appears. Pressing VNAV (L6) cancels ASEL (target altitude) and enters the VNAV altitude in the active flight plan.

![Figure 3-16: Altitude Display (VNAV Tile)](image)

3.3.5. VNAV Sub-Mode

When in VNAV sub-mode, the altitude scale shows the active waypoint VNAV altitude (if it exists) with a bug symbol geometrically interacting with the altitude box pointer. The VNAV altitude bug setting is annunciated above the altitude scale with a resolution of 100 feet.

When not vertically integrated with a fully integrated digital autopilot, the VNAV altitude bug setting annunciation includes “VNAV” indicating VNAV altitude sub-mode.

![Figure 3-17: VNAV Sub-Mode (Not Vertically Integrated)](image)

When vertically integrated with a fully integrated digital autopilot, this legend is not needed, because an equivalent indication appears in the autopilot mode annunciation area.

![Figure 3-18: VNAV Sub-Mode (Vertically Integrated) Autopilot Mode Annunciation](image)
The VNAV altitude bug is a visual reference or, when vertically integrated with an autopilot either fully or partially integrated through vertical mode discrete input, as a control parameter for climbs or descents.

When vertically integrated with an autopilot:

When in altitude hold mode, the VNAV altitude bug setting annunciation is green, and the VNAV altitude bug is filled-magenta. During altitude hold capture, VNAV altitude bug setting annunciation is green and flashes, while the VNAV altitude bug is filled-magenta.

When in a climb or descent mode, the VNAV altitude bug setting annunciation is white, and the VNAV altitude bug is hollow-magenta.

Figure 3-19: VNAV Sub-Mode (Vertically Integrated)

3.3.6. Minimum Altitude

A pilot-settable minimum altitude bug consists of a bold yellow line on the altitude scale and a yellow region on the altitude scale from the minimum altitude down to ground level. The minimum altitude bug value is displayed above the altitude scale with a resolution of 10 feet. The minimum altitude bug can be used in conjunction with a selected altitude or VNAV bug. When a minimum altitude is set, descending from above to below causes an audible alert of “Minimums, Minimums” and the minimum altitude to turn amber (yellow) and flash.

Figure 3-20: Minimum Altitude

3.3.7. Vertical Speed Indicator

The vertical speed indicator (VSI) is located to the right of the altitude box, depicted as a "worm" format, and provides an analog and digital representation of VSI in feet per minute (fpm) in 100 fpm increments. When EFIS limits include a red line at the published VSI limit, a red line is represented on the VSI scale.
Current rate of climb is 400 fpm and VSI bug set to +400 fpm.

Current rate of descent is 900 fpm and VSI bug set to -900 fpm.

VSI bug set to +1000 fpm climb. Maximum VSI limit set for 2000 fpm indicated by red line.

Figure 3-21: VSI

When vertically integrated with an autopilot, the VSI bug-setting annunciation is green with the speed bug filled-white when in VSI climb or descent mode. Otherwise, the VSI bug setting is white, and VSI bug is hollow-white.

Figure 3-22: VSI Bug (Vertically Integrated)

3.3.8. Normal AGL Indication

Above ground level (AGL) altitude is displayed in two formats, above the course deviation indicator (normal) and as the (analog) AGL indicator. These are mutually exclusive of each other and driven by the AGL altitude source used for TAWS but not displayed when source is invalid. Source indication designates the source for either format as follows.

R = Radar Altitude

G = GPS/SBAS geodetic height less database ground elevation

B = Barometric altitude less database ground elevation
AGL altitude is not displayed in either format when it is greater than the radar altimeter maximum valid altitude of 2,500’ or as set in EFIS limits nor when it is invalid. Additionally, AGL indication includes set decision height. (See § 3.3.10.)

AGL altitude is not displayed when its source is barometric and indicated airspeed is in the noise range (<20 KIAS) due to rotor wash effects.

<table>
<thead>
<tr>
<th>AGL Indication resolution</th>
<th>10 Feet</th>
<th>5 Feet</th>
<th>1 Foot</th>
</tr>
</thead>
</table>

3.3.9. Analog AGL Indication

The analog AGL indication is based on whatever AGL altitude source is being used for the TAWS system.

Pilot-selected analog AGL indication is displayed in the lower right corner of the PFD above the active waypoint identifier with a green circular tape and digital readout in the center. The circular tape has a green radial line at its end and disappears above 1000’ AGL.
The analog AGL indicator disappears in unusual attitude mode and is mutually exclusive with the mini map and traffic thumbnail. When the analog AGL altitude display is shown, the normal AGL display is removed. Analog AGL altitude is not displayed when it is greater than the radar altitude maximum valid value (2,500 feet), when it is invalid, nor when the pilot deselects analog AGL.

If traffic is enabled and while above 500’ AGL, the traffic thumbnail overrides the analog AGL indication.

Table 3-2: Analog AGL Indicator

<table>
<thead>
<tr>
<th>Markings 0-1000 Feet</th>
<th>AGL</th>
<th>Scaling (clock position)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100 Feet</td>
<td>0’ AGL</td>
<td>6:00</td>
</tr>
<tr>
<td>100 Feet-1000 Feet</td>
<td>50’ AGL</td>
<td>9:00</td>
</tr>
<tr>
<td>Linear</td>
<td>100’ AGL</td>
<td>12:00</td>
</tr>
<tr>
<td></td>
<td>200’ AGL</td>
<td>1:30</td>
</tr>
<tr>
<td></td>
<td>500’ AGL</td>
<td>3:00</td>
</tr>
<tr>
<td></td>
<td>Logarithmic</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-3: Analog AGL Indicator Markings

<table>
<thead>
<tr>
<th>Major Tick Marks</th>
<th>Minor Tick Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0’</td>
<td>✓</td>
</tr>
<tr>
<td>10’</td>
<td>✓</td>
</tr>
<tr>
<td>20’</td>
<td>✓</td>
</tr>
<tr>
<td>30’</td>
<td>✓</td>
</tr>
<tr>
<td>40’</td>
<td>✓</td>
</tr>
<tr>
<td>50’</td>
<td>✓</td>
</tr>
<tr>
<td>60’</td>
<td>✓</td>
</tr>
<tr>
<td>70’</td>
<td>✓</td>
</tr>
<tr>
<td>80’</td>
<td>✓</td>
</tr>
<tr>
<td>90’</td>
<td>✓</td>
</tr>
<tr>
<td>100’</td>
<td>✓</td>
</tr>
<tr>
<td>200’</td>
<td>✓</td>
</tr>
<tr>
<td>300’</td>
<td>✓</td>
</tr>
<tr>
<td>400’</td>
<td>✓</td>
</tr>
<tr>
<td>500’</td>
<td>✓</td>
</tr>
<tr>
<td>1000’</td>
<td>✓</td>
</tr>
</tbody>
</table>

3.3.10. Decision Height

Pilot-settable decision height is displayed above the CDI with the abbreviation DH and by a yellow radial on the analog indicator. When the
aircraft descends below decision height, **DH ###** turns amber (yellow) and flashes and the circular tape turns amber (yellow). This is accompanied by “Decision Height” audible alert.

![Figure 3-25: Decision Height](image)

3.3.11. Airspeed Display

Airspeed is digitally displayed in same color as airspeed scale in knots, miles or kilometers per hour with interactive pointer. The airspeed scale is commensurate with the certification category of the aircraft.

![Figure 3-26: Airspeed Display](image)

The airspeed box pointer interacts with the airspeed scale and has graduations every five measurement units with labels every ten measurement units with high numbers at the top. The airspeed scale range has at least 40-75 measurement units.
The airspeed trend vector calculated along the rotorcraft longitudinal axis is in a “worm” format to provide analog representation of IAS achieved in 5 seconds assuming the instantaneous longitudinal acceleration is maintained. Airspeed trend noodle indicating speed of 89 KIAS within 5 seconds.

Figure 3-27: Airspeed Trend

The airspeed scale for Part 27 or 29 rotorcraft has additional specific airspeed markings as follows:

Figure 3-28: Airspeed Scale FAR Part 27/29

3.3.11.1. Airspeed Bug

<table>
<thead>
<tr>
<th>Table 3-4: Airspeed Bug Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low end</td>
</tr>
<tr>
<td>V_{MIN}</td>
</tr>
</tbody>
</table>

The pilot-settable airspeed bug geometrically interacts with the airspeed box pointer and is colored as per Table 3-5. When the bug setting differs from aircraft speed to the extent the bug is off scale, the bug appears to be parked.
Airspeed bug is parked in the direction of the difference if airspeed off scale.

Figure 3-29: Airspeed Scale Bug

Table 3-5: Airspeed Bug Setting Annunciation and Bug Colors

<table>
<thead>
<tr>
<th>Vertical Integration of Autopilot</th>
<th>Without</th>
<th>With</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airspeed Bug Setting</td>
<td>White at all times</td>
<td>Green when in airspeed climb or descent mode otherwise white</td>
</tr>
<tr>
<td>Airspeed Bug</td>
<td>Filled-white at all times</td>
<td>Filled-white when in airspeed climb or descent mode otherwise hollow-white</td>
</tr>
</tbody>
</table>

The pilot-settable airspeed bug which geometrically interacts with the airspeed box pointer is limited to the higher of Minimum airspeed bug at the low end and red-line airspeed at the high end. With a resolution of 1 knot airspeed, the bug can be used as a visual reference or, when vertically integrated with an autopilot (fully integrated or HeliSAS-E) or partially integrated through use of the vertical mode discrete input control parameter for climbs and descents.

Figure 3-30: Airspeed Scale Bug Indication
3.3.12. Heading Display

The PFI heading scale is across the top of the display that can be aligned with magnetic North or True North depending upon the True North discrete input. The heading scale has graduations every 5° with major graduations and heading labels every 10°, which are equally spaced so they conform approximately to the 3D PFI background.

The heading scale includes a green, diamond-shaped track pointer aligned with the aircraft’s track across the earth and a triangular white heading pointer aligned with the longitudinal axis of the aircraft.

The integral slip indicator is responsive to lateral (Y-axis) G-force (slip indicator is the white rectangular part of the heading pointer) and is damped so it approximately matches a conventional glass vial indicator.

NOTE:

The track pointer is not displayed when ground speed is less than 30 knots.

When AHRS is in DG mode, DG appears as shown.

Figure 3-31: Heading Display

![Figure 3-31: Heading Display](image)

Figure 3-32: Dampened Integral Slip Indicator

![Figure 3-32: Dampened Integral Slip Indicator](image)

Figure 3-33: DG Indicated when AHRS in DG Mode

![Figure 3-33: DG Indicated when AHRS in DG Mode](image)
Table 3-6: Heading Display

<table>
<thead>
<tr>
<th>Description</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track pointer off scale when aircraft track is displaced from boundaries. (Extreme cross-wind condition)</td>
<td></td>
</tr>
<tr>
<td>When an active waypoint exists, a star-shaped bearing pointer corresponds with the active waypoint.</td>
<td></td>
</tr>
<tr>
<td>Waypoint pointer is displaced from heading tape.</td>
<td></td>
</tr>
<tr>
<td>When changed, the heading bug value is displayed for 5 seconds.</td>
<td></td>
</tr>
<tr>
<td>When the heading bug is displaced beyond the boundaries of the heading scale, a partial heading bug is shown at the limit of the heading scale with the heading bug value above it.</td>
<td></td>
</tr>
<tr>
<td>When the heading bug is hollow, feedback from the autopilot indicates the HDG BUG sub-mode is in LNAV mode.</td>
<td></td>
</tr>
<tr>
<td>When the heading bug is white-filled, feedback from the autopilot indicates the HDG BUG sub-mode is in HDG mode.</td>
<td></td>
</tr>
<tr>
<td>Waypoint pointer and shortest direction of turn indications turn amber (yellow) in the event of GPS loss of integrity (LOI) or loss of navigation (LON) caution.</td>
<td></td>
</tr>
</tbody>
</table>
3.3.13. Pitch Scale

The PFD has large aircraft symbol reference marks fixed in the center of the display. Rotation of the background, pitch scale, and background-oriented display elements occur relative to the location of the waterline symbol or large aircraft symbol reference marks.

Pitch scale has increments every 5° with major increments and pitch scale labels every 10°. Increments are equally spaced to approximately conform to the 3D PFD background. Pointer bars at the ends of each major increment indicate direction to the horizon and automatically declutter to present the fewest possible increments needed to clearly display pitch attitude. The pitch scale terminates with a zenith symbol (small white circle) at +90° and a nadir symbol (small white circle with “+”) at -90°.

3.3.14. Turn Rate Indicator

Rate of turn is available as an option in the PFD declutter menu to show a worm in the direction of turn with full-scale deflection indicating a standard rate of turn (and slightly beyond) and half-standard rate indicated at the mid-scale marking.
3.3.15. Unusual Attitude Mode

Unusual attitude mode is enabled when pitch attitude exceeds +30° or -30° or bank angle exceeds 65° and remains engaged until pitch attitude returns to within 5° of the horizon and bank attitude returns to within 10° of the horizon. Recovery chevrons tied to the 30° and higher pitch scale indications (both positive and negative) aid in unusual attitude recovery and are a normal part of the pitch scale and are not necessarily tied to unusual attitude mode. The following are disabled in the unusual attitude mode:

1) Terrain and obstruction rendering
2) CDI
3) VDI
4) FPM
5) Highway in the Sky boxes
6) Atmospheric perspective
7) Analog and Digital AGL indication
8) Active waypoint symbology

NOTE:
The recovery chevrons are a normal part of the pitch scale but are not necessarily tied to unusual attitude mode.
9) Mini Map
10) Traffic thumbnail
11) If in basic mode, PFD reverts to normal SVS mode
12) If in zoom mode FOV, PFD reverts to normal FOV
13) Runways
14) Menus

3.3.16. PFD Background

The PFI has a 3D background generated from terrain elevation and obstruction elevation data stored in electronic memory. The “actual horizon” displayed on the PFI is based upon the higher of terrain within 90NM or a horizon calculated using a visible horizon equation. Thus, the relative elevation of terrain and obstructions with respect to aircraft altitude and performance is observed by reference to the primary flight information pitch ladder and FPM.
The background has two pilot-selectable field-of-view (FOV) modes, wide FOV mode (approximately 70°) and narrow FOV mode (approximately 35°). In unusual attitude mode, wide FOV mode is automatically selected.

A blended-tone sky is displayed in conjunction with terrain. The sky fades from light blue at the horizon to dark blue at the top of the display to simulate atmospheric perspective and enhance the 3D presentation. Additionally, the blended sky increases contrast of the directional scale, emphasizes the horizon, and provides a compelling visual cue to a nose-high attitude.

WARNING:

DO NOT USE THIS EFIS FOR TERRAIN-FOLLOWING FLIGHT. DO NOT ATTEMPT TO NAVIGATE USING TERRAIN DEPICTION. ALWAYS ADHERE TO PUBLISHED NAVIGATIONAL INSTRUMENT PROCEDURES AND NAVIGATIONAL CHARTS IN ALL FLIGHT CONDITIONS.

Terrain ahead of the aircraft is shown with the artificial horizon in the correct scale and perspective for the aircraft’s current position and altitude. Worldwide terrain coverage is provided in each IDU and shown with a resolution as in Table 3-7. Terrain is displayed ahead of the aircraft using a grid and simulates atmospheric perspective (terrain lines fade into the background ground color as they recede into the distance).

At latitudes greater than 75°, no grid lines are shown. To keep the grid spacing relatively consistent, at latitudes between 45° and 75°, the longitude spacing is increased according as follows.

<table>
<thead>
<tr>
<th>Latitude Range</th>
<th>Longitude Grid Spacing</th>
<th>Heading Boundary Pole</th>
<th>Equator</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° to 46°</td>
<td>24 arc-seconds</td>
<td>46°</td>
<td>45°</td>
</tr>
<tr>
<td>46° to 62°</td>
<td>48 arc-seconds</td>
<td>62°</td>
<td>61°</td>
</tr>
<tr>
<td>62° to 70°</td>
<td>72 arc-seconds</td>
<td>70°</td>
<td>69°</td>
</tr>
<tr>
<td>70° to 74°</td>
<td>96 arc-seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74° to 75°</td>
<td>120 arc-seconds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WARNING:
DO NOT USE THIS EFIS FOR TERRAIN-FOLLOWING FLIGHT. DO NOT ATTEMPT TO NAVIGATE USING TERRAIN DEPICTION. ALWAYS ADHERE TO PUBLISHED NAVIGATIONAL INSTRUMENT PROCEDURES AND NAVIGATIONAL CHARTS IN ALL FLIGHT CONDITIONS.

NOTE:
There is a one-degree dead band to prevent grid flicker while flying along one of the boundary latitudes. The grid space switching changes at one degree less latitude when flying towards the Equator than it does when flying toward the Poles.

When terrain and obstruction rendering is deselected or disabled, the PFD screen background is a conventional blue over brown attitude display presentation without atmospheric perspective. Additionally, terrain may be deselected on the PFD and retained on the map page.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Terrain Coloring</th>
<th>Obstructions*</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVS BASIC</td>
<td>Shades of brown for non-water terrain</td>
<td>Obstructions are shown as yellow lines.</td>
<td>Amber and red colors not used for normal display of terrain. Deep blue for areas of water has precedence over shades of brown.</td>
</tr>
<tr>
<td>SVS TAWS</td>
<td>Shades of olive when at or below 100 ft. aircraft altitude. Shades of brown when above 100 ft. aircraft altitude. TAWS coloring of FLTA alert or warning cells.</td>
<td>Tops at or below aircraft altitude: Amber. Tops are above aircraft altitude: Deep red. Obstructions causing TAWS alarms depicted in separate symbology (See Section 8 TAWS).</td>
<td>Amber and red colors used for normal display of terrain and terrain areas causing FLTA alerts. Deep blue for areas of water has precedence over other colors. The coloration complies with the requirement that terrain elements causing</td>
</tr>
</tbody>
</table>
Table 3-8: Terrain and Obstruction Rendering Levels

<table>
<thead>
<tr>
<th>Feature</th>
<th>Terrain Coloring</th>
<th>Obstructions*</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No terrain nor obstructions are shown. Neither, SVS BASIC or SVS TAWS is selected.</td>
<td>an FLTA alert be distinguishable from those that do not.</td>
<td></td>
</tr>
</tbody>
</table>

* Obstructions within the following ranges, depicted on PFI in SVS Basic or SVS TAWS mode:

- Narrow FOV: 17 NM
- Wide FOV: 12 NM

NOTE:

The obstruction data is provided by Jeppesen and must be updated every 28 days to maintain current database information.

Obstructions without hazardous condition
Obstructions creating an OBSTRUCTION caution

Figure 3-39: PFD with Obstructions

Obstructions such as towers, antennas, buildings, and other manmade structures are shown on the PFD display as vertical amber (yellow) lines. Obstructions are conformal in both location and size and are only shown in conjunction with terrain regardless of altitude. Obstructions representing a collision hazard are annunciated audibly and visually with a time-critical warning or caution alert. All vertical amber (yellow) lines are obstructions. See Section 2 System Overview for description of alerts when obstructions represent a collision hazard.
WARNING:
MANY TOWERS, ANTENNAS, STRUCTURES, AND OBSTRUCTIONS ARE NOT IN THE DATABASE.

When terrain and obstruction rendering is deselected or disabled, the PFD screen background is a conventional blue over brown attitude display presentation without atmospheric perspective. Additionally, terrain may be deselected on the PFD and retained on the Map page (Figure 3-40).

3.3.17. Flight Path Marker (Velocity Vector)

The flight path marker (FPM) appears on the background to coincide with the aircraft’s actual flight path as projected on the outside world. The FPM is laterally displaced parallel to the horizon with respect to the center of the display to account for the difference between aircraft track and heading, and is vertically displaced perpendicular to the horizon to account for aircraft climb or descent angle.
The FPM is not shown in basic mode. In unusual attitude mode, it disappears to allow the pilot to concentrate on the large aircraft symbol reference marks for unusual attitude recovery. When the location of the FPM is displaced to the extent that it would interfere with heading, altitude or airspeed indications, it is removed from the display. FPM at low speed (airspeed ≤45 KIAS) and ≤30 knots ground speed the hover vector symbology appears. Behavior further depends upon whether the aircraft is in flight or on the ground and whether or not a WOW/WOG switch is configured.

FPM nearing airspeed tape due to strong crosswind

FPM removed due to excessive crosswinds from the right

Because the FPM is used in conjunction with a 3D background, the FPM utility normally associated with a HUD is achieved. When the FPM is displaced to the extent it interferes with heading, altitude, or airspeed indications, it is removed from the display.

FPM movement is dampened by reference to aircraft pitch and heading so not to deviate from pitch or heading at a rate greater than 1°/sec.
Figure 3-43: Flight Path Marker Grayed to Indicate Degraded Condition with GPS Failure

Figure 3-44: Flight Path Marker absent (Unusual Attitude Mode)

3.3.18. Hover Vector

AGL Indicator (Normal) AGL Indicator (Analog)

Figure 3-45: PFD Hover Vector Symbology
The hover vector indicates direction and ground speed of drift at low ground speeds (when lower than 30 knots) consisting of the following:

1) Gray dot, equal in size to the white dot and connected to the white dot by a white line, floats over the concentric ring area to indicate direction and magnitude of drift in a gods-eye view.

2) Inner concentric ring indicating 10 knots ground speed;

3) Large aircraft symbol reference marks;

4) Outer concentric ring indicating 20 knots ground speed;

5) Diamond-shaped acceleration cue is centered on the gray dot to indicate direction and magnitude of horizontal acceleration.

6) White dot of the large aircraft symbol reference marks indicates 0 knots ground speed and is the center for the concentric rings.

 Deviation of the dot in a straight up direction (12 o’clock position) indicates forward flight, while straight down (6 o’clock position) indicates rearward flight. Deviation of the dot laterally indicates lateral drift in that direction. The movement of the dot is constrained to less than five knots per second to prevent jumpiness; and

7) Vertical and horizontal dashed lines passing through the center extending to the outer ring.

See § 3.6 for full hover vector symbology with Hover page on MFD.
3.3.19. Bank Angle Scale

The bank scale and roll pointer are centered upon the large aircraft symbol reference marks in basic or unusual attitude mode. When bank angle scale decluttering is selected (not in basic mode), the bank angle scale and sky pointer are displayed when the magnitude of bank angle exceeds 2.8°. With decluttering selected, appearance of the bank angle scale and roll pointer is dampened based upon magnitude and time to prevent nuisance appearances.

When not manually decluttered, the bank angle scale appears full time. Both, sky pointer and roll pointer configurations are shown Figure 3-47 demonstrating a left turn.

NOTE:

In the event the bank scale was decluttered, it becomes uncluttered while at low speed < 30 knots ground speed. Bank scale decluttering can only be done on the SVS mode.
When decluttering is not selected, the bank angle scale and sky pointer appear full time with level, 10°, 20°, 30°, 45°, and 60° marks on left and right sides. The bank angle scale and roll pointer are centered upon the large aircraft symbol reference marks (basic or unusual attitude mode).

Figure 3-48: PFD Bank Scale

3.3.20. Timer Indication and Flight Time

When selected, a countdown or count-up timer is displayed above the FPM or large aircraft symbol reference marks. The flight timer begins as soon as the first time the aircraft transitions from ground mode to air mode. This flight time continues until the EFIS is powered down.

Figure 3-49: Timer Indication

When the flight time display option is selected, the current elapsed time since the aircraft transitioned from ground to air mode is displayed for 10 seconds or until any key is pressed. If the aircraft has not yet transitioned from ground to air mode, upon selecting the flight time display, it appears as .

Figure 3-50: Flight Time

3.3.21. Marker Beacon Symbology

Marker beacons data acquired from the navigation receiver are displayed on the PFD and disabled when the selected NAV source is FMS. Valid marker beacon signals cause circular indicators with appropriate coloring and markings to display in the lower central portion of the PFI.
3.3.22. Flight Director Symbology

Flight director (FD) symbology is controlled on the IDU or integrated autopilot/flight director. When selected, FD symbology and valid steering commands are received from the FD with one of the following symbols shown in Normal mode. The PFD has a waterline symbol fixed in the center of the display. Rotation of the background, pitch scale, and background oriented display elements occur relative to the location of the waterline symbol or large aircraft symbol reference marks.

Figure 3-52: Flight Director FD1 Single Cue
Figure 3-53: Flight Director FD1 Single Cue (Basic Mode with Compass Rose Detected on Bottom Area)

Figure 3-54: Flight Director FD2 Dual Cue (Normal Mode)
3.3.23. Landing Gear Indication

When enabled in EFIS limits, the landing gear position is indicated as small, green “tires” below the flight path marker or large aircraft reference marks.

3.3.24. Course Deviation Indicator (CDI)
The order of precedence of type accuracy used by the system from highest to lowest is as follows:

1) Manual RNP: The pilot may override the automatic accuracy types by setting a manual RNP value.

2) Automatic RNP: These are based upon RNP values, which are coded in the navigation database. The EFIS looks at the leg coding on all legs other than those on the final approach segment. On the final approach segment, the EFIS looks at the “Level of Service” record for those approaches, which have RNP transition legs, and then goes to LP or LPV minima for the final approach.

3) Default TSO-C146c operation: As specified as per Table 3-9 for enroute, terminal, and various approach modes according to the “Level of Service” record.

<table>
<thead>
<tr>
<th>CDI Pointer and Condition</th>
<th>Color or Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Scale Deflection</td>
<td></td>
</tr>
<tr>
<td>Scale is appropriate FSD value for mode of flight:</td>
<td></td>
</tr>
<tr>
<td>Enroute: ±2NM</td>
<td></td>
</tr>
<tr>
<td>From Enroute to Terminal: Change from ±2 NM FSD to ±1 NM FSD over distance of 1 NM; start transition when entering terminal mode.</td>
<td></td>
</tr>
<tr>
<td>From Terminal to Enroute: Change from ±1 NM FSD to ±2 NM FSD over distance of 1 NM; start transition when entering enroute mode.</td>
<td></td>
</tr>
<tr>
<td>From Terminal to Approach: If VTF, switch immediately. Otherwise, change from ±1 NM FSD to approach FSD over distance of 2 NM; start transition at 2 NM from FAWP.</td>
<td></td>
</tr>
<tr>
<td>From Approach to Terminal: Change to ±1 NM.</td>
<td></td>
</tr>
<tr>
<td>From Departure to Terminal: If initial leg is aligned with runway, change from ±0.3 NM FSD to ±1 NM FSD at the turn initiation point of the first fix in the departure procedure.</td>
<td></td>
</tr>
</tbody>
</table>

Slaved to GPS/SBAS
Table 3-9: CDI Behavior and Color

<table>
<thead>
<tr>
<th>CDI Pointer and Condition</th>
<th>Color or Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slaved to GPS/SBAS (with GPS LON)</td>
<td>Amber (Yellow)</td>
</tr>
<tr>
<td>Normal conditions</td>
<td>Magenta</td>
</tr>
<tr>
<td>In sources other than FMS</td>
<td>ANG annunciation</td>
</tr>
<tr>
<td>Navigation source is localizer (course error exceeds 104°) reverse sensing</td>
<td>Lateral deviations in failed state</td>
</tr>
<tr>
<td>EFIS not coupled with autopilot</td>
<td></td>
</tr>
<tr>
<td>Selected NAV source FMS2</td>
<td></td>
</tr>
<tr>
<td>Established on RNAV GPS RNP procedure</td>
<td></td>
</tr>
<tr>
<td>Selected NAV source VOR1</td>
<td></td>
</tr>
<tr>
<td>Selected NAV source VOR2</td>
<td></td>
</tr>
<tr>
<td>EFIS coupled system with autopilot</td>
<td></td>
</tr>
<tr>
<td>Holding the wings level*</td>
<td></td>
</tr>
<tr>
<td>Established on RNAV GPS RNP procedure</td>
<td></td>
</tr>
<tr>
<td>Tracking HDG BUG**</td>
<td></td>
</tr>
<tr>
<td>LNAV in ARM mode**</td>
<td></td>
</tr>
<tr>
<td>LNAV captured**</td>
<td></td>
</tr>
</tbody>
</table>

*No positive autopilot feedback
**Positive autopilot feedback
3.3.25. OBS Setting of CDI

In automatic mode, the system controls the scale and OBS setting. The selected navigation source is annunciated below the CDI as follows:

1) NAV: FMS1/FMS2
2) NAV: VOR1/LOC1
3) NAV: BC1/BC2 (annunciated instead of LOC1/2 when course error exceeds 104°)
4) NAV: VOR2/LOC2
5) NAV: TAC1/TAC2
6) NAV: ADF1/ADF2

3.3.26. Heading/Roll-Steering Sub-Mode

Heading/roll-steering sub-mode annunciation appears immediately right of the selected navigation source annunciation and displays:

1) HDG: LVL (Wing-Leveling Sub-Mode Guidance)
2) HDG: LNAV (LNAV Sub-Mode Guidance)
3) HDG: BUG (Heading Bug Sub-Mode Guidance)
4) HDG: --- (Failure Sub-Mode)

3.3.27. Vertical Deviation Indicator (VDI)

The vertical deviation indicator (VDI) displays vertical deviation for the selected valid vertical navigation source. The VDI displays the proper descent profile and automatically disappears in unusual attitude mode. When the source of vertical navigation is FMS (either LPV or VNAV modes), the descent angle (in degrees) is displayed above the vertical deviation indicator with the same coloring as the vertical navigation source. This is especially useful for steep angle approaches in helicopters.

Figure 3-58: Vertical Deviation Indicator (Dual Sensors)
Figure 3-59: Vertical Deviation Indicator (Single Sensor)

1) **LPV Mode**: LPV is annunciated when descending on the final approach segment in LPV mode. GPS Altitude is utilized to generate VDI; pilot may follow guidance to LPV minima regardless of temperature. LPV1 or LPV2 is shown if configured with dual GPS/SBAS receivers.

2) **LNAV Mode**: VNV-G is annunciated when descending on the final approach segment in LP, LNAV/VNAV, and LNAV or RNP modes when using GPS VNAV. GPS altitude utilized to generate VDI; pilot may follow guidance to LNAV minima regardless of temperature. VNV1-G or VNV2-G is shown if configured with dual GPS/SBAS receivers.

3) **LNAV Mode**: Default FMS barometric VNAV mode. Using barometric altitude to generate the VDI, pilot may follow guidance to LNAV minima as long as the specified temperature is within limits. VNV1-B or VNV2-B is shown if configured with dual air data computers.

4) **Glide Slope**: GS1 is annunciated and the pilot may follow guidance to published barometric DH. GS2 is shown if configured with dual NAV receivers.

<table>
<thead>
<tr>
<th>Table 3-10: Vertical Deviation Indicator Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source (Below VDI)</td>
</tr>
<tr>
<td>FMS</td>
</tr>
<tr>
<td>Source (Below VDI)</td>
</tr>
<tr>
<td>------------------------------------</td>
</tr>
<tr>
<td>VLOC1/VLOC2</td>
</tr>
<tr>
<td>Glide Slope</td>
</tr>
<tr>
<td>LPV1/LPV2 or VNAV1-G/ VNAV2-G</td>
</tr>
<tr>
<td>VNAV1-B/ VNAV2-B</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 3-10: Vertical Deviation Indicator Behavior

<table>
<thead>
<tr>
<th>Source (Below VDI)</th>
<th>Behavior/Condition</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPV1/LPV2 or VNV1-B/VNV2-B or VNV1-G/VNV2-G</td>
<td>During GPS LON or GPS VLON</td>
<td>Pointer and source amber (yellow) takes precedence over white and green</td>
</tr>
</tbody>
</table>

Figure 3-60: VDI Color during GPS/SBAS LON or VLON

3.3.28. Highway in the Sky/Skyway

Coupled to Skyway

Uncoupled from Skyway

Figure 3-61: Highway in the Sky
When not decluttered, the PFD displays the active navigation route or manual OBS course in 3D with a series of skyway boxes, which overly the flight plan route at a desired altitude and provide lateral and vertical guidance. See Section 7 IFR Procedures for details.

3.3.29. Active Waypoint and Waypoint Identifier

1. Instantaneous bearing to active waypoint
2. Along-track distance to active waypoint
3. ETE or ETA is based on along-track distance. Along track distance uses exact geometry to include the entire course and turn which makes time and distance calculations extremely accurate.

Figure 3-62: Active Waypoint

The PFD displays the active waypoint symbol as a magenta “tethered balloon” consisting of:

1. an “X” depicted at the ground location of the active waypoint;
2. a hoop or “tethered balloon” (for fly-over waypoints) or “tethered diamond” (for fly-by waypoints) depicted at the VNAV altitude or at aircraft altitude (if there is no VNAV altitude), and
3. a line connecting “X” and hoop.

The “X” and connecting line are not shown if no ground elevation information is encoded with the NavData® waypoint information (e.g., terminal and enroute fixes). The active waypoint symbol is drawn using hidden-surface removal techniques of the terrain and obstruction rendering so an active waypoint behind terrain appears to be so. The active waypoint symbol disappears in unusual attitude mode but turns amber (yellow) in the event of GPS LON caution.
The identifier of the waypoint along with the bearing and distance to the waypoint is displayed in the lower right corner of the PFI in magenta. If a target altitude is not set and the active waypoint has a VNAV altitude associated as in Figure 3-59 the identifier includes a display of the VNAV altitude.

NOTE:

Only the active waypoint is shown on the PFD display. Subsequent waypoints in a route are displayed sequentially as the current active waypoint is passed. With terrain turned off, the active waypoint is always visible regardless of distance.

If the active waypoint is beyond the lateral limits of the screen, the magenta waypoint direction pointer (i.e., magenta triangle) on the directional scale indicates shortest direction of turn to the waypoint.

If the waypoint is only a hoop hanging in space, it is a fix and not directly associated with a NAVAID on the ground (such as a VOR, NDB, user waypoint, or airport).

If the waypoint X disappears behind terrain on the PFI, there is terrain between the aircraft present position and the waypoint.

3.3.30. Mini Map

The mini map is mutually exclusive with the analog AGL and mini traffic thumbnail. It disappears in unusual attitude mode.

![Figure 3-63: Mini Map](image-url)
Table 3-11: Mini Map Behavior (When Not Decluttered)

<table>
<thead>
<tr>
<th>VOR Pointer, Active Leg, Ownship Symbol</th>
<th>Color</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOR 1</td>
<td>Cyan</td>
<td>When valid</td>
</tr>
<tr>
<td>VOR 2</td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>TACAN 1</td>
<td>Cyan</td>
<td></td>
</tr>
<tr>
<td>TACAN 2</td>
<td>Green</td>
<td>When valid</td>
</tr>
<tr>
<td>ADF 1</td>
<td>Gray</td>
<td></td>
</tr>
<tr>
<td>ADF 2</td>
<td>Gray</td>
<td></td>
</tr>
<tr>
<td>Active Leg</td>
<td>Magenta</td>
<td>GPS/SBAS normal</td>
</tr>
<tr>
<td>Ownship Symbol</td>
<td>White</td>
<td>Always</td>
</tr>
<tr>
<td>Active Leg</td>
<td>Magenta</td>
<td>GPS/SBAS normal</td>
</tr>
</tbody>
</table>
3.3.31. Runways

The PFD displays airport runways in a 3D manner. Upon activation of a DP, VFR approach, IFR approach, or STAR procedure, runways for the airport associated with the procedure, as well as, runways associated with the three nearest airports (computed by TAWS algorithms) are displayed. Runways are displayed with hidden-surface removal techniques of the terrain and obstruction rendering, so runways behind terrain appear to be so. Runways are based on characteristics in the navigation database, including elevation, position, orientation, length, and width, and displayed as defined in Table 3-12.

Figure 3-64: Runways

The four shades of gray used to render the runways, selected runway and their respective markings are distinguishable from each other and from the color white, as shown in Table 3-12.

Table 3-11: Mini Map Behavior (When Not Decluttered)

<table>
<thead>
<tr>
<th>VOR Pointer, Active Leg, Ownship Symbol</th>
<th>Color</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amber (Yellow)</td>
<td>GPS/SBAS LON</td>
</tr>
</tbody>
</table>
Table 3-12: Runway Drawing Criteria

<table>
<thead>
<tr>
<th>Feature</th>
<th>Color</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runways, aiming point markings, centerline, designation, and displaced threshold arrows</td>
<td>Dark gray</td>
<td>According to characteristics from navigation database, e.g., including position, orientation, length, and width.</td>
</tr>
<tr>
<td>Runway markings</td>
<td>Medium gray</td>
<td></td>
</tr>
<tr>
<td>Landing portion of the selected runway.</td>
<td>Light gray</td>
<td>Takes into account displaced threshold data.</td>
</tr>
<tr>
<td>Runway markings for the selected runway</td>
<td>Contrasting lighter gray</td>
<td></td>
</tr>
</tbody>
</table>

3.3.32. Heliports

![Figure 3-65: Heliports](image-url)
Heliports appear as distinguishable 150’ x 150’ helipads with applicable markings.

3.4. MFD Symbology

Navigation display is presented in a variety of formats:

1) Moving Map
2) Conventional HSI
3) Navigation Log
4) Traffic (see Traffic Appendix)
5) Strikes (see WX-500 Lightning Strikes Appendix)
6) Datalink (see Datalink Appendix)

3.4.1. Ownship Symbology

![Figure 3-66: Ownship Symbology](image)

NOTE:

When not panning with the AHRS in the DG mode, a “DG” appears to the right of the ownship symbol.

3.4.2. Clock Options

The following are displayed in the upper right corner.

![Figure 3-67: Clock Options](image)
Table 3-13: Clock Options

<table>
<thead>
<tr>
<th>Feature</th>
<th>Options</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zulu or Local Time</td>
<td>hh:mm:ssZ hh:mm:ssL</td>
<td>Synchronized with the GPS/SBAS constellation</td>
</tr>
<tr>
<td>Declutter Mode</td>
<td>DCLTR A DCLTR M</td>
<td>= Automatic declutter mode = Manual declutter mode</td>
</tr>
<tr>
<td>Terrain Status</td>
<td>Enabled or Disabled</td>
<td>Indicated by the absence or presence of terrain. Manually turned off</td>
</tr>
<tr>
<td>Traffic Status</td>
<td>See Traffic Appendix</td>
<td></td>
</tr>
<tr>
<td>Strikes Status</td>
<td>See Strikes Appendix</td>
<td></td>
</tr>
<tr>
<td>Datalink Weather Status</td>
<td>See Datalink Appendix</td>
<td></td>
</tr>
<tr>
<td>WX-RDR Status</td>
<td>See WX-RDR Appendix</td>
<td></td>
</tr>
</tbody>
</table>

3.4.3. Air Data and Ground Speed

![True North Mode (T)](image1.png) ![Normal Mode (°)](image2.png)

Figure 3-68: Air Data and Ground Speed

The following are displayed in the upper left corner:

1) **Wind**: Information consists of the following readouts:

 a) Direction in degrees;

 b) Speed in knots;

 c) Crosswind component in knots; and

 d) Graphical wind vector arrow oriented to correspond to ND orientation.
NOTE:

Wind information is not shown when the EFIS is in ground mode or the AHRS is in DG mode.

If referenced to magnetic north, direction readout uses the degree (°) symbol. Otherwise, a stylized true north (T) symbol is used.

2) **Outside Air Temperature (OAT)**: Digitally in °C or °F (as configured).

3) **International Standard Atmosphere (ISA)**: Difference between ISA temperature and current outside air temperature is displayed digitally in °C or °F (negative value = less than standard OAT). Decluttered if not enabled in EFIS limits.

4) **Density Altitude (DA)**: Digitally in feet. Decluttered if not enabled in EFIS limits.

5) **True Airspeed (TAS)**: Digitally in knots. Decluttered if not enabled in EFIS limits.

6) **Ground speed**: Digitally in knots

3.4.4. Moving Map

![Figure 3-69: Basic Moving Map](image)
Figure 3-70: Moving Map with Instrument Approach

Figure 3-71: North-Up Arc Mode

Figure 3-72: North-Up Centered Mode
3.4.5. Compass Rose/Boundary Circle Symbol

In heading up mode, the magnetic digital heading readout and pointer are aligned with the longitudinal axis of the ownship symbol.

3.4.6. Waypoint Distance ETE/ETA Functions

- **GPS in normal state and current active waypoint**
- **GPS in LON condition**
- **GPS in normal state and not the current active waypoint**

Figure 3-75: Waypoint Distance ETE/ETA Functions
Table 3-14: Waypoint Distance ETE/ETA Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Conditions</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEST Waypoint</td>
<td>If there is an active flight plan, waypoint type, identifier, along-track distance, and ETE/ETA for the last waypoint (“DEST” waypoint) are shown. If the active waypoint is not the last waypoint, time to destination waypoint is based on the flight plan route. Otherwise, time is based on a direct geodetic path. Waypoint information is white but turns amber (yellow) with GPS LON caution.</td>
<td>ETA or ETE Degree (°) or True North (°) symbol</td>
</tr>
<tr>
<td>Range</td>
<td>Based on instantaneous fuel flow, fuel remaining and ground speed are shown immediately below “DEST” waypoint information for easy comparison.</td>
<td></td>
</tr>
<tr>
<td>Endurance</td>
<td>Based on instantaneous fuel flow and fuel remaining as shown.</td>
<td></td>
</tr>
</tbody>
</table>

3.4.7. Navigation Data

Navigation data (ND) is displayed in correct relationship to the ownship symbol with navigation data symbols including airport symbols, NDBs, and user waypoints. High altitude and low altitude airways may be shown.

![Figure 3-76: Navigation Data and Airspace Depiction](image)

Table 3-15: Navigation Symbology

<table>
<thead>
<tr>
<th></th>
<th>IFR Airport</th>
<th>NDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPHX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-15: Navigation Symbology

<table>
<thead>
<tr>
<th>Airport Type</th>
<th>Symbology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFR Airport</td>
<td>Fix</td>
<td></td>
</tr>
<tr>
<td>VORTAC</td>
<td>High Altitude Airway</td>
<td></td>
</tr>
<tr>
<td>DME only or TACAN</td>
<td>Low Altitude Airway</td>
<td></td>
</tr>
<tr>
<td>VOR</td>
<td>User Waypoint</td>
<td></td>
</tr>
<tr>
<td>User Waypoint in Pan Mode</td>
<td>HSI CDI scale</td>
<td></td>
</tr>
</tbody>
</table>

ND has manual and automatic decluttering of navigation data. There are six levels of automatic declutter based upon the number of navigation data symbols drawn in the current ND format and range. Decluttering is as follows:

1) **Airports**: Manually or automatically decluttered. In automatic declutter mode, large airports (IFR procedure and longest runway and automatically adjusted threshold needed to achieve desired symbol count) are always shown; IFR airports that are not large airports are shown in levels 1, 2, 3, and 4; and VFR airports are shown in levels 1, 2, and 3.

2) **VORs**: Manually or automatically decluttered. In automatic declutter mode, VORs are shown in levels 1, 2, 3, 4, and 5.

3) **NDBs**: Manually or automatically decluttered. In automatic declutter mode, NDBs are shown in levels 1 and 2. Both enroute and terminal NDBs are shown.

4) **Enroute Fixes, Terminal Fixes and User Waypoints**: Manually or automatically decluttered. Terminal fixes are manually selected and not shown in automatic declutter mode. In automatic declutter mode, enroute fixes are shown in level 1. Enroute fixes, terminal fixes, and user waypoints may be manually decluttered separately from each other.

5) **High Altitude Airways**: Manually selected/Automatically decluttered.

6) **Low Altitude Airway**: Manually selected/Automatically decluttered.
NOTE:

Airspace is manually selected and does not automatically declutter. Airspace selection status is maintained in the menu during power down and appears on the ND during the next initialization.

Table 3-16: Airspace Depiction

<table>
<thead>
<tr>
<th>Type of ARINC 424 Airspace</th>
<th>Vertical Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dashed lines</td>
<td>More than ±500’</td>
</tr>
<tr>
<td>Solid lines</td>
<td>Within ±500’</td>
</tr>
<tr>
<td>Thick solid lines</td>
<td>Within airspace vertical limits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color of Airspace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class C, Control Area, terminal radar service areas (TRSAs), Class D</td>
</tr>
<tr>
<td>Class B, TCAs (where applicable)</td>
</tr>
<tr>
<td>MOAs; caution, danger, training, warning, and unknown areas</td>
</tr>
<tr>
<td>Prohibited areas, restricted areas, TFR areas (when equipped with Datalink)</td>
</tr>
</tbody>
</table>

3.4.8. Analog Navigation Symbology

When valid and selected, analog (VOR1, VOR2, TAC1, TAC2, ADF1 and ADF2) navigation symbology is displayed. The VOR1 pointer and TAC1 pointer are mutually exclusive (selecting one deselects the other) just as the VOR2 and TAC2 are also mutually exclusive.

When VOR1/TAC1 and/or VOR2/TAC2 pointers are selected for display, bearing and distance for the selected VOR/TAC pointers appear at the bottom of the page (cyan for VOR1/TAC1, green for VOR2/TAC). VOR1/TAC1 and VOR2/TAC2 distance readouts match the color for the respective pointer. If the DME channel is in hold mode, “H” is shown in the yellow distance readout. If a bearing or distance are not valid, the respective field is filled with dashes.
Section 3 Display Symbology

Figure 3-77: HSI Bearing Distance Readout

Figure 3-78: Analog Navigation Symbology, HSI overlay with Map in ARC Mode

Figure 3-79: Analog Navigation Symbology, HSI overlay with Map in Centered Mode
3.4.9. Borders

National and United States state borders are drawn if selected at all map scales. They are white if the background includes terrain.

![State Borders Drawn](image1)
![Without State Borders Drawn](image2)

Figure 3-80: Borders

3.4.10. Terrain/Obstructions

Terrain is displayed in correct relationship to the ownship symbol using color to show relationship to aircraft altitude.

<table>
<thead>
<tr>
<th>Based on Aircraft Altitude</th>
<th>Color</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrain at or below 100 feet less than aircraft altitude</td>
<td>Olive shades</td>
<td>Terrain slope determines shade</td>
</tr>
<tr>
<td>Terrain above 100 feet less than aircraft altitude</td>
<td>Brown shades</td>
<td></td>
</tr>
<tr>
<td>FLTA alerts</td>
<td>Amber and Red</td>
<td>See Section 8 TAWS</td>
</tr>
<tr>
<td>Water at all altitudes</td>
<td>Deep Blue</td>
<td>Takes precedence over other colors</td>
</tr>
</tbody>
</table>
Obstructions are displayed on the ND in correct relationship to the ownship symbol using color to show relationship to aircraft altitude.

Table 3-18: Obstructions

<table>
<thead>
<tr>
<th>Lateral Distance Away</th>
<th>Vertical Criteria</th>
<th>21 NM or less</th>
<th>15 NM or less</th>
<th>8.5 NM or greater or the current TAWS FLTA range in any cardinal direction</th>
<th>8.5 NM or less</th>
<th>More than 2000’ below aircraft</th>
<th>Within 2000’ but at or below aircraft altitude</th>
<th>Above aircraft altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PFD in Narrow FOV</td>
<td>PFD in Wide FOV</td>
<td>Not depicted</td>
<td>As described below</td>
<td>Not depicted</td>
<td>Depicted in amber</td>
<td>Depicted in deep red</td>
</tr>
</tbody>
</table>
Terrain and obstruction rendering is pilot-selectable to declutter the display by deselecting terrain (independent declutter of obstructions is not possible). Furthermore, terrain and obstruction rendering is disabled when:

1) The GPS/SBAS sensor is failed; OR
2) When the ADC is failed; OR
3) When the horizontal figure of merit exceeds the greater of 0.3NM or the horizontal alarm limit for the mode of flight.

3.4.11. Pan Mode

Pan mode is used for changing the location of the center of the page away from current location and viewing map details along the route of flight and at the intended or alternate destination while in flight or on the ground. When pan mode is active, use labeled buttons to pan location north, south, east, and west in a North-up, centered orientation. Upon entering the pan mode, the heading pointer, track pointer, lubber line, waypoint pointer, analog navigation symbology, and field of view lines are removed.
Figure 3-83 shows the line with bearing and distance from the map center to the aircraft’s current position in white when the aircraft is more than 0.5 NM away. When panning, the nearest displayed airport, VOR, NDB, or fix within the inner range ring are highlighted with a flashing white circle. Waypoint information may be selected using INFO/HIDE (R6). When exiting the pan mode, all previous settings are restored as before pan mode was enabled.

Figure 3-83: Pan Mode

3.4.12. Direct Point

Unnamed waypoints appear depending upon the procedure loaded when a direct-to command is entered. See Section 7 IFR Procedures for more information.

- ALT- altitude terminations
- DIR- waypoints that begin a Direct-To leg
- DME- distance or DME terminations
- INT- intercept terminations
- RAD- radial terminations

Figure 3-84: Direct Point
3.4.13. Altitude Capture Predictor/Top-of-Descent

When a selected altitude or VNAV is specified on the PFD, T/D marks correct point on the flight plan path at which descent must be commenced and contains location on the flight plan path with indication of the glide path angle used to calculate position. After passing top of descent along the lubber line, altitude is captured and shown as a green arc located ahead of the aircraft. The arc marks the bottom-of-descent or top-of-climb point.

Figure 3-85: Top-of-Descent or Top-of-Climb

Figure 3-86: Top-of-Descent and Bottom-of-Descent
3.4.14. Projected Path

When the aircraft is in a bank angle, a projected path emanates from the ownship symbol. This curving path is based on aircraft bank angle and ground speed as projected one minute into the future up to a maximum of 180° of turn. The projected path or “noodle” assists in course interception and making small adjustments to bank angle for proper roll out.

Figure 3-87: Projected Path

3.4.15. Active Flight Plan Path/Manual Course/Runways

3.4.15.1. Parallel Track

When there is an active flight plan and GPS/SBAS OBS setting is automatic, the flight plan path is shown on the ND in correct relationship to the ownship symbol. See Section 5 Menu Functions and Procedures for details on creating a parallel track.

Figure 3-88: Parallel Track

3.4.15.2. Active Flight Plan Path

The active flight plan path’s active leg/manual course and active waypoint are magenta but turn amber (yellow) in the event of a GPS LON caution.
3.4.15.3. Manual Course

Manual course through the waypoint shown centered on the waypoint, which matches lateral guidance on PFD (GPS/SBAS CDI in manual mode, skyway boxes, and mini map.)

3.4.16. Field of View (FOV) Indication

The ND background indicates the ND FOV with a set of segmented gray lines leading out from the ownship symbol in either 35° or 70° angles depending on the zoom mode setting on the PFD.
3.4.17. Range

The white range ring is centered on the aircraft’s position to quickly estimate distances. Distance (in NM) from the aircraft to the ring is a white number overlaying the 6 o’clock position of the ring. The range ring is half the distance to the directional scale. Consequently, when the range ring shows a distance of 5NM, the directional scale is 10NM. Rotate 1 (PFD), 1 or 2 (MFD) to set the overall map scale ranges in NM to one of the following values as appropriate: 0.5, 1, 2.5, 5, 10, 25, 100, and 200.

3.4.18. HSI Page

When selected, VOR1, VOR2, TAC1, TAC2, ADF1 and ADF2 navigation are displayed with a magenta single line FMS1 or FMS2. VOR1 and TAC1 needles are single cyan needles. VOR2/TAC2 needles are green double needles. The TACAN needles are visibly differentiated from the VOR needles using a straight line or barb at the needle point.
ADF1 (single gray needle) and ADF2 (double gray needle). If the radio signal is invalid, the associated navigation pointer is not shown.

Table 3-19: HSI

<table>
<thead>
<tr>
<th>VOR1/VOR2</th>
<th>TAC1/TAC2</th>
<th>ADF1/ADF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOR1 needle is mutually exclusive with TAC1</td>
<td>TAC1 needle is mutually exclusive with VOR1</td>
<td></td>
</tr>
<tr>
<td>VOR2 needle is mutually exclusive with TAC2</td>
<td>TAC2 needle is mutually exclusive with VOR2</td>
<td></td>
</tr>
</tbody>
</table>
3.4.19. Compass Rose Symbols

Normal Mode

![Normal Mode Compass Rose](image)

True North Mode

![True North Mode Compass Rose](image)

Figure 3-93: Compass Rose

When selected, a digital heading readout and pointer aligned with the longitudinal axis of the ownship symbol appears on the compass rose boundary circle.

NOTE:

See Section 7 IFR Procedures for description of the following heading modes with the AHRS and EFIS:

1) ADAHRS Slaved—EFIS Magnetic North
2) ADAHRS Slaved—EFIS True North
3) ADAHRS Free/"DG”—EFIS Magnetic North
4) ADAHRS Free/"DG”—EFIS True North

If referenced to magnetic north, the heading readout uses the degree (°) symbol. Otherwise, a stylized true north (T) symbol is used. A green diamond-shaped track pointer aligned with the aircraft’s track across the earth appears on the compass rose but is not displayed when ground speed is less than 30 knots. The pilot-settable heading bug geometrically interacting with the heading pointer appears on the compass rose. A magenta, star-shaped waypoint pointer is displayed on the heading scale at a point corresponding with the active waypoint but turns amber (yellow) in the event of GPS LON caution.

3.4.20. Conventional HSI/PTR Format

When selected, the MFD displays conventional HSI symbology, including a selected course needle, a lateral deviation indicator, and a “TO-FROM” indicator. Navigation source indication and OBS setting are displayed in the top center of the HSI in the same color as the course needle. HSI pointer color is:

1) Magenta (if FMS is the selected navigation source)
2) Cyan (if VLOC1, TAC1 or ADF 1 is the selected navigation source)
3) Green (if VLOC2, TAC2 or ADF2 is the selected navigation source)

4) Amber (Yellow) when the HIS is slaved to GPS/SBAS and there is a GPS LON condition.

The ownship symbol (Figure 3-66) is centered and pointing straight up on the HSI. The HSI has a compass rose aligned with either magnetic north or true north depending upon the status of the true north discrete input. When the HSI NAV source (FMS, VOR1, or VOR2) fails, a red “X” is displayed in place of the HSI deviations. When the AHRS is in DG mode, “DG” appears to the right of the ownship symbol.

3.4.21. HSI CDI and VDI Scale
The VDI appears when the VDI source is valid to display vertical deviation information for the currently selected navigation source. When the selected source is FMS, the VDI displayed on the HSI has the same behavior as the VDI displayed on the PFD, with the exception of the VDI source displayed on the top of the VDI to avoid clutter with waypoint information below.

1) LPV1 or, if a second GPS/SBAS receiver is not installed, LPV. Descending on the final approach segment in LPV mode.

2) LPV2 (only available if a second GPS/SBAS receiver is installed). Descending on the final approach segment in LPV mode.

3) VNV1-G or, if a second GPS/SBAS receiver is not installed, VNV-G. Descending on the final approach segment in LP, LNAV/VNAV, LNAV, or RNP modes when using GPS VNAV.

4) VNV2-G (only available if a second GPS/SBAS receiver is installed). Descending on the final approach segment in LP, LNAV/VNAV, LNAV, or RNP modes when using GPS VNAV.

5) VNV1-B or, if a second ADC is not installed, VNV-B: Default FMS barometric VNAV mode.

6) VNV2-B (only available if a second ADC is installed). Default FMS barometric VNAV mode.

7) GS1: Glide slope #1

8) GS2: Glide slope #2

3.4.22. Analog Navigation Symbology

When selected, the HSI displays analog (VOR1/TAC1 (cyan) and VOR2/TAC2 (green)) navigation symbology with an RMI pointer format overlaid upon the HSI. When the signal is invalid, the associated pointer is not shown. When the signal is valid for VOR1/TAC1 and VOR2/TAC2, a
bearing and distance display for the selected VOR pointers appears at the bottom of the display in the same color of the respective pointer.

If a DME channel is in hold mode, the associated distance readout is displayed in amber (yellow) and “H” is above of the distance readout.

![Figure 3-97: HSI Bearing Distance Readout with DME in HOLD](image)

Valid marker beacon discretes are displayed on the PFI and HSI page with appropriate coloring markings. Only during a built-in-test, more than one marker beacon may be active. Marker beacons are disabled when NAV source is other than VLOC1 and or VLOC2.

![Figure 3-98: HSI with Marker Beacon Displayed](image)

1) Magenta bearing pointer to active waypoint
2) Green ground track pointer
3) Final Approach Course inside CDI area
4) Valid marker beacon
3.4.23. Air Data and Ground Speed

Air data is displayed as specified in § 3.4.3.

![Figure 3-99: HSI Display Air Data and Ground Speed](image)

3.4.24. Clock/Options

<table>
<thead>
<tr>
<th>Zulu Time</th>
<th>Local Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:57:35Z</td>
<td>12:59:14L</td>
</tr>
</tbody>
</table>

The following are displayed in the upper right corner of the HSI:

1) **Zulu** or **Local Time**: As specified in § 3.4.2
2) **Traffic**: See Traffic Appendix
3) **Datalink**: See Datalink Appendix

3.4.25. Fuel Totalizer/Waypoint Distance ETE/ETA Functions

Fuel totalizer and waypoint distance is displayed in lower right corner of the HSI as specified in § 3.4.6.

![Figure 3-101: HSI Totalizer/Waypoint Distance ETE/ETA](image)
3.5. Navigation Log (NAV Log)

3.5.1. Clock and Ground Speed

The following are displayed in the upper left corner of the NAV Log:

1) **Zulu Time or Local Time**: As specified in § 3.4.2.
2) **Ground speed**: Displayed digitally in knots

3.5.2. Fuel Remaining and Fuel Flow Data

The following are displayed in the upper right corner of the NAV Log:

1) **Fuel Remaining**: If either fuel level or fuel flow are available, current fuel remaining is displayed digitally in fuel units.
2) **Fuel Flow**: If fuel flow is available, current total fuel flow is displayed digitally in fuel units.

3.5.3. Waypoint Identifier Column

The identifier for each waypoint of the active flight plan is displayed in the left-most column of the NAV Log. The active waypoint, indicated with an asterisk, is magenta but turns amber (yellow) in the event of a GPS LON caution. Brackets indicate suppressed waypoints. Navigation data symbols are shown with the waypoint identifier to easily distinguish the waypoint type.

When a waypoint is part of a procedure or parallel offset, the following legends are drawn on top of the navigation data symbol:
1) **SAR** = Waypoint is part of a SAR pattern
2) **HOLD** = Waypoint is part of an enroute Holding pattern
3) **Airway Designation** = Waypoint is part of the designated airway
4) **FAF** = Waypoint is a final approach fix.
5) **MAP** = Waypoint is a missed approach point.
6) **MA** = Waypoint is part of the missed approach segment of an instrument approach procedure.
7) **APP** = Waypoint is part of an instrument approach procedure, but is not a final approach fix, missed approach point, nor part of the missed approach segment.
8) **VFR** = Waypoint is part of a VFR approach.
9) **STAR** = Waypoint is part of a standard terminal arrival procedure.
10) **DP** = Waypoint is part of a departure procedure.
11) **PTK** = Parallel offset. In the case of a STAR or DP waypoint subject to a parallel offset, both STAR/DP and PTK are shown.

3.5.4. VNAV and VNAV Offset Column

VNAV altitude and associated VNAV offset (in NM) are displayed immediately to the right of the Waypoint Identifier column. In the case of an approach with a final approach segment data block, VNAV offset readout associated with the missed approach point is “GPI” to designate distance to the glide path intercept point. VNAV altitudes and offsets from the navigation database or manually entered are white; those computed automatically are gray. VNAV and VNAV offset column elements align with waypoint identifier column elements to indicate the VNAV information applies to the associated waypoint.

3.5.5. Path Column

LNAV path between waypoints is displayed immediately to the right of the VNAV and VNAV offset column. The following are displayed:

1) Suppressed waypoints (not actually part of the active flight plan) are shown with dashes.

2) Discontinuities (i.e., a leg where FMS is unable to compute a valid path) are shown with the legend “-DISCONT-.”

3) Skipped waypoints are shown with the legend “-SKIPPED-.”
4) Altitude terminations are shown with leg course followed by the altitude at which the leg terminates.

5) Manual legs are shown with leg course followed by “-MAN-.”

6) Holding pattern legs are shown with a pictorial representation of a holding pattern (either left or right turns) as well as the inbound course for the holding pattern.

7) Procedure turn legs are shown with a pictorial representation of a procedure turn (either left or right turns) as well as the entry and exit course for the procedure turn.

8) Arc legs are shown with a pictorial representation of an arc (either left or right turns) as well as the entry and exit radials for the arc.

9) Radius to a fix legs are shown with a pictorial representation of an arc (either left or right turns) followed by “RF.”

10) SAR pattern legs are shown with a pictorial representation of the SAR pattern (Ladder, Orbit, Race Track, Sector Search or Expanding Square – each with either left or right turns) followed by “-SAR-.”

11) Other leg types (direct, DME termination, radial termination, intercept or course to a fix) are shown using the “Direct-To” symbol followed by the leg course.

The vertical position of the path column elements are offset from the waypoint column elements to indicate that the path information applies to the leg between waypoints.

3.5.6. Distance Column

Distance between waypoints is displayed immediately to the right of the path column and is calculated using the associated path as well as parallel offsets. Distance column elements are offset from waypoint identifier column elements to indicate that the distance information applies to the leg between waypoints.

3.5.7. Estimated Time Enroute Column

ETE between waypoints is displayed immediately to the right of the distance column and is calculated using the associated distance between waypoints and current ground speed. ETE column elements are offset from waypoint identifier column elements to indicate that the ETE information applies to the leg between waypoints.
3.5.8. Estimated Time of Arrival Column

ETA at the active waypoint and all subsequent waypoints is displayed immediately to the right of the ETE column. The time of waypoint sequencing is stored and displayed as the ETA at waypoints prior to the active waypoint. The ETA at the active waypoint is calculated using the associated time remaining on the active leg and current time. ETA at subsequent waypoints is calculated using the cumulative ETEs and current time. In case of suppressed waypoints, skipped waypoints or manual terminations, the ETA is shown as dashes.

The vertical position of the ETA column elements is aligned with the Waypoint Identifier column elements to indicate that the ETA information applies to the associated waypoint.

3.5.9. Fuel Remaining

Fuel remaining at the active waypoint and all subsequent waypoints is displayed immediately to the right of the ETA column. Fuel remaining at the active waypoint is calculated considering the associated time remaining on the active leg, current fuel flow, and current fuel quantity. Fuel remaining at subsequent waypoints is calculated considering the cumulative ETEs, current fuel flow, and current fuel quantity.

In case of suppressed waypoints, skipped waypoints or manual terminations, the fuel remaining is shown as dashes.

Fuel remaining column elements align with waypoint identifier column elements to indicate the fuel remaining information applies to the associated waypoint.

NOTE:

Since a suppressed waypoint is not part of the active flight plan, dashes appear in the absence of the following VNAV data associated with a suppressed waypoint:

1) Path data
2) Distance data
3) ETE data
4) ETA data
5) Fuel remaining data
3.6. Hover Page

The hover page has the following elements. Hover page ownship symbology is as in Figure 3-66.

![Figure 3-103: Hover Page Orientation](image)

3.6.1. Hover Page Screen Range

The following selectable hover page screen ranges are available (all distances are from the ownship symbol to the compass rose): 400’, 800’, 1,600’, 0.5NM, 1NM, 2NM, and 5NM. Two range rings (one at half the radius of the compass rose) centered upon the ownship symbol aid in judging range to displayed symbols. Range indication corresponding to the radius of the range ring is presented on the range ring (200’, 400’, 800’, 0.25NM, 0.5NM, 1NM, and 2.5NM).

3.6.2. Clock

As specified in § 3.4.2.

3.6.3. Air Data

As specified in § 3.4.3.

3.6.4. Hover Vector

The hover vector is used to indicate flight direction and ground speed and re-uses the compass rose and range ring as speed scales. In addition, two intermediate speed scales (the first between the ownship symbol and the range ring, the second between the range ring and the compass rose) are drawn using dashed lines. The speed range for the hover vector indication
changes based upon current ground speed. Available speed ranges are (all speeds represent the speed indicated at the compass rose): 20 kts, 40 kts, and 80 kts with the currently selected speed range textually displayed adjacent to the compass rose. Changes in speed range employ a deadband to prevent flicker at speed range boundaries.

![Figure 3-104: Hover Vector Symbology](image)

1) The ownship symbol indicates 0 knots ground speed and a dot connected to the ownship symbol by a gray line floating over the hover page to indicate flight direction and ground speed.

2) Deviation of the dot in a straight up direction (12 o’clock position) indicates forward flight while straight down (6 o’clock position) indicates rearward flight. Deviation of the dot laterally indicates lateral drift. Movement of the dot is constrained to less than five knots per second to prevent jumpiness. The hover vector line and dot are limited and cropped at the outer circle of the hover page. When the AHRS is in DG mode, “DG” appears to the right of the ownship symbol.

3.6.5. Compass Rose Symbols

A digital magnetic heading readout and pointer aligned with the longitudinal axis of the ownship symbol appear on the compass rose boundary circle. A green diamond-shaped track pointer aligned with the aircraft’s track across the earth appears on the compass rose when ground speed is greater than or equal to 30 knots. A pilot-settable heading bug geometrically interacting with the heading pointer appears on the compass rose. A magenta, star-shaped waypoint pointer is displayed on the heading scale at a point corresponding with the active waypoint, which turns amber (yellow) in the event of GPS LON caution.
3.6.6. Active Flight Plan Path/Manual Course

When there is an active flight plan and the GPS/SBAS OBS setting is automatic, the flight plan path is shown on the hover page in correct relationship to the ownship symbol. The active flight plan path meets all the requirements of GPS/SBAS path definition and matches the lateral navigation guidance given on the PFD (GPS/SBAS CDI in automatic OBS mode, skyway boxes, and mini map). Active flight plan path waypoints are shown as fly-over or fly-by waypoints with the fly-over waypoint consisting of a waypoint symbol within a circle. The fly-by waypoint consists of a waypoint symbol without the circle.

When there is a parallel offset, the active flight plan path depicts the parallel offset path, and the original flight plan path is shown with haloed gray dashed lines (Figure 3-107).

When there is an active waypoint and the GPS/SBAS OBS setting is manual, the manual course through the waypoint is shown as a pointer centered on the waypoint. The pointer matches the lateral navigation guidance given on the PFD (GPS/SBAS CDI in manual OBS mode, skyway boxes, and mini map).

The active flight plan path’s active leg/manual course and active waypoint are magenta but turn amber (yellow) in the event of a GPS LON caution.
3.6.7. Navigation Data

The hover page displays navigation data symbols include (airports, VORs, NDBs, fixes, and user waypoints) in correct relationship to the ownship symbol. The user waypoint symbol includes an outlining box sized so it cannot be obscured by the ownship symbol to allow the pilot to hover by reference to a user waypoint. These symbols cannot be decluttered from the Hover Vector screen since there is no FORMAT.. menu option.

The hover page displays airport runways and some heliports in correct relationship and scale to the ownship symbol. Upon activation of a DP, VFR approach, IFR approach, or STAR procedure, the runways for the airport associated with the procedure are displayed, as well as runways associated with the three nearest airports. Runways are shown in dark gray according to characteristics contained in the navigation database, including position, orientation, length, and width. The landing portion of the selected runway, taking into account displaced threshold data, is shown in light gray.

3.6.8. Projected Path

When the aircraft is in a bank angle, a projected path originates from the ownship symbol. The projected path is based upon aircraft bank angle and ground speed and projects one minute into the future up to a maximum of 180° of turn.
3.6.9. AGL Indication

AGL altitude is displayed as an analog indication and digital readout on the right side of the hover page, which is driven by the AGL altitude source being used as follows:

\[R = \text{Radar altitude} \]
\[G = \text{GPS/SBAS geodetic height less database ground elevation} \]
\[B = \text{Barometric altitude less database ground elevation} \]

Digital readout of AGL altitude is not displayed when it is greater than the radar altimeter maximum valid altitude nor when it is invalid. When AGL altitude source is radar altitude, the digital readout of AGL indication is smoothed to avoid jumpiness (Table 3-1).

Table 3-20: Hover Vector AGL Indication

<table>
<thead>
<tr>
<th>Above 1000’ AGL</th>
</tr>
</thead>
</table>
Table 3-20: Hover Vector AGL Indication

<table>
<thead>
<tr>
<th>AGL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>500’ AGL</td>
<td></td>
</tr>
<tr>
<td>160’ AGL with DH set at 200’ AGL</td>
<td></td>
</tr>
</tbody>
</table>
Section 4 Reversionary Modes

4.1. Reversionary Modes

The equipment has eight reversionary modes as follows:

- Mode 0: GPS/SBAS, ADC, and AHRS normal.
- Mode 1: GPS/SBAS failed; ADC and AHRS normal.
- Mode 2: ADC failed; GPS/SBAS and AHRS normal.
- Mode 3: AHRS failed; GPS/SBAS and ADC normal.
- Mode 4: GPS/SBAS and ADC failed; and AHRS normal.
- Mode 5: GPS/SBAS and AHRS failed; and ADC normal.
- Mode 6: ADC and AHRS failed; and GPS/SBAS normal.
- Mode 7: GPS, ADC, and AHRS failed.

To use this section, review the following tables and notes to determine what feature or function is affected by one or more of the three sensors failed conditions. Examples follow with the IDU-680 displays in various configurations with a table breaking down the affected functions.

Not all possible IDU-680 display configurations and format combinations are represented here. All eight modes of system operation are represented for description purposes.
Table 4-1: Reversionary Mode Status (PFD)

<table>
<thead>
<tr>
<th>PFD Functions</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Airspeed</td>
<td>OK</td>
</tr>
<tr>
<td>Altimeter</td>
<td>OK</td>
</tr>
<tr>
<td>Altimeter Set Display</td>
<td>OK</td>
</tr>
<tr>
<td>Bank Scale</td>
<td>OK</td>
</tr>
<tr>
<td>CDI</td>
<td>1</td>
</tr>
<tr>
<td>Runway</td>
<td>OK</td>
</tr>
<tr>
<td>Waypoint Pointer</td>
<td>7</td>
</tr>
<tr>
<td>Heading Scale</td>
<td>7</td>
</tr>
<tr>
<td>AGL Ind.</td>
<td>OK</td>
</tr>
<tr>
<td>Flight Path Marker</td>
<td>OK</td>
</tr>
<tr>
<td>Hover Vector</td>
<td>OK</td>
</tr>
<tr>
<td>Ground Track</td>
<td>7</td>
</tr>
<tr>
<td>Heading Indicator</td>
<td>7</td>
</tr>
<tr>
<td>Horizon</td>
<td>OK</td>
</tr>
<tr>
<td>Mini-Map</td>
<td>7</td>
</tr>
<tr>
<td>Pitch Scale</td>
<td>OK</td>
</tr>
<tr>
<td>Highway in the Sky</td>
<td>OK</td>
</tr>
<tr>
<td>Terrain/Oclusions</td>
<td>OK</td>
</tr>
<tr>
<td>Clock Functions</td>
<td>OK</td>
</tr>
<tr>
<td>VSI</td>
<td>OK</td>
</tr>
<tr>
<td>Waterline Symbol</td>
<td>22</td>
</tr>
<tr>
<td>Waypoint Symbol</td>
<td>OK</td>
</tr>
<tr>
<td>Waypoint Brg./Dist.</td>
<td>OK</td>
</tr>
<tr>
<td>Traffic</td>
<td>OK</td>
</tr>
<tr>
<td>Traffic Thumbnail</td>
<td>OK</td>
</tr>
<tr>
<td>Speed Trend</td>
<td>OK</td>
</tr>
</tbody>
</table>
Table 4-2: Reversionary Mode Status (ND)

<table>
<thead>
<tr>
<th>ND Functions</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Aircraft Position</td>
<td>OK</td>
</tr>
<tr>
<td>Special Use Airspace</td>
<td>9</td>
</tr>
<tr>
<td>Waypoint Pointer</td>
<td>9</td>
</tr>
<tr>
<td>Active Flight Plan Path</td>
<td>9</td>
</tr>
<tr>
<td>Ground Speed</td>
<td>OK</td>
</tr>
<tr>
<td>Ground Track</td>
<td>9</td>
</tr>
<tr>
<td>Heading Indicator</td>
<td>9</td>
</tr>
<tr>
<td>Navigation Symbols</td>
<td>9</td>
</tr>
<tr>
<td>Outside Air Temp.</td>
<td>OK</td>
</tr>
<tr>
<td>Projected Path</td>
<td>OK</td>
</tr>
<tr>
<td>Traffic</td>
<td>OK</td>
</tr>
<tr>
<td>Terrain/Obstructions</td>
<td>OK</td>
</tr>
<tr>
<td>Clock Functions</td>
<td>OK</td>
</tr>
<tr>
<td>Waypoint Brg./Dist.</td>
<td>OK</td>
</tr>
<tr>
<td>Wind</td>
<td>21</td>
</tr>
<tr>
<td>WX-500 Data</td>
<td>OK</td>
</tr>
<tr>
<td>Compass Rose</td>
<td>9</td>
</tr>
<tr>
<td>Fuel Totalizer Functions</td>
<td>23</td>
</tr>
<tr>
<td>True Airspeed</td>
<td>OK</td>
</tr>
<tr>
<td>Density Altitude</td>
<td>OK</td>
</tr>
<tr>
<td>OAT/ISA Display</td>
<td>OK</td>
</tr>
</tbody>
</table>

Note 1: Presented using inertial dead-reckoning based on last known wind information. If unable to dead-reckon (e.g., heading is failed or true airspeed cannot be calculated) then function is disabled.

Note 2: Only radar altitude presented when available.

Note 3: Last known wind is saved during GPS/SBAS failure.

Note 4: Either radar altitude or geodetic altitude less database elevation.

Note 5: Waterline symbol expanded to large attitude bars. Rotorcraft versions (Part 27 or Part 29 airspeed scale), use full-time large attitude bars and do not show the waterline symbol.

Note 6: Special use airspace boundaries are drawn with bold lines due to lack of aircraft altitude data.

Note 7: In heading-only failure mode or AHRS failure mode, heading scale aligned with aircraft track and heading indication is removed. In heading-only failure mode or AHRS failure mode
combined with GPS failure, heading scale is replaced with a red-X.

Note 8: N/A

Note 9: In heading-only failure mode or AHRS failure mode, compass rose aligned with aircraft track and heading indication is removed when in heading up mode. In heading-only failure mode or AHRS failure mode combined with GPS failure, compass rose is removed.

Note 10: Presenting using last-known wind information and aligned with aircraft track in heading up mode.

Note 11: Only radar altitude presented when available.

Note 12: Assuming valid fuel flow information, endurance is presented.

Note 13: Large attitude bars presented and X’d out.

Note 14: Flight Path Marker grayed after one minute to indicate degraded operation.

Note 15: Highway in the Sky removed after one minute.

Note 16: N/A

Note 17: Defaults to AIR unless Weight on Wheel/Weight on Ground discrete input is active.

Note 18: Only DH function (with valid AGL altitude) in this mode.

Note 19: Red-X in place of scale.

Note 20: VLOC CDI always available if optional VOR symbology enabled.

Note 21: Function removed during heading-only failure mode.

Note 22: Full-time large attitude bars and do not show the waterline symbol.

Note 23: N/A

Note 24: Assuming valid fuel flow information, both range and endurance are presented using inertial dead-reckoning based on last known wind information. If the pilot is unable to dead-reckon due to loss of heading or true airspeed cannot be calculated, then endurance only information is presented.
Note 25: Inhibited in accordance with the conditions specified in TAWS automatic inhibit function (abnormal operation).

4.1.1. OAT Sensor Failure Mode

With the OAT sensor failed, display of wind, OAT, and density altitude on MFD pages is disabled.

Figure 4-1: OAT Sensor Fail

4.1.2. Heading Failure Mode

With heading failed, the PFD heading scale and MFD compass rose align with track (if available) or are removed and replaced with a red-X.

In this failure mode, the PFD heading scale includes “GPS TRK” around the track marker to clearly delineate the failure mode.

Figure 4-2: GPS TRK

4.1.3. PFD Screen Auto Reversion

For IFR approval in aircraft, flight instrument information essential to safety of flight remains available to the pilot without additional action after a failure. To accommodate this, MFDs must have the ability to sense when the PFD has failed and take over the PFD function automatically. The manner in which this occurs is as follows:

When an MFD (IDU #2, #3, or #4) becomes the transmit-enabled IDU, the MFD automatically switches to Essential mode showing a PFI in the top area. In addition, if an OASIS EICAS is defined, Essential mode shows the OASIS EICAS in the bottom area. If an OASIS EICAS page is not defined, the bottom area is free to show any MFD page as defined. To change the MFD back to Normal mode after the automatic switch, press TO MFD/TO ESSNTL (R5).

4.1.4. OASIS EICAS Single-Action Reversion

To mitigate the hazards associated with losing the primary display of OASIS ENGINE, the pilot may display an OASIS EICAS page on an alternate IDU with a single action. Press TO NORMAL/TO ESSNTL (R5) on the PFD or TO MFD/TO ESSNTL (R5) on the MFD to alternate between Normal and Essential modes.
NOTE:

This pilot guide does not represent examples with OASIS EICAS, therefore all PFD images are in Normal Mode.

4.1.5. GPS Failure

GPS degrades or fails resulting from loss of satellite information or GPS equipment failure. When SBAS provides the integrity, the EFIS provides a loss of integrity (LOI) caution within two seconds if the current horizontal protection level (HPL) exceeds the horizontal alert level (HAL). The LOI caution appears when there is no integrity monitoring and disappears when it is restored.

Figure 4-3: LOI Caution

Further GPS degradation causes the EFIS to lose GPS updating of aircraft position, ground speed, and ground track, and the ability to calculate the wind information.

1. **LOI** (Loss of Integrity) displayed with no time delay.

2. HPL > HAL for the phase of flight. Position is still presented based upon a GPS navigation solution.

3. **LOI** (Loss of Navigation) displayed with no time delay of the onset of the following:
 a) The absence of power;
 b) Equipment malfunction or failure;
 c) The presence of a condition lasting five seconds or more where there are an inadequate number of satellites to compute position solution;
 d) Fault detects a position failure that cannot be excluded within time-to-alert when integrity is provided by FDE;
 e) HPL > HAL on the final approach segment: EFIS does not transition to DR navigation at this stage. A GPS navigation solution is still presented; and
f) Where HPL > HAL on the final approach segment, this position may still be satisfactory for GPS navigation. For example, an HPL of 0.31NM exists, which means as soon as a transition to terminal mode occurs, all alerts would disappear. This is significantly important during a wind change if the system had been in a DR mode.

NOTE:

At any time, view HFOM on the FAULTS page to see the system-reported accuracy.

4) DR (Dead Reckoning)

If a GPS position cannot be calculated, a dead reckoning solution is provided with a timer. This solution is calculated from heading and TAS derived from the AHRS and ADC.

5) Loss of Vertical Navigation (VLON)

In the event the navigation equipment is no longer adequate to conduct or continue the LNAV/VNAV approach, “VLON” appears within one second (as shown) of the onset of any of the following conditions:
a) The absence of power;
b) Equipment malfunction or failure;c) The presence of a condition where fault detection detects a position failure that cannot be excluded;d) There are an insufficient number of SBAS HEALTHY satellites;
e) The horizontal protection level exceeds the alert limit as follows for LNAV/VNAV approaches:
 i) Prior to sequencing, the FAWP- HAL should be 0.3 NM with no limit on VAL.
 ii) After sequencing the FAWP- HAL 556m (0.3NM) and VAL 50m.

When in LNAV mode, the fault detection function detects positioning failures within ten seconds after the onset of the positioning failure.

4.1.6. PFD OASIS EICAS Automatic Reversion (When Configured)

If IDU #2 (MFD) is not in Essential mode, automatic reversion of the PFD to Essential mode happens when IDU #2 (MFD) is switched from showing an OASIS EICAS page to not showing an OASIS EICAS page. Both top and bottom areas are considered.

4.2. PFD and MFD Failure Mode Examples

GPS failure results in the EFIS operating in dead reckoning mode. The EFIS continues to provide navigational position, ground speed, and ground track information, based upon the last known wind, current air data, and heading. The PFD and MFD are affected as shown in the following images.
Section 4 Reversionary Modes

4.2.1. PFD Failure Mode 0 (Normal Mode)

Figure 4-7: PFD Failure Mode 0 (Normal Mode)
GPS, ADC and AHRS Normal
4.2.2. MFD Failure Mode 0 (Normal Mode)

Figure 4-8: MFD Failure Mode 0 (Normal Mode)
GPS, ADC and AHRS Normal
4.2.3. MFD Failure Mode 0 (Essential Mode)

Figure 4-9: MFD Failure Mode 0 (Essential Mode)
GPS, ADC and AHRS Normal
4.3. PFD Failure Mode 1 (Normal Mode)

Figure 4-10: PFD Failure Mode 1 (Normal Mode)
GPS/SBAS Failed, ADC and AHRS Normal
4.3.1. MFD Failure Mode 1 (Normal Mode)

Figure 4-11: MFD Failure Mode 1 (Normal Mode)
GPS/SBAS Failed, ADC and AHRS Normal
4.3.2. MFD Failure Mode 1 (Essential Mode)

Figure 4-12: MFD Failure Mode 1 (Essential Mode)
GPS/SBAS Failed, ADC and AHRS Normal
4.4. **PFD Failure Mode 2 (Normal Mode)**

![Image of PFD Mode 2 (Normal Mode)](image)

Figure 4-13: PFD Mode 2 (Normal Mode)

ADC Failed, GPS/SBAS and AHRS Normal
4.4.1. MFD Failure Mode 2 (Normal Mode)

Figure 4-14: MFD Failure Mode 2, (Normal Mode)
ADC Failed, GPS/SBAS and AHRS Normal
4.4.2. MFD Failure Mode 2 (Essential Mode)

Figure 4-15: MFD Failure Mode 2 (Essential Mode)
ADC Failed, GPS/SBAS and AHRS Normal
4.5. PFD Failure Mode 3 (Normal Mode)

Figure 4-16: PFD Failure Mode 3 (Normal Mode)
AHRS Failed, GPS/SBAS and ADC Normal
4.5.1. MFD Failure Mode 3 (Normal Mode)

Figure 4-17: MFD Failure Mode 3 (Normal Mode)
AHRS Failed, GPS/SBAS and ADC Normal
4.5.2. MFD Failure Mode 3 (Essential Mode)

Figure 4-18: MFD Failure Mode 3 (Normal Mode)
AHRS Failed, GPS/SBAS and ADC Normal
4.6. PFD Failure Mode 4 (Normal Mode)

Figure 4-19: PFD Failure Mode 4 (Normal Mode)
GPS/SBAS and ADC Failed, AHRS Normal
4.6.1. MFD Failure Mode 4 (Normal Mode)

![Figure 4-20: MFD Failure Mode 4 (Normal Mode) GPS/SBAS and ADC Failed, AHRS Normal](image)

GPS/SBAS and ADC Failed, AHRS Normal
4.6.2. MFD Failure Mode 4 (Essential Mode)

Figure 4-21: MFD Failure Mode 4 (Essential Mode)
GPS/SBAS and ADC Failed, AHRS Normal
4.7. PFD Failure Mode 5 (Normal Mode)

Figure 4-22: PFD Failure Mode 5 (Normal Mode)
GPS/SBAS and AHRS Failed, ADC Normal
4.7.1. MFD Failure Mode 5 (Normal Mode)

Figure 4-23: MFD Failure Mode 5 (Normal Mode) GPS/SBAS and AHRS Failed, ADC Normal
4.7.2. MFD Failure Mode 5 (Essential Mode)

Figure 4-24: MFD Failure Mode 5 (Essential Mode)
GPS/SBAS and AHRS Failed, ADC Normal
4.8. PFD Failure Mode 6 (Normal Mode)

Figure 4-25: PFD Failure Mode 6 (Normal Mode)
ADC and AHRS Failed, GPS/SBAS Normal
4.8.1. MFD Failure Mode 6 (Normal Mode)

Figure 4-26: MFD Failure Mode 6 (Normal Mode)
ADC and AHRS Failed, GPS/SBAS Normal
4.8.2. MFD Failure Mode 6 (Essential Mode)

Figure 4-27: MFD Failure Mode 6 (Essential Mode)
ADC and AHRS Failed, GPS/SBAS Normal
4.9. PFD Failure Mode 7 (Normal Mode)

Figure 4-28: PFD Failure Mode 7 (Normal Mode)
GPS/SBAS, ADC and AHRS Failed
4.9.1. MFD Failure Mode 7 (Normal Mode)

Figure 4-29: MFD Failure Mode 7 (Normal Mode)
GPS/SBAS, ADC and AHRS Failed
4.9.2. MFD Failure Mode 7 (Essential Mode)

Figure 4-30: MFD Failure Mode 7 (Essential Mode)
GPS/SBAS, ADC and AHRS Failed
Section 5 Menu Functions and Step-By-Step Procedures

5.1. Menu Functions

Navigate menu functions with the 16 peripheral buttons and three knobs (6, 2, and 1). 4 is only used for adjusting screen and button brightness and cannot be used for menu functions. It is always labeled DIM.

![Figure 5-1: IDU-680 Input Controls](image-url)
5.1.1. Menu Philosophy

The menu system and buttons with an action are clearly labeled with tiles. The following rules are in the design of the menu system:

EXIT (R1): Whenever menu system is beyond the top-level, provides a one-touch escape to the top-level.

BACK (L1): Whenever soft menu level is deeper than the first-level, regresses through the menu system by one level.

Soft menu tiles: Used (even at the top-level) and are annunciated in a dedicated, blacked-out area in the screen margins adjacent to the appropriate IDU button or knob when appropriate.

Menu messages are displayed adjacent to the knobs when appropriate for five seconds. Menu messages are cleared if any IDU button is pressed or knobs 1, 2, or 3 are pushed or scrolled.

An empty triangle next to a menu legend means the button press is a final action. A filled triangle next to a menu legend means the button press leads to a further menu level.

Figure 5-2: Indication of Further Menu Levels

Selection list: Menus adjacent to knobs are frequently a selection list. Within lists, a two-dot trailer indicates further menu levels. Lists too long to be presented in the space available provide an indication of location within the list.

5.1.2. Avoidance of Autonomous Behavior

The displays are designed to be under the control of the pilot to ensure critical functions are placed at the top level (i.e., TO ESSNTL). Autonomous changes in function are avoided to the most extent possible. The following autonomous behaviors incorporated into the IDUs, all of which are required by regulation or guidance.

Automatic popup of flight instruments: For IFR approval in rotorcraft, flight instrument information essential to flight safety must remain available
to the pilot without additional crewmember action after a failure. This guidance is specific to flight instruments, but it does not address powerplant or navigation instruments. This requirement is met by assigning an order of precedence of the IDUs based upon the IDU number. IDU #1 always shows the essential flight instruments, because the PFI page is always shown in the top area. Lower priority MFD (one on each side) monitor the higher priority IDU via intra-system communications and automatically switch to Essential mode upon determining the higher priority IDU has failed. Essential mode incorporates a PFI page (satisfying the regulatory requirement) and essential OASIS page (a type of MFD page) to enable continued operation of the aircraft.

TAWS/HTAWS popups: When an FLTA alert is generated, a popup function enables PFI SVS and activates terrain at an appropriate scale and format on the moving map page (one of the multi-function pages). This is a required function of TSO-C194 for Enhanced HTAWS and is enabled in the other TAWS/HTAWS options integrated in the EFIS software. (See Section 8 Terrain Awareness Warning System for details.)

Traffic popups: See Traffic appendix

5.2. Menu Synchronization

System settings changed by the menu system are synchronized between multiple IDUs and between top and bottom areas in MFD-MFD mode as in Table 5-1. All parameters for rotorcraft are included. Each appendix for Datalink, Strikes, Video, Weather Radar, and Traffic contains specific limitations for menu synchronization for that feature.

Table 5-1: Menu Synchronization

<table>
<thead>
<tr>
<th>Menu Parameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following menu parameters are synchronized across all displays at all times. These are bugs and fundamental aircraft values that should never have independence.</td>
<td></td>
</tr>
<tr>
<td>AHRS 1 and 2 mode and slewing values</td>
<td></td>
</tr>
<tr>
<td>Fuel Totalizer Quantity</td>
<td></td>
</tr>
<tr>
<td>VNAV Climb Angle</td>
<td></td>
</tr>
<tr>
<td>Countdown Timer Start Time</td>
<td></td>
</tr>
<tr>
<td>Countdown Timer Default Value</td>
<td></td>
</tr>
<tr>
<td>Remote Tune Frequencies</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-1: Menu Synchronization

<table>
<thead>
<tr>
<th>Menu Parameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNAV Descent Angle</td>
<td></td>
</tr>
<tr>
<td>Decision Height Setting</td>
<td>Dependent upon EFIS Limits</td>
</tr>
<tr>
<td></td>
<td>“Dual DH enabled”</td>
</tr>
<tr>
<td>Emergency and Minimum Fuel Settings</td>
<td></td>
</tr>
<tr>
<td>Heading Bug and Heading Sub-Mode</td>
<td></td>
</tr>
<tr>
<td>High Weight V_{NE} selection</td>
<td></td>
</tr>
<tr>
<td>Minimum Altitude Bug Value</td>
<td></td>
</tr>
<tr>
<td>VLOC OBS Settings</td>
<td></td>
</tr>
<tr>
<td>Roll Trim parameter</td>
<td></td>
</tr>
<tr>
<td>Airspeed Bug Setting</td>
<td></td>
</tr>
<tr>
<td>TCAS-II control parameters</td>
<td></td>
</tr>
<tr>
<td>Target Altitude Bug Setting</td>
<td></td>
</tr>
<tr>
<td>Timer Starting Signal</td>
<td></td>
</tr>
<tr>
<td>Traffic Filter Setting</td>
<td></td>
</tr>
<tr>
<td>True North Mode</td>
<td></td>
</tr>
<tr>
<td>UTC Offset</td>
<td></td>
</tr>
<tr>
<td>VSI Bug Setting</td>
<td></td>
</tr>
<tr>
<td>Crosslink Synchronization Status</td>
<td></td>
</tr>
</tbody>
</table>

The following menu parameters are synchronized across all displays when crosslink is enabled. Otherwise, they are only synchronized onside. These parameters are FMS parameters and allow the pilot and co-pilot FMSs to be operated independently when crosslink is inhibited.

| Active Flight Plan Parameters | |
| Runway Display Parameters | |

The following menu parameters are only synchronized onside. These parameters are usually sensor selections or PFD options used to keep the appearance of any pilot's PFD consistent in the case of PFD reversion. The onside characteristic means that individual pilots can still adjust their PFD settings to their preference.
Table 5-1: Menu Synchronization

<table>
<thead>
<tr>
<th>Menu Parameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Selections</td>
<td></td>
</tr>
<tr>
<td>Decision Height Setting</td>
<td>Dependent upon EFIS Limits “Dual DH not enabled”</td>
</tr>
<tr>
<td>Barometric Setting Parameters</td>
<td>Including Transition Altitude</td>
</tr>
<tr>
<td>Intra-System Audio-Radio device parameters</td>
<td></td>
</tr>
<tr>
<td>Active Navigation Source</td>
<td></td>
</tr>
<tr>
<td>Horizon Synchronization Parameters</td>
<td></td>
</tr>
<tr>
<td>PFD Basic Mode</td>
<td></td>
</tr>
<tr>
<td>PFD Zoom Mode</td>
<td></td>
</tr>
<tr>
<td>PFD Analog AGL</td>
<td></td>
</tr>
<tr>
<td>PFD Full-time Bank</td>
<td></td>
</tr>
<tr>
<td>PFD Flight Director</td>
<td></td>
</tr>
<tr>
<td>PFD Generic OASIS Overlay</td>
<td></td>
</tr>
<tr>
<td>PFD Mini-map</td>
<td></td>
</tr>
<tr>
<td>PFD Altitude (meters)</td>
<td>PFD Traffic / Thumbnail (mini) and PFD</td>
</tr>
<tr>
<td>PFD Skyway</td>
<td></td>
</tr>
<tr>
<td>PFD Terrain</td>
<td></td>
</tr>
<tr>
<td>PFD OASIS Overlay</td>
<td></td>
</tr>
</tbody>
</table>

The following menu parameters are independent between displays. These are used to support non-PFD display options to give the pilot maximum MFD operating flexibility. Note that some of these parameters are also independent between top and bottom MFD areas as specified in the notes.

<table>
<thead>
<tr>
<th>CPU Type</th>
<th>To support mixed CPU type installations (IDU-450 and IDU-680 displays)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFD Hover Page Scale</td>
<td></td>
</tr>
<tr>
<td>MFD Map and HSI Page Pointer Settings</td>
<td>Independent between top and bottom MFD areas</td>
</tr>
<tr>
<td>MFD Map NavData® Symbol Declutter Settings</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-1: Menu Synchronization

<table>
<thead>
<tr>
<th>Menu Parameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFD Map Function Declutter Settings</td>
<td></td>
</tr>
<tr>
<td>MFD Selected Page</td>
<td></td>
</tr>
<tr>
<td>MFD OASIS Overlay</td>
<td></td>
</tr>
<tr>
<td>MFD Map Page Settings</td>
<td></td>
</tr>
<tr>
<td>680 Essential Mode Status</td>
<td></td>
</tr>
<tr>
<td>MFD Hover Page Scale</td>
<td></td>
</tr>
<tr>
<td>Forced OASIS Minimize</td>
<td>Support for reversion</td>
</tr>
<tr>
<td>OASIS CAS Box Render Status</td>
<td>Supports reversion and certain menus. Independent between top and bottom MFD areas.</td>
</tr>
<tr>
<td>MFD Show ETA</td>
<td></td>
</tr>
<tr>
<td>DVI Mode Status</td>
<td>Support for DVI option</td>
</tr>
<tr>
<td>Essential Mode Status</td>
<td>Support for reversion</td>
</tr>
</tbody>
</table>
5.3. Top-Level Menu

The top-level menu consists of soft menu options along with knob labels.

5.3.1. PFD Normal Mode Top-Level Menu

Figure 5-3: PFD Normal Mode Top-Level Menu
5.3.2. MFD Normal Mode Top-Level Menu

- Flight Plan Menu
- First Level Menu
- Active Flight Plan Menu
- Altimeter Menu
- Information Menu
- Nearest Menu
- Omnibearing Selector Menu
- Direct Menu

Always active.
- Push – Bring up MFD Page menu for top area
- Rotate (Video on top) – Change zoom level
- Rotate (MFD page with adjustable range on top) – Change range
- Rotate (EICAS page on top) – Scroll CAS box (if applicable)

TOP BTM

Always active.
- Push – Bring up MFD Page menu for bottom area
- Rotate (Video on bottom) – Change zoom level
- Rotate (MFD page with adjustable range on bottom) – Change range
- Rotate (ECB) – Select ECB group
- Rotate (EICAS page on bottom) – Scroll CAS box (if applicable)

Figure 5-4: MFD Normal Mode Top-Level Menu
Create user waypoint at current location. If bottom area is MFD page in pan mode, creates user waypoint at pan location.

- Format menu on MFD page with adjustable format (FORMAT with filled pointer)
- Declutter menu on HSI and Hover pages (DCLTR with filled pointer)
- Exceedance menu on standalone OASIS pages (EXCD with filled pointer)

Format menu MFD pages with adjustable format (FORMAT with filled pointer)
- Declutter menu on HSI and Hover pages (DCLTR with filled pointer)
- Exceedance menu on standalone OASIS pages (EXCD with filled pointer)

Expand CAS menu. Only shown if message count exceeds 11

Figure 5-5: MFD Normal Mode Top-Level Menu with MFD Page in Both Areas
5.3.3. PFD or MFD Essential Mode Top-Level Menu

- Flight Plan Menu
- First Level Menu
- Active Flight Plan Menu
- Altimeter Menu
- Information Menu
- Nearest Menu
- Omnibearing Selector Menu
- Direct Menu
- Switch to Normal Mode (Only on PFD if Essential EICAS page is defined)
- ECB Control Menu (only if ECBU devices configured)

If Essential EICAS page defined:
- Rotate – Scroll CAS box (if applicable)

If Essential EICAS page not defined:
- Push – Bring up bottom MFD Page menu (MFD only)
- Rotate (Video on bottom) – Change zoom level
- Rotate (MFD page with adjustable range on bottom) – Change range
- Rotate (ECB) – Select ECB group
- Rotate (any EICAS Page) – Scroll CAS box (if applicable)

Figure 5-6: PFD or MFD Essential Mode Top-Level Menu
5.3.4. Audio Radio Management Optional Page

The optional Audio/Radio (AR) page serves as a common interface for viewing the status of multiple AR devices. The AR menu always appears in the bottom area of the PFD and MFD, when configured. The transmit enabled IDU may have a specifically configured radio frequency panel (RFP). There is a maximum of fourteen devices configured and displayed at one time. Refer to the applicable RFM or RFMS for more information.

5.3.5. Top-Level Menu Option Descriptions

1) **FPL (L1):** Flight plan menu
2) **ACTV (L2):** Active flight plan menu
3) **INFO (L3):** Information menu
4) **OBS (L4):** Omnidirectional selector menu
5) **MENU (R1):** First-level associated with the current display page and automatically times out after 10 seconds if there are no subsequent pilot actions.
6) **BARO (R2):** Altimeter menu
7) **NRST (R3):** Nearest menu
8) **☐ (R4):** Direct menu
9) **TO ESSNTL/TO NORMAL** (PFD) or **TO MFD (MFD)** (R5): Switches between Normal and Essential modes.
10) **สำคัญ** Knob: Function depends upon IDU number and mode (Normal vs. Essential) as follows:
Section 5 Menu Functions and Procedures

a) On a PFD (IDU #1), push 3 to synchronize current heading and rotate to activate the heading menu when labeled HDG. Either push 3 to accept changes or press EXIT (R1).

b) On an MFD (IDU #2) operating in Essential mode, push 3 to synchronize current heading and rotate to the heading menu when labeled HDG. Push 3 to accept changes or press EXIT (R1).

11) 2 Knob:
 a) On a PFD (IDU #1), any knob action activates the altitude bug menu when labeled ASEL.
 b) On an MFD (IDU #2) operating in Normal mode, if the top area is showing a page with an adjustable display scale (e.g., Strikes, Traffic, Hover) rotate 2 to change the display scale (CW to increase, CCW to decrease).
 c) On an MFD (IDU #2) operating in Normal Mode, if the top area is showing a video page, rotate the knob to change the zoom level (CW to increase range, CCW to decrease range).
 d) On an MFD (IDU #2) operating in Normal mode, if the top area is showing an OASIS with a CAS box, rotate 2 to progress the CAS box.
 e) On an MFD (IDU #2) operating in Normal mode, TOP is above 2, unlike other menu lists. Push 2 to activate the top MFD page menu as described in § 5.21. The pilot may select a full screen OASIS page in the bottom area consuming both the top and bottom areas. In this case, completion of the MFD page menu action automatically switches the OASIS page in the bottom area to its related backup displays.
 f) On an MFD (IDU #2) operating in Essential mode, 2 is labeled ASEL. Rotate to activate altitude bug menu function.

12) 1 Knob:
 a) On a PFD or MFD operating in Normal mode, if the bottom area is showing a page with an adjustable display scale (e.g., Map, Hover) rotate 1 to change the display scale (CCW to increase scale, CW to decrease scale).
 b) On a PFD or MFD operating in Normal Mode, if the bottom area is showing a video page, rotate 1 to change the zoom level (CW to increase zoom, CCW to decrease zoom).
c) On a PFD or MFD operating in Essential mode with an essential OASIS page configured, if the essential OASIS page includes a CAS box, rotate ¹ to progress the CAS box.

d) On a PFD or MFD operating in Normal Mode, if the bottom area is showing an audio/radio page configured with more than the maximum number of displayed devices, rotate ¹ CW to scroll down the list, CCW to scroll up the list.

e) In Normal mode, push ¹ to activate the MFD bottom page menu. It is possible to have selected a full screen OASIS page in the top area that consumes both the top and bottom areas. In this case, completion of the MFD Page menu action automatically switches the OASIS page in the top area to its related backup display.

f) ¹ is labeled BTM. The page does not include a CAS box.

g) In Normal mode or Essential mode without an essential OASIS page configured, pushing the knob activates the MFD bottom page menu, as described in § 5.21.

h) ¹ is labeled BTM, but it is not labeled with an essential OASIS page configured and the page does not include a CAS box.

5.3.6. Top-Level Menu Automatic Pop-Up Function Descriptions

Soft menu tiles appear adjacent to buttons under the specified conditions.

<table>
<thead>
<tr>
<th>Note</th>
<th>Tile Legend and Action in Order of Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>1) As specified in Section 8 TAWS, RESET appears when a terrain popup occurs during a TAWS FLTA alert. (N/A MFD)</td>
</tr>
<tr>
<td></td>
<td>2) When showing the Map page with pan mode enabled, PN OFF disables pan mode.</td>
</tr>
<tr>
<td></td>
<td>3) When display is transmit enabled, MISS appears upon transitioning the FAF. Press to activate missed approach procedure.</td>
</tr>
<tr>
<td></td>
<td>4) When display is transmit enabled, LNAV appears when there is an active flight plan, heading bug sub-mode is active, and system is integrated with an analog autopilot. Press to deactivate heading bug sub-mode and resume guidance to active flight plan path.</td>
</tr>
<tr>
<td></td>
<td>5) When display is transmit-enabled, HDG appears when LNAV sub-mode is active with HDG mode engaged. Press to</td>
</tr>
</tbody>
</table>
Table 5-2: Top-Level Auto Pop-Up Function Descriptions

<table>
<thead>
<tr>
<th>Note</th>
<th>Tile Legend and Action in Order of Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>deactivate LNAV sub-mode and resume guidance to heading bug.</td>
</tr>
<tr>
<td>2</td>
<td>1) When the display is transmit-enabled and Horizon Synchronization is armed, HS ON appears. Press to engage Horizon Synchronization mode apply the appropriate offset to displayed pitch attitude.</td>
</tr>
<tr>
<td></td>
<td>2) When the display is transmit-enabled and Horizon Synchronization is engaged, HS OFF appears. Press to cancel Horizon Synchronization mode. Horizon Synchronization is automatically cancelled by flying beyond the arming range. In most cases, it is anticipated Horizon Synchronization will be cancelled automatically by accelerating through the arming speed rather than by manually pressing HS OFF.</td>
</tr>
<tr>
<td></td>
<td>3) When the display is transmit-enabled, CONT appears when in a holding pattern with further active flight plan legs after the holding pattern. Press to re-enable automatic waypoint sequencing to allow normal sequencing to the leg after the holding pattern.</td>
</tr>
<tr>
<td></td>
<td>4) When the display is transmit-enabled, RESUME appears when the following leg is a manual leg and the FMS is in FROM operation. Press to activate a Direct-To the waypoint after the manual leg.</td>
</tr>
<tr>
<td></td>
<td>5) When display is transmit-enabled, VNAV appears when VNAV guidance is valid, selected altitude sub-mode is active. Press to deactivate selected altitude sub-mode and resume guidance to VNAV path.</td>
</tr>
<tr>
<td>L2</td>
<td>When MFD page with pan mode enabled, NORTH appears. Press to shift the center of the page in the specified direction.</td>
</tr>
<tr>
<td>L6</td>
<td>When MFD page with pan mode enabled, SOUTH appears. Press to shift the center of the page in the specified direction.</td>
</tr>
<tr>
<td>R2</td>
<td>When MFD page with pan mode enabled, INFO or HIDE appears. Press to toggle information for nearest highlighted waypoint. See §5.8 for amount and type of information presented.</td>
</tr>
<tr>
<td>R6</td>
<td>When MFD page with pan mode enabled, EAST appears. Press to shift the center of the page in the specified direction.</td>
</tr>
<tr>
<td>R3</td>
<td>When MFD page with pan mode enabled, WEST appears. Press to shift the center of the page in the specified direction.</td>
</tr>
</tbody>
</table>

Note 1: Function tied to page in top area.
Note 2: Function tied to page in bottom area or transmit enabled.
5.4. First Page (PFD)

- Synchronize pilot and co-pilot sides in dual-sided installations when crosslink is re-enabled
- Exit to Top-Level
- PFD Source menu (SOURCE with filled pointer)
- Arm Horizon Synchronization (HRZ SYNC with hollow pointer)
- PFD Bugs Menu
- Toggle narrow and wide FOV
 - ZOOM ON when in wide FOV
 - ZOOM OFF when in narrow FOV
- Time Menu
- PFD Declutter Menu

Figure 5-8: First Page PFD

Top area of IDU #1 is fixed to the PFI. Select Essential mode on other IDUs to show the PFD page in the top area. PFD page first-level options are shown adjacent to the top eight buttons. Options may also appear on the bottom eight buttons as appropriate to the page shown in the bottom area.
When an identical option is shown adjacent to both the top area and bottom area, the option is only shown adjacent to the top area.

5.4.1. PFD Page First-Level Option Descriptions

1) **XFILL SYNC (L1)**: Appears in dual-side installations where the pilot and co-pilot sides are not synchronized, but crosslink is enabled. Press to synchronize the pilot and co-pilot active flight plan parameters to the side where the button press occurred.

<table>
<thead>
<tr>
<th>Crossfill (1)</th>
<th>Flight Plan</th>
<th>Indication (Pilot and Co-pilot)</th>
<th>Action to Synchronize Flight Plans</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled (Cond.1)</td>
<td>Synchronized</td>
<td>None</td>
<td>Pilot</td>
<td>Co-pilot</td>
</tr>
<tr>
<td>Enabled (Cond.2)</td>
<td>Not Synchronized (2)</td>
<td></td>
<td>MENU (R1) XFILL SYNC (L1)</td>
<td>None</td>
</tr>
<tr>
<td>Inhibited (Cond.3)</td>
<td>Not Synchronized</td>
<td>XFILL INHBT</td>
<td>Enable crossfill (1) (proceed to Cond. 2)</td>
<td></td>
</tr>
</tbody>
</table>

(1) Crossfill is inhibited with the use of a latching (ON) crossfill inhibit switch. Crossfill is enabled by releasing (OFF) this switch. Location and number of crossfill inhibit switches in a cockpit varies by installation. Usually a single crossfill switch can be centrally located in a side-by-side cockpit within reach of both pilots. If a single switch cannot be installed within reach of both pilots (tandem cockpits or very wide cockpits), two switches can be installed such that they function in parallel (either switch inhibits or enables crossfill on both the pilot and co-pilot sides).
Table 5-3: Crossfill Inhibit/Arm/Sync Function

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>Crossfill is inhibited, and pilot and co-pilot flight plans are separately changed before crossfill is re-enabled.</td>
</tr>
<tr>
<td>2)</td>
<td>Either the pilot or co-pilot side is restarted with an active flight plan on the other side and crossfill enabled.</td>
</tr>
<tr>
<td>3)</td>
<td>If FAIL condition exists and any changes are made to either side flight plans.</td>
</tr>
</tbody>
</table>

2) **HRZ SYNC (L2)**: When the display is transmit enabled, arms Horizon Synchronization function (if available).

3) **SOURCE (L2)**: PFD source selection menu. **HRZ SYNC** has precedence.

4) **DESIG (L3)**: Creates a user waypoint at the current aircraft location. When pressed and an MFD page is operating in panning mode a user waypoint is created at the panning location. User waypoint at current aircraft location is automatically named “OF###,” where ### is the next available over-fly user waypoint number. User waypoint at panning location is automatically named “PN###,” where ### is the next available panning user waypoint number. When **DESIG (L3)** is pressed and the number of user waypoint count is more than 998, the EFIS displays **USER WPTS FULL** message.

5) **TIME (L4)**: Time menu

6) **FAULTS (L5)**: Faults menu

7) **CLR STRKS (L6)**: Clears strikes. (See Strikes appendix.)

8) **FL (L6)**: On Traffic page, replaces intruder’s relative altitude readout with absolute altitude for 15 seconds. (See Traffic appendix.)

9) **BUGS (R2)**: Activates the PFD bugs set menu option.

10) **ZOOM ON/ZOOM OFF (R3)**: Toggles between wide FOV and narrow FOV modes.

11) **DCLTR (R4)**: PFD Declutter menu

12) **SET FUEL (R6)**: Activates fuel totalizer quantity setting menu.

13) **ECB (R6)**: Activates the ECB control menu if configured. (See ECBU appendix.)
14) **WX RDR (L7)**: Activates weather radar menu for controlling Honeywell RDR-2000/2100 if configured. (See Weather Radar appendix.)

15) **EXPAND CAS ()**: Activates the Expand CAS menu only when there are more than 11 active CAS messages.

5.5. First Level (MFD)

Create user waypoint at current location. If bottom area is showing MFD page in pan mode, creates user waypoint at pan location.

Weather Radar menu shown only if:
- Weather radar type is either RDR-2000 or RDR-2100; AND
- External weather radar control panel is not installed; AND
- Showing Weather Radar page.

Fault Display Menu
- Clear strikes on MFD and Strikes pages (CLR STRKS with hollow pointer)
- Show Datalink weather legend on Datalink page (WX LGND with filled pointer)
- Switch to absolute altitude on Traffic page (FL with hollow pointer)

Fuel Totalizer Quantity Setting Menu
- Format menu on Map and applicable MFD pages (FORMAT with filled pointer)
- Declutter menu on HSI, Hover, and Weather Radar page (DCLTR with filled pointer)
- Exceedance menu on standalone OASIS pages EXCD with filled pointer)

Time Menu
- Slave to DVI Input (if installed, label defined in aircraft limits)

Figure 5-9: First-Level MFD

The bottom area of all IDUs always shows the MFD page in all modes (essential OASIS page is a type of MFD page). IDUs other than IDU #1...
Table 5.5.1: MFD Page First-Level Option Descriptions

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAULTS (L1)</td>
<td>Fault display menu</td>
</tr>
<tr>
<td>FL/CLR STRIKES/WX RDR (L2/L6)</td>
<td>Independent between top and bottom pages; On Traffic page, FL will replace the intruder’s relative altitude readout with absolute altitude for 15 seconds. On the WX RDR page, WX RDR activates the weather Radar menu (if no external control panel is installed.) On Strikes page CLR STRKS clears lightning strikes.</td>
</tr>
<tr>
<td>DESIG (L3)</td>
<td>Same function as PFD page first-level.</td>
</tr>
<tr>
<td>TIME (L4)</td>
<td>Same function as PFD page first-level.</td>
</tr>
<tr>
<td>SET FUEL (R2)</td>
<td>Fuel totalizer set menu</td>
</tr>
<tr>
<td>PAGE</td>
<td>On MFD, push 1 and or 2 to perform function at top-level.</td>
</tr>
<tr>
<td>FORMAT, DCLTR, or EXCD (R8)</td>
<td>Activates the appropriate page format menu.</td>
</tr>
<tr>
<td>a) FORMAT</td>
<td>On Map page, activates the page format menu.</td>
</tr>
<tr>
<td>b) DCLTR</td>
<td>On the HSI page with optional VOR or ADF symbology enabled or declutterable OASIS overlays, DCLTR activates HSI declutter menu. On the Hover page with declutterable OASIS overlays, DCLTR activates Hover Declutter menu.</td>
</tr>
<tr>
<td>c) EXCD</td>
<td>Exceedance menu on standalone OASIS page(s).</td>
</tr>
<tr>
<td>DVI (R7)</td>
<td>Switches control of the screen to an external DVI source. Label is defined by aircraft EFIS limits. (If discrete input is configured to perform this function, the label does not appear.) If a “Mission System” is incorporated, it is defined in the RFMS. When the IDU-680...</td>
</tr>
</tbody>
</table>
MFD is placed into DVI, it can easily be returned to the EFIS system by pressing **TO ESSENTIAL (R5)**.

9) **EXPAND CAS (1)**: Activates the Expand CAS menu only when there are more than 11 active CAS messages.

5.5.2. OASIS Page First-Level in Essential Mode

![Figure 5-10: PFD Page in Top Area and Essential Mode OASIS Page in Bottom Area](image)

- **Fault Display Menu**
- **Clear strikes on Map page**
- **Exit to Top-Level**
- **PFD Bugs Menu**
- **Time Menu**
- **PFD Declutter Menu**
- **Synchronize pilot and co-pilot sides in dual-side installations when crosslink is re-enabled**
- **Create user waypoint at current location. If bottom area is showing MFD page in pan mode, creates user waypoint at pan location.**
- **Toggle narrow and wide FOV**
 - **ZOOM ON** when in wide FOV
 - **ZOOM OFF** when in narrow FOV
- **Fuel Totalizer Quantity Setting Menu**
- **Format Menu on Map and applicable MFD pages (FORMAT with filled pointer)**
- **Declutter Menu on HSI, Hover, and applicable MFD pages (DCLTR with filled pointer)**
- **Exceedance Menu on standalone OASIS pages (EXCD with filled pointer)**
- **Expand CAS menu. Only shown if message count exceeds 11**

Figure 5-10: PFD Page in Top Area and Essential Mode OASIS Page in Bottom Area
The bottom area shows the OASIS page. In Normal mode on IDU #2, the OASIS page may be shown in the top area (full-screen OASIS page using both the top and bottom areas is considered a top area page). OASIS page first-level options are shown adjacent to the area in which the OASIS page resides. When an identical option is shown adjacent to both the top area and bottom area, the option is only shown adjacent to the top area.

5.6. Flight Plan (FPL) Menu

Upon activation of the flight plan menu, the system checks for saved flight plans. If there are no saved flight plans, CREATE-EDIT.. knob message appears. Otherwise, a list of saved flight plans is presented. Upon selection of a saved flight plan, the second waypoint in the flight plan is activated.

Figure 5-11: Select from Option List

Locked flight plans are shown first preceded by a “🔒” icon. When selected, the stored locked flight plan will be activated.

Flight Plan Limits: Flight plans are stored routes (100 maximum) may be used repeatedly without having to re-enter the waypoints each time. A flight plan consists of at least two waypoints (a start and an end) and may have up to 40 waypoints. Flights requiring more than 40 waypoints are divided into two or more flight plans.

5.6.1. Flight Planner Page

Figure 5-12: Flight Plan Menu
The flight planner page is used for detailed operations on pilot-modifiable elements in the IDU database. Perform the following types of functions through the flight planner page in the bottom area:

1) PFDs and MFDs are used for managing stored flight plans (activating, editing, deleting and reversing);

2) When in Normal mode, MFDs can be used for managing stored flight plans (activating, creating, editing, deleting, and reversing); and

3) Managing user waypoints (creating, editing, and deleting); and

4) Performing RAIM predictions.

These operations demand pilot attention and are not a normal operating condition for the IDU. When the flight planner page is in use, it only appears on the bottom page taking over the IDU's controls and disabling the menu operations described in this document. Normal menu operation and IDU control function are restored upon:

1) Exiting the flight planner page; or

2) Automatic reversion of the IDU to the PFD or Essential mode exits the flight planner page and wipes out any changes being performed.

NOTE:

Unless otherwise noted, the following step-by-step procedures are for the PFD or MFD.

5.6.2. To Create an Overfly User Waypoint (Step-By-Step)

PFD example shown

1) When flying over intended waypoint, press MENU (R1), within 10 seconds press DESIG (L3) on the PFD or MFD.

2) A user waypoint is created at the present position and automatically named “OF###,” where ### is the next available overfly user waypoint number.
NOTE:

A maximum of 998 user waypoints may be created and stored.

If a discrete input has been enabled as “Remote User Waypoint Designate,” it may be used to easily create a user waypoint.

5.6.3. Flight Plan (FPL) Menu Selecting and Activate on PFD (Step-By-Step)

1) Press FPL (L1).
2) Rotate ◼ to desired flight plan and push to enter.

5.6.4. Flight Plan (FPL) Menu Create-Edit (Step-By-Step)

1) Press FPL (L1).
2) Rotate ◼ to CREATE-EDIT.. and push to enter.
3) Push ◼ to enter.
4) Press ADD (R6) to create first waypoint.
5) Rotate ◼ to create first waypoint or press NRST APT (L6), NRST VOR (L7), NRST NDB (L8), NRST FIX (R6), or NRST USR (R7), to view applicable list.
6) In this case, **NRST VOR (L7)** was pressed. Rotate ! to another airport in the list or push to enter RQR as the first airport in the flight plan.

7) RQR was added and the highlighted line is now advanced to the next position below. Press **ADD (R6)** to create the next waypoint.

8) Continue adding waypoints as described in step 6 and progress up to as many as 40.

9) Airway routing occurs between pre-determined pathways. If an airway is desired repeat step 7, then select the VOR containing the airway routing. In this case, RQR (Reserve) VOR is selected. When a VOR is added to the flight plan, the associated airway is made available for selection (R8).
10) Select the desired AIRWAY from the list.

11) Rotate 1 to desired selection. In this case, LSU has been selected as the end point of the airway.

12) Press ADD (R7) to continue building flight plan up to a maximum of 40 waypoints total.

13) Or press LOCK (L8) to save flight plan as a flight plan which cannot be edited or press SAVE (R8) to save changes to one of the 100 maximum saved flight plans.

14) Once all waypoints have been added (no more than 40 per flight plan), press SAVE (R8) to save flight plan or LOCK (L8) to lock flight plan and save. If flight plan is locked, it appears in future access menus with . If 100 flight plans are present, the CREATE FLIGHT PLAN option is absent.
15) If no other actions listed are necessary, press EXIT (R1) to exit flight planner.

5.6.5. Flight Plan (FPL) Menu Selection Edit Flight Plan (Step-By-Step)

1) Press FPL (L1).

2) Rotate ‼ to CREATE-EDIT.. and push to enter.

3) Rotate ‼ to EDIT FLIGHT PLAN and push to enter.

4) Rotate ‼ to desired flight plan requiring editing and push to enter.

5) Rotate ‼ to highlight waypoint where another waypoint is to be inserted above and press INSERT (R6).

6) Press NRST APT (L6), NRST VOR (L7), NRST NDB (L8), NRST FIX (R6), or NRST USR (R7), to view applicable list, rotate ‼ to desired selection.
7) Once the desired selection NRST VOR (L7) (RQR) is highlighted to be inserted, push 1 to insert.

8) To add an NDB after HRV, INSERT (R6).

9) Press NRST NDB (L8) and select from the presented list.

10) Rotate 1 to desired NDB (MS) and push to enter and press INSERT (R6) if additional waypoint is to be added after selected NDB and before the destination (KHDC).
11) With RQR VOR entered into the flight plan, this waypoint introduces eligible airways to be added. If desired, press **AIRWAY (R8)** to view possible options.

12) In this case, V114 is an available option. If desired, push 0 to accept.

13) Rotate 0 to desired end point on airway and push to enter.

14) It has been decided to delete the original destination of KHDC. Rotate 0 to KHDC.

15) Once KHDC is highlighted, **DEL (R7)** appears as an option for deleting the highlighted waypoint. Press **DEL (R7)** to delete KHDC from the flight plan.

16) Push 0 to **CONFIRM DELETE WPT**
17) If flight plan is satisfactory, accept and save by pressing LOCK (L8) or SAVE (R8), and then EXIT (R1) to exit the flight plan menu.

5.6.6. Activate Flight Plan on PFD or MFD (Step-By-Step)

MFD example shown

1) Press FPL (L1).

2) Push 1 to select from list of stored flight plans and push to enter.

3) Rotate 1 to desired flight plan and push to enter.

NOTE:

Another method to activate one of the possible 100 stored flight plans, repeat step 1 and continue with step 4.

4) Rotate 1 to CREATE-EDIT.. and push to enter.

5) Rotate 1 to ACTIVATE FLIGHT PLAN and push to enter.

6) Rotate 1 to desired saved flight plan and push to enter. The selection for activating as a locked flight plan is accepted. Push to enter.
7) Press **EXIT (R1)** if no other action is necessary. This returns to the **CREATE-EDIT** menu option. Press **EXIT (R1)** to exit menu and restore to last MFD page on the bottom.

5.6.7. Reverse Flight Plan (Step-By-Step)

1) Press **FPL (L1)**.

2) Rotate 1 to **CREATE-EDIT..** and push to enter.

3) Rotate 1 to **REVERSE FLIGHT PLAN** and push to enter.

4) Rotate 1 to desired flight plan and push to enter.

5) If no other flight plan to reverse, press **EXIT (R1)**.

5.6.8. Delete Flight Plan (Step-By-Step)

1) Press **FPL (L1)**.

2) Rotate 1 to **CREATE-EDIT..** and push to enter.

3) Rotate 1 to **DELETE FLIGHT PLAN** and push to enter.
4) Rotate 1 to desired flight plan to delete. Push to enter.

5) Push 1 to CONFIRM DELETE FPL.

6) The next flight plan is highlighted.

7) If no further deletions, press EXIT (R1).

5.6.9. Create User Waypoint (LAT-LON) (Step-By-Step)

User waypoints may be created with three methods:
1) Latitude and longitude
2) Radial and distance
3) Overfly (Designate)

Follow this step-by-step procedure to create a user waypoint using latitude and longitude.

1) Press FPL (L1).

2) Rotate 1 to CREATE-EDIT.. and push to enter.

3) Rotate 1 to CREATE USER WPT (LAT-LON) and push to enter.

4) To name a new user waypoint, rotate 1 and push to enter up to five-characters and or spaces.
6) With new user waypoint name created, push \(\text{①} \) to proceed through all fields as necessary.

7) Approach bearing preloading depends on mode of flight as follows:

On Ground: Preloaded with current heading

In Flight: Preloaded with “OFF” value.

8) If desired, specify the approach bearing to user waypoint in degrees 1°-360°. “OFF” disables VFR approaches to the user waypoint.

9) Once all fields are entered, press \(\text{SAVE (R7)} \) to save user waypoint or press \(\text{⑧} \) to activate/save TROUT as the active waypoint and begin navigation guidance.

5.6.10. Create User Waypoint (RAD-DST) (Step-By-Step)

1) Press \(\text{FPL (L1)} \).

2) Rotate \(\text{①} \) to **CREATE-EDIT..** and push to enter.

3) Rotate \(\text{①} \) to **CREATE USER WPT (RAD-DST)** and push to enter.
4) Identifier is automatically named “RD###” where ### is the next available radial distance waypoint number.

5) Rotate 1 to enter identifier for reference waypoint.

6) If multiple search results appear, a list appears. **INFO (R6)** appears to verify each waypoint information.

7) Rotate 1 to desired waypoint and push to enter.

NOTE:

If a single search results, menu advances to radial entry box.

8) Rotate 1 to enter the radial entry and distance as the KGLS. 090° at 20.0 NM.

9) Press **SAVE (R7)** to save user waypoint or press 🔄 (R8) to activate/save RD003 as the active waypoint and begin navigation guidance.
5.6.11. Edit User Waypoint (Step-By-Step)

1) Press FPL (L1).

2) Rotate 1 to CREATE-EDIT.. and push to enter.

3) Rotate 1 to EDIT USER WPT and push to enter.

4) Rotate 1 to highlight waypoint to be edited. Push to enter.

5) Use 1 to enter alphanumeric characters. Follow on-screen prompts to edit information. Push 1 to step through all character spaces. To back up, press BACK (L1) and continue to the end of all character spaces.

 NOTE:
 Duplicate user waypoint names are not accepted.

6) Press 8 (R8) to begin navigation guidance and proceed direct to AVA and save the new user waypoint. Or press SAVE (R7) to save AVA as a new user waypoint and return to CREATE-EDIT menu. Press EXIT (R1) to exit menu.
5.6.12. Delete User Waypoint (Step-By-Step)

1) Press FPL (L1).

2) Rotate 1 to CREATE-EDIT.. and push to enter.

3) Rotate 1 to DELETE USER WPT and push to enter.

4) Rotate 1 to desired waypoint to be deleted. In this example, the pilot selects waypoint to be deleted.

5) Push 1 to CONFIRM DEL USER WPT.

6) If no more waypoints to delete, press EXIT (R1).

NOTE:

Alterations of user waypoint parameters while in flight are not automatically updated to an active flight plan.

When changes are made to a user waypoint, and those changes are desired in existing flight plans, which use the waypoint, it must be deleted and replaced in the flight plans with the following steps:

1) EDIT the user waypoint as described above.

2) Open a flight plan, which uses the user waypoint.

3) Delete the existing waypoint from the flight plan.

4) Save and exit.

5) Reload the flight plan if it was in use.
5.6.13. RAIM Prediction (Step-By-Step)

When selected, the RAIM prediction screen is only shown if the GPS/SBAS receiver is capable of performing a RAIM Prediction (not suitable for enroute predictions). This requires there be no faults along with a current almanac in memory. The faults menu may be monitored to determine if the GPS/SBAS receiver is capable of performing a RAIM prediction.

1) Press FPL (L1). This can be accomplished on either the PFD or MFD.

2) Rotate to CREATE-EDIT.. and push to enter.

3) Rotate to RAIM PREDICTION. Push to enter. Enter WPT identifier and search for desired WPT.

4) Rotate to the desired waypoint and select INFO to verify the waypoint.

5) Select CALC (R6) to check RAIM predictive status.

SEE NOTE BELOW

6) If another RAIM Prediction is necessary, press START OVER (R6) to start again or press EXIT (R1) to exit.
NOTE:

The pilot may perform RAIM prediction at a designated waypoint. The screen has various data entry boxes as follows:

1) **Designated Waypoint:** Prompted to enter an identifier for the designated waypoint. If there is a single result, advanced to UTC time entry box. If there is no result, re-prompted to enter an identifier. If there are multiple results, a selection list with matching identifiers is presented and, upon selection, is advanced to UTC time entry box. **INFO (R6)** aids in selection and gives access to information for the highlighted results.

2) **UTC Time Entry:** Allows entry of the 24-Hour UTC estimated time of arrival at the designated waypoint.

3) **UTC Date Entry:** Allows entry of the UTC estimated date of arrival at the designated waypoint. The minimum speed used for calculation waypoint ETA calculation is V_{PROC}.

4) **PRN Mask Entry:** Allows specification of the PRN number of satellites expected to be unavailable at the destination.

5) **EXIT:** Exit of the RAIM prediction screen at any time.

6) Once a designated waypoint and UTC estimated time of arrival are entered, **CALC (R6)** appears to initiate the RAIM Prediction. Press **CALC (R6)** to check the UTC estimated time of arrival and ensure it is within the current almanac (i.e., <3.5 days from current date and time). If it is, a Predictive FDE Request message requesting “Detection Availability” with a required HAL of 0.3NM is sent to the GPS/SBAS receiver. In response, the GPS/SBAS receiver replies with a sequence of Predictive FDE Response messages. These messages are parsed and used to fill in the RAIM Prediction result area at the bottom of the screen. The RAIM Prediction result area shows the RAIM Prediction results as “OK” or “XX” for ETA ± in 5-minute increments. Once a prediction is complete, press **START OVER (R6)** to perform another prediction without exiting the RAIM Prediction screen.
5.7. **Active Flight Plan (ACTV) Menu**

See Section 7 IFR Procedures for active flight plan description.

![Diagram of Active Flight Plan Main Menu]

5.7.1. **Active Flight Plan (ACTV) Menu Options**

Various options appear at the same menu level as the Nav Log selection list. The following options allow various modifications to be made to the active flight plan.
Section 5 Menu Functions and Procedures

Figure 5-14: Active Flight Plan Menu Options

- **L1** SAVE: Save active flight plan
- **L2** ACTV OFF: Delete active flight plan and place autopilot roll-steering into wing-leveler mode
- **L3** INFO: Information Menu for the highlighted waypoint
- **L4** PTK: Enter parallel track offset distance
- **R2** INSERT: Insert selected waypoint or procedure
- **R3** DELETE: Delete waypoint at current location to "re-center" skyway and make highlighted waypoint active
- **R4** D: Rotate – Scroll through active flight plan waypoint selection list
 - Push – Select highlighted waypoint

Waypoint or Airway?
- Waypoint: Insert waypoint into active flight plan
- Airway: Insert selected airway waypoints into active flight plan

Single Match?
- Yes: Match List
- No: **INFO..** Match List

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST FIX
Searches for and presents list of Nearest Fix Waypoints

NRST USR
Searches for and presents list of Nearest User Waypoints

AIRWAY
Searches for and presents list of Airways going through waypoint prior to insertion point

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs

NRST APT
Searches for and presents list of Nearest Airports

NRST VOR
Searches for and presents list of Nearest VORs

NRST NDB
Searches for and presents list of Nearest NDBs
<table>
<thead>
<tr>
<th>Menu Options</th>
<th>Active Flight Plan Action</th>
<th>Search Limits</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAVE (L1)</td>
<td>Saves and is part of 100 stored flight plans</td>
<td>N/A</td>
<td>Saves without procedures or phantom waypoints. Named by first and last waypoints. New flight plans with same start and end waypoints but with different routing, a number (1-9) is appended to the name to uniquely identify up to 10 routings with same start and end points.</td>
</tr>
<tr>
<td>ACTV OFF (L2)</td>
<td>Deletes</td>
<td>N/A</td>
<td>Prompted to confirm deletion</td>
</tr>
<tr>
<td>INFO (L3)</td>
<td>Activates information menu for highlighted waypoint</td>
<td></td>
<td>With no active flight plan, activates information for nearest airport.</td>
</tr>
<tr>
<td>PTK (L4)</td>
<td>If active leg is eligible for offset, allows pilot to specify parallel offset distance for non-procedure segments.</td>
<td>N/A</td>
<td>20NM left or right in 1NM increments.</td>
</tr>
<tr>
<td>INSERT/ADD (R2)</td>
<td>Insert or add a waypoint or airway</td>
<td>N/A</td>
<td>ADD: At the end of active flight plan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INSERT: Above the highlighted waypoint.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEARCH: Requires minimum of 2 characters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INFO: After adding waypoint, appears to aid in selection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AIRWAY: Search for all airways going through highlighted waypoint. Offers option to select exit waypoint.</td>
</tr>
<tr>
<td>Menu Options</td>
<td>Active Flight Plan Action</td>
<td>Search Limits</td>
<td>Limitations</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>NRST APT (L2)</td>
<td>Search for airports of runway length criteria set in EFIS limits</td>
<td></td>
<td>NO RESULTS: No eligible airports within search area or selection list includes bearing, distance to each result.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INFO: After adding waypoint, appears to aid in selection.</td>
</tr>
<tr>
<td>NRST FIX (R2)</td>
<td>Search for fixes</td>
<td></td>
<td>NO RESULTS: No fixes within search area or selection list includes identifier, bearing and distance to each result.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INFO: Provides information and aids in selection.</td>
</tr>
<tr>
<td>NRST NDB (L4)</td>
<td>Search for NDBs</td>
<td>Search for 20 items within 240 NM nearest to the waypoint prior to the insertion point</td>
<td>NO RESULTS: No NDBs within search area or selection list including identifier, bearing, and distance to each result.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INFO: Provides information and aids in selection.</td>
</tr>
<tr>
<td>NRST USR (R3)</td>
<td>Search for nearest user waypoints</td>
<td></td>
<td>NO RESULTS: No user waypoints within search area or selection list including identifier, bearing, and distance to each result.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INFO: Provides information and aids in selection.</td>
</tr>
<tr>
<td>NRST VOR (L3)</td>
<td>Search for nearest VORs</td>
<td></td>
<td>NO RESULTS: No VORs within search area or selection list including identifier, bearing, and distance to each result. (Geodetic results only)</td>
</tr>
</tbody>
</table>

Table 5-4: Active Flight Plan Menu Options
<table>
<thead>
<tr>
<th>Menu Options</th>
<th>Active Flight Plan Action</th>
<th>Search Limits</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier Entry Box</td>
<td>Area to enter identifier where knob message would normally appear.</td>
<td>N/A</td>
<td>Entry of at least 2 characters and then SEARCH (R8) appears to begin an immediate search. Selection list may appear for addition to add to flight plan. ** INFO: Provides information and aids in selection.</td>
</tr>
<tr>
<td>DELETE (R3)</td>
<td>If highlighted waypoint is a non-procedure waypoint, deletes waypoint after confirmation.</td>
<td>N/A</td>
<td>If highlighted waypoint is part of a procedure, deletes entire procedure after confirmation. Does not appear if highlighted waypoint is a non-procedure and there are fewer than three non-procedure waypoints in active flight plan. Does not appear if highlighted waypoint is suppressed or one position beyond the end.</td>
</tr>
<tr>
<td>DIRECT (R4)</td>
<td>Inserts phantom waypoint at the current aircraft position and makes the highlighted waypoint active</td>
<td>N/A</td>
<td>Phantom waypoint is a fly-over defined entry waypoint, and leg prior to the phantom waypoint is designated a discontinuity. Assures the skyway is re-centered for guidance. Does not appear when the highlighted waypoint is suppressed or one position beyond the end. **A selection list is displayed including identifier, bearing, and distance to each result. INFO (L3) aids in the selection and provides access to information for the highlighted result.</td>
</tr>
</tbody>
</table>
NOTE:

To prevent corruption of IFR approaches, STARs, and DPs, holding patterns and SAR patterns, the title does not appear when:

1) Highlighted waypoint is the second or subsequent waypoint of a procedure.
2) Highlighted waypoint is a suppressed airport and the prior waypoint is part of an approach procedure.
3) Highlighted waypoint is a holding point, or
4) Highlighted waypoint is a SAR pattern exit waypoint.

When activated, a sub-menu is presented as follows:

For waypoints, if there is a single result, it is inserted or added to the active flight plan. If there is no result, pilot is re-prompted to enter an identifier. If there are multiple results, a list with matching identifiers is presented and, upon selection, the selected waypoint is inserted or added to the active flight plan. **INFO (L3)** aids in selection and gives access to information for the highlighted result.

For airways, this option only appears when an airway transits through the waypoint prior to the insertion point. When activated, a search is performed for all airways going through the highlighted waypoint and matching the entered identifier (i.e., for a list of all Victor airways, Q-routes and T-routes, enter an identifier string of “V”, “Q,” “T”, etc.). If there is a single result, a list of airway waypoints is shown to select the desired user-selected exit point. If there is no result, pilot is re-prompted to enter an identifier. If there are multiple results, a list with matching airway identifiers is presented and, upon selection, a list of airway waypoints is shown to select the desired exit point. Upon selecting the desired exit point, all airway waypoints from the previous waypoint to the desired exit point are inserted or added to the active flight plan. Each active flight plan has a limit of a maximum of 40 waypoints.

5.7.2. Active Flight Plan (ACTV) Menu Options (Step-By-Step)

1) Press **ACTV (L2)** to view active flight plan. Rotate ⬇️ to desired waypoint. Push to enter.
2) Rotate \(\textcircled{1} \) to desired option (for example, VNAV..) and push to enter.

3) As one option, a VNAV setting is entered. (Arrive at 3000’ 2NM prior to crossing KBTR.)

4) As another option, press \textbf{DELETE (R3)} to delete the next waypoint (LSU).

5) Push \(\textcircled{1} \) to \textbf{CONFIRM DELETE WPT}.

5.7.3. Active Flight Plan (ACTV) Menu (Step-By-Step)

1) With desired flight plan selected and activated, press \textbf{ACTV (L2)} to view active flight plan.

2) Rotate \(\textcircled{1} \) to desired waypoint. Push to enter.
3) Rotate 1 to desired option (for example HOLD) and push to enter.

4) Rotate 1 to set COURSE:, TURN DIR:, LEG DIST:, or LEG TIME: and push to enter between each entry. (LEG DIST: and LEG TIME: are mutually exclusive.)

5) With desired flight plan selected and activated, press ACTV (L2) to view active flight plan.

5.7.4. Active Flight Plan (ACTV) Options NRST Menu Option (Step-By-Step)

1) With active flight plan displayed, rotate 1 to desired waypoint where a new waypoint is to be inserted above and press INSERT (R2) to see NRST options.
5.8. Information (INFO) Menu

If INFO is activated from within the ACTV, NRST, or Direct menus, information on the highlighted waypoint is shown. Otherwise, the function checks for an active waypoint. If there is an active waypoint, it becomes the default entry. If there is no active waypoint, then the nearest airport...
becomes the default entry. If the default entry is accepted, then information for the default entry is shown. If the user rejects the default entry by entering identifier characters, then a search for matching characters is performed. Only two identifier characters are needed prior to searching, therefore after entering two identifier characters, **SEARCH (R4)** appears which allows an immediate search to begin if desired. If there is a single result from the search, information for that result is shown. If there is no result from the search, the user is re-prompted to enter an identifier. If there are multiple results from the search, a selection list with matching identifiers is presented to allow the user to select the desired identifier.

The amount and type of information presented depends upon the type of waypoint as defined in Table 5-5.

<table>
<thead>
<tr>
<th>Type</th>
<th>NAVAID</th>
<th>Airports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waypoint Identifier</td>
<td>NAVAID Type</td>
<td>Communication frequencies</td>
</tr>
<tr>
<td>Waypoint Type</td>
<td>Frequency</td>
<td>Airport runway data</td>
</tr>
<tr>
<td>Waypoint elevation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing and distance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitude and Longitude</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

Frequencies are only sent to either com or nav radios in the standby position. It is up to the pilot to swap frequencies to the active position in the applicable radio.

When the information presented is for an ILS or localizer waypoint and the current VLOC1 or VLOC2 omnibearing selectors are not synchronized with the localizer course, **CRS SYNC (L4)** allows one-touch synchronization of the VLOC1 and VLOC2 omnibearing selectors to the localizer course.
5.8.1. Information (INFO) Menu (Step-By-Step)

1) Press **INFO (L3)** to view active waypoint. (With no active waypoint, **INFO (L3)** displays information for the nearest airport.)

2) Push ✅ to view information.
5.9. Omnibearing Selector (OBS) Menu (without NAV Preview)

OBS menu allows for control of the Omnibearing selector for showing course deviations. When navigation/HSI source is FMS, **OBS AUTO/OBS MAN (R4)** toggles between automatic and manual OBS settings (see Table 5-6).

Figure 5-17: Omnibearing Selector (OBS) Menu

Table 5-6: Omnibearing Selector (OBS) Menu Options

<table>
<thead>
<tr>
<th>OBS (L4)</th>
<th>OBS SYNC (R3)</th>
<th>OBS MANUAL (R4)</th>
<th>Nav Source and CDI Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMS (L2)</td>
<td>Only available with active waypoint. Synchronizes FMS to inbound course</td>
<td>Only available with active waypoint. Settable in increments of 1° with 1</td>
<td>GPS navigation source (FMS1) or (FMS2)</td>
</tr>
</tbody>
</table>
Table 5-6: Omnibearing Selector (OBS) Menu Options

<table>
<thead>
<tr>
<th>OBS (L4)</th>
<th>OBS SYNC (R3)</th>
<th>OBS MANUAL (R4)</th>
<th>Nav Source and CDI Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLOC1 (L3)</td>
<td>Synchronizes VLOC1 or VOR1 to the inbound course or if the inbound course cannot be determined, to aircraft heading.</td>
<td>Settable in increments of 1° with 🔄</td>
<td> </td>
</tr>
<tr>
<td>VLOC2 (L4)</td>
<td>Synchronizes VLOC2 or VOR2 to the inbound course or if the inbound course cannot be determined, to aircraft heading.</td>
<td></td>
<td> </td>
</tr>
<tr>
<td>RNP (R2)</td>
<td>When selected, allows for RNP(R4)</td>
<td>Rotate 🔄 to set desired manual RNP value.</td>
<td>Manual RNP is selectable between 0.15NM and 15NM. 0.01 increments RNP 0.10-0.3 0.1NM increments RNP 0.3-2.0 1NM increments RNP 2.0-15</td>
</tr>
<tr>
<td>TRUE NORTH (L1)</td>
<td>OBS Menu allows the pilot to toggle between TRUE NORTH (L1) and MAG NORTH (L1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.9.1. Omnibearing Selector (OBS) Menu (Step-By-Step)

1) Before pressing **OBS (L4)** to make any OBS changes, view the current setting to see **FMS2** is selected.

2) Press **OBS (L4)** and view the default **NAV FMS (L2)** navigation source is still active since initialization.

3) When the OBS is set to VLOC1, or VLOC2, rotate 1 to select new OBS course.
4) When NAV source is set to FMS, to select manual RNP, press OBS (L4) and then OBS MANUAL (R4).

NOTE:

There must be an active waypoint for OBS MANUAL RNP value to be accepted.

5) Press RNP (R2).

6) Press RNP MANUAL (R4).

7) Rotate to desired FSD and push to enter to view estimate of position uncertainty required in RNP airspace.
5.9.2. True North and Magnetic North Menu (Step-by-Step)

1) Press OBS (L4) to open menu for true north option selection.

2) Press TRUE NORTH (L1) to change heading reference to true instead of magnetic.

3) Reference is now true north as seen in heading indications and TRUE NORTH advisory flag.

4) Repeat step 1, Press MAG NORTH (L1) to restore heading reference to magnetic north.

5) Heading reference is now magnetic.

5.10. Heading Bug (HDG) Menu

Use the heading bug menu to set the heading bug in increments of 1°, synchronize to current heading, or turn off heading bug. If an integrated autopilot is installed, it is not be possible to turn off the heading bug.
Section 5 Menu Functions and Procedures

5.10.1. HDG Bug (HDG) with Analog Autopilot (Step-By-Step)

1) Press HDG (L5) to exit LNAV mode.

2) Rotate 3 to desired heading. Rotating the knob enables the SYNC (L7) menu.

3) Press SYNC (L7) to synchronize to current heading.
5.10.2. HDG Bug (HDG) (Step-By-Step)

1) Rotate 3 to enter heading mode.
2) Rotate 3 to change heading bug in 1° increments.
3) Push 3 to select new heading or press SYNC (L7) to synchronize current heading.
4) Push 3 to enter HDG value and exit HDG menu or press EXIT (R1).

5.11. Altitude Bug Menu

Select the altitude bug to synchronize the target altitude to current altitude, turn off the target altitude, or set a new value in increments of 100 feet.

NOTE:
“Target altitude” refers to pre-selected altitude in Genesys HeliSAS-E installations.

5.12. Nearest (NRST) Menu

Upon selecting a category from the option list, a list of up to 20 items within 240NM matching the category appears. If the list is empty (i.e., no items within 240NM), NO RESULTS is displayed. The selection list includes
identifier, bearing, and distance to the item. The list of airports contains only airports with runway length greater than or equal to the minimum runway length setting as configured during installation.

When the results for airports, VORs, ILSs, NDBs, fixes, and user waypoints are displayed, **INSERT (R2)** inserts a waypoint into the active flight plan at the active waypoint position. This feature facilitates rapid clearance changes from air traffic control. To prevent corruption of IFR approaches, STARs, and DPs, **INSERT (R2)** does not appear if the active waypoint is within a procedure.

When the results for airports, VORs, ILSs, NDBs, fixes, and user waypoints are displayed, **INFO (L3)** provides further information on the highlighted item.

Figure 5-20: Nearest (NRST) Menu

When the results for airports, VORs, ILSs, NDBs, fixes, and user waypoints are displayed, **INSERT (R2)** inserts a waypoint into the active flight plan at the active waypoint position. This feature facilitates rapid clearance changes from air traffic control. To prevent corruption of IFR approaches, STARs, and DPs, **INSERT (R2)** does not appear if the active waypoint is within a procedure.

When the results for airports, VORs, ILSs, NDBs, fixes, and user waypoints are displayed, **INFO (L3)** provides further information on the highlighted item.
In the case of **NRST ILS** where the current VLOC1 or VLOC2 OBS does not match the localizer course, **CRS SYNC (L4)** synchronizes VLOC1 and VLOC2 OBS to the localizer course.

Upon selecting airport, VOR, NDB, fix, or user waypoint, a new active flight plan is created from present aircraft position to the selected waypoint. Upon selecting ILS, **CONFIRM ACTIVATE ILS** is displayed. When the ILS is confirmed, the following actions occur:

1) Previous active flight plan is deleted.

2) A direct flight plan to the airport associated with the ILS is created

3) A vectors-to-final ILS approach to the ILS is activated

4) If the heading bug is turned OFF, it is activated to current heading to act as a starting point for receiving vectors (autopilot enabled systems only)

5) VLOC1 and VLOC2 OBS settings are set to the associated localizer course;

6) HSI source is switched as follows:
 a) If only one NAV is radio installed, the source for the selecting side is changed to VLOC1, but the other side does not change.
 b) If two NAV radios are installed, the default sensor for the side making the selection, controls which source is used. The source for the other side does not change.
 c) Connected NAV radios are remote tuned to ILS frequency (when enabled in EFIS limits). ILS frequency is sent to NAV1 and NAV2 standby positions, pilot action is required to swap frequencies to the active positions.

5.12.1. Nearest (NRST) Menu (Step-By-Step)

1) Press **NRST (R3)** to enter Nearest menu.
2) Rotate † to select APT.. from list push to enter.

3) Rotate † to desired airport and select to INSERT or INFO, or send frequency to COM1 (R2) or COM2 (R3).

5.12.2. Nearest (NRST) Menu ILS (Step-By-Step)

1) Press NRST (R3) to enter Nearest menu.

2) Rotate † to ILS.. and push to enter.
3) If selection is a LOC, no action is taken. The selection must begin with “ILS.”

4) Rotate to desired airport and ILS approach then push to select and enter.

5) If “NRST ILS” VLOC1 or VLOC2 does not match the localizer course, CRS SYNC (L4) appears to synchronize VLOC1 and VLOC2 OBS to the localizer course.

6) Push to confirm and activate ILS. This deletes existing active flight plan and creates new active flight plan with VTF ILS to desired destination airport.

NOTE:
If there is inadequate source data available for a NRST ILS search, the approach is not loaded.

5.13. Direct Menu

Upon activating the direct menu from the top-level menu, the function checks for an active waypoint and, if found, it becomes the default entry. If there is no active waypoint, the nearest airport becomes the default entry.

If the default entry is the active waypoint and is accepted by the pilot, a phantom waypoint is inserted at the current aircraft location. The phantom waypoint is a fly-over defined entry waypoint, and the leg prior to the phantom waypoint is designated a discontinuity. This assures the skyway is “re-centered” to provide guidance to the new active waypoint. The rest of the active flight plan remains unchanged.
If the default entry is not the active waypoint and is accepted by the pilot, the resulting action depends upon whether the aircraft is in the air or on the ground. If in the air, a new active flight plan is created from present aircraft position to the selected waypoint. If on the ground, a search is conducted for a database airport within 6NM. If an airport is found, a new active flight plan is created from the found airport to the selected waypoint. Otherwise, a new active flight plan is created from present aircraft position to the selected waypoint.

If the pilot rejects the default entry by entering identifier characters, a search for matching identifiers is performed. If there is a single result, the resulting action depends upon whether the aircraft is in the air or on the ground. If in the air, a new active flight plan is created from present aircraft position to the selected waypoint. If on the ground, a search is conducted for a database airport within 6NM. If an airport is found, a new active flight plan is created from the found airport to the selected waypoint. Otherwise, a new active flight plan is created from present aircraft position to the selected waypoint.

If there is no result, the pilot is re-prompted to enter an identifier. If there are multiple results from the search, a selection list with matching identifiers is presented. Upon selection, the resulting action depends upon whether the aircraft is in the air or on the ground. If in the air, a new active flight plan is created from present aircraft position to the selected waypoint. If on the ground, a search is conducted for a database airport within 6NM. If an airport is found, a new active flight plan is created from the found airport to the selected waypoint. Otherwise, a new active flight plan is created from present aircraft position to the selected waypoint. **INFO (L3) appears at this level to give access to information and aid in selection.**
5.13.1. Direct Menu (Step-By-Step)

1) Press \(\text{R4} \) to enter Direct menu.

2) Active or nearest airport waypoint appears. Push \(\text{R1} \) to create KHDC as new active waypoint.

3) Or rotate \(\text{R1} \) to insert a phantom waypoint at the current location or rotate \(\text{R1} \) to enter new identifier.

4) If identifier is unknown, use \text{SEARCH (R4)}.

5) After creating new identifier, rotate \(\text{R1} \) to the end and push to enter. A new active flight plan is created from the present aircraft position.
5.14. TIME Menu

Upon selecting the time menu, a list appears to choose the count up timer, countdown timer, or flight time display. **OFF (R4)** turns off any active timer functions.

If the pilot selects the count up timer, the count up timer is activated. If the countdown timer is selected, the pilot is prompted to enter a start time from which the countdown begins. Shortcut buttons to quickly add or decrease by five-minute increments. After entering a start time, start the countdown timer or press **STORE (R4)** or push 1 to store the start time for later use.

If UTC offset is selected, the pilot is prompted to enter a UTC offset between -12:00 and +14:00 in 15-minute increments follow.

If the pilot selects the flight time display option, the elapsed time since the aircraft transitioned from ground to air mode is displayed for 10 seconds, or until any button is pressed. If the aircraft has not yet transitioned from ground to air mode, select the flight time display option to display the elapsed time as **FLT TM: 00:00:00**.
5.14.1. TIME Menu (Step-By-Step)

1) Press **MENU (R1)**, within 10 seconds, press **TIME (L4)** to enter the Time menu.

2) Rotate 1 to **COUNT UP**, **COUNT DN..**, **UTC OFFSET..**, or **FLT TIME**. Push to enter.

3) If **COUNT UP** is selected, a timer appears on PFI area below the bank scale.

4) To turn off timer, press **MENU (R1)**, within 10 seconds press **TIME (L4)**, and then **OFF (R4)**.

5) To set offset for local time, rotate 1 to **UTC OFFSET..** and push to enter.

6) Rotate 1 to desired offset value. Push to enter.

7) Local time now appears where Zulu time was previously.

NOTE:

When Local Time is created and local time is present, all ETA references in active flight plan information and Nav Log no longer refers to UTC. Use caution with ATC clearances since they are always based upon UTC.
5.15. PFD Source Menu

Upon activating the PFD source menu, an option list of sensor sources is shown. The following items can be either selected/deselected:

1) ADC1
2) ADC2
3) AHRS1
4) AHRS2
5) DME
6) DME2
7) GPS1
8) GPS2
9) Radar Altimeter 1
10) Radar Altimeter 2

Figure 5-23: PFD Source Menu

If a Genesys ADAHRS is the selected AHRS and a DG/Slave discrete input is not configured for that AHRS, then a “AHRS SLAVE”/“AHRS DG” (R2)
option is shown to toggle between the two AHRS modes. If in DG mode without slew discrete inputs configured for the selected AHRS, then **AHRS SLEW (R3)** is shown to enter a submenu that allows adjustment of the DG mode slewing value.

5.16. PFD BUGS Menu

![PFD BUGS Menu Diagram]

Figure 5-24: PFD BUGS Menu
Upon selecting the PFD bugs menu, the following options are available:

1) **MINS (R3):** Push 1 to select DEC HT... Press 200 FT (R3) or OFF (R4), or rotate 1 to set DH in increments of 10’ or;

 Rotate 1 to select MIN ALT... Press SYNC (R3) to synchronize minimums to current altitude or rotate 1 to desired minimum altitude in increments of 10 feet;

2) **VNAV CDA (R4):** Set VNAV climb or descent angle (setting either in increments of 0.1° with corresponding feet per nautical mile, or selecting a shortcut for 3° (R4));

3) **IAS (L2):** Press to open IAS bug menu, press SYNC (R3) to synchronize current airspeed, rotate 1 to desired airspeed or press OFF (R4) to turn off IAS bug.

4) **VSI 1:** Rotate or push to open VSI bug menu, synchronize the VSI bug to the current VSI by pushing 1 or pressing SYNC (R7), turn off the VSI bug by pressing OFF (R8), or setting the VSI bug by rotating in increments of 100 fpm.

5.16.1. PFD BUGS Menu (Step-By-Step)

1) Press MENU (R1), within 10 seconds, press BUGS (R2) to enter the Bugs menu.
2) Press either **MINS (R3)**, or **VNAV CDA (R4)**.

3) If **MINS (R3)** is pressed, rotate ⬆️ to select **DEC HT..** or **MIN ALT..** and push to enter.

4) If **DEC HT..** was selected, either press **200 FT (R3)** to accept or rotate ⬆️ to select desired DH in 10’ increments. Push to enter. DH value appears below FPM.

5) Press **OFF (R4)** to turn off DH.

6) If **MINS (R3)** is pressed, rotate ⬆️ to select **MIN ALT..** and push to enter.

7) Rotate ⬆️ to select desired barometric minimum altitude and push to enter.

8) New minimum altitude of 1300’ is displayed in PFI area.

9) If **VNAV CDA (R4)** is pressed, push ⬆️ to select **DCND..**.
10) If DCND.. is pushed, rotate 1 to create the descent angle.

11) Rotate 1 to enter new descent angle (-4.0°) and push to enter. Press 3° (R4) to select default or press EXIT (R1) to save changes and return to the top menu level.

12) If IAS (L2) was selected, rotate 1 to desired airspeed in (1 unit increments) and push to enter.

13) IAS 124 is now selected as a new IAS bug.

14) Press OFF (R4) to turn off IAS bug.

15) IAS bug is now turned off.

NOTE:
IAS and VSI bugs are mutually exclusive. Selecting one turns off the other.

16) If VSI (L4) was selected, rotate 1 to desired VSI and push to enter.
17) The VSI bug was rotated to -900 fpm (100 fpm increments) as the desired VSI bug.

18) Press OFF (R4) to turn off VSI bug.

NOTE:

When integrated with HeliSAS-E in VS mode, it is not possible to turn off the VSI bug.

5.17. PFD Declutter (DCLTR) Menu

- **Basic** Mode:
 - Single cue flight director symbology
 - Dual cue flight director symbology
 - Enable Metric display
 - Accept changes
 - FD1 (b)
 - FD2 (b)

- **Normal** Mode:
 - Switch PFD to Normal Mode
 - PFD mini-map
 - PFD traffic thumbnail
 - Single cue flight director symbology
 - Dual cue flight director symbology
 - Enable Metric display
 - Accept changes
 - FD1 (b)
 - FD2 (b)

DONE

(a) Shown if optional traffic sensor installed.
(b) Shown if FD option enabled. Dual and single cue FD are mutually exclusive.
(c) Shown if declutterable overlays are defined in OASIS. Up to 8 overlays may appear. Label text defined by OASIS.
(d) Only one may be selected. Turning both off disables TAWS. When TAWS is not enabled, "SVS ADVNCN" is labeled "SVS ADVNCN".

Figure 5-26: PFD DCLTR Menu
Table 5-7: PFD Declutter Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Configuration</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SVN</td>
<td>Basic</td>
</tr>
<tr>
<td>ANLG AGL</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>MINI MAP</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>MINI TRFC</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>BANK SCL</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>BASIC</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>SVS TAWS</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>SVS BASIC</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>SKYWAY</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>TURN IND</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>FD1</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>FD2</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>METERS</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

5.17.1. PFD DCLTR Menu (Step-By-Step)

1) Press MENU (R1), within 10 seconds press DCLTR (R4) to enter Declutter menu.

2) Rotate ☐ to ANLG AGL, BANK SCL, BASIC, MINI MAP, MINI TRFC, SKYWAY, SVS TAWS, SVS BASIC, TRAFFIC, TURN IND, FD1, FD2, or METERS. Push to enter.
3) If **BANK SCL** is deselected press **EXIT (R1)** or rotate ❶ to **DONE** and push to enter.

4) Bank scale is removed while in level flight. Bank scale is automatically restored when exceeding 2.8° left or right bank angles or when entering hover vector mode.

5) Press **MENU (R1)**, within 10 seconds press **DCLTR (R4)** to enter Declutter menu and then rotate ❶ to SVS TAWS and push to deselect.

6) With both **SVS TAWS** and **SVS BASIC** deselected, the non-TAWS perspective terrain and obstacle depiction is displayed in the PFI area.
7) With **SVS BASIC** selected the PFI area terrain is colored in shades of brown. Slope between adjacent terrain pixels in an increasing longitude direction determines shade used.

8) With **SVS TAWS** selected, the PFI area TAWS perspective terrain and obstacle depiction is shown using color to show relationship to aircraft altitude with terrain colored in shades of olive when at or below 100’ below the aircraft. The slope between adjacent terrain pixels in an increasing longitude direction determines shade used.

9) Terrain is colored shades of brown when above 100’ less than aircraft altitude with similar shading as described above.

10) To save changes and exit menu, rotate to **DONE** and push to enter or press **EXIT (R1)**.

5.18. Altimeter (BARO) Menu

Press **BARO (R2)** to activate the altimeter menu. Rotate to increase (CW) or decrease (CCW) the barometric setting and push to accept the new barometric setting.
In addition, the following options are available in the altimeter menu:

1) **QNH/QFE (L2):** Toggles between QNH and QFE altimeter operation. When in QNH mode, QNE operation is automatically selected when above the transition altitude with a standard altimeter setting. The following definitions:
 a) **QFE:** Barometric setting resulting in the altimeter displaying height above a reference elevation (e.g., airport or runway threshold).
 b) **QNE:** Standard barometric setting (29.92 inHg or 1013 mbar) used to display pressure altitude for flight above the transition altitude.
 c) **QNH:** Barometric setting resulting in the altimeter displaying altitude above mean sea level at the reporting station.

2) **TRANS ALT (L3):** Changes transition altitude in units of 500 feet. Transition altitude is used to generate barometric setting advisories and to determine QNE/QNH operation. If current transition altitude is not 18,000 feet, press **18000 (R4)** to set transition altitude as 18,000 feet.

3) **MBAR/IN HG (L4):** Sets barometric setting units (inHg or mbar).

4) **STD (R4):** Sets barometric setting to standard (29.92 inHg or 1013 mbar).
5.18.1. Altimeter (BARO) Menu (Step-By-Step)

1) Press **BARO (R2)** to enter Altimeter menu.

2) Rotate ı to set proper QNH and push to enter. In this example, 30.01 inHg is set. Press **EXIT (R1)** to save changes and return to the top menu level.

3) Press **BARO (R2)** to enter Altimeter menu. Press **TRANS ALT (L3)** to change transition altitude.

4) Rotate ı to set desired transition altitude in 500’ increments and push to enter or press **EXIT (R1)** to enter and exit **BARO** menu. Transition altitude of 6500’ is saved during subsequent shutdown and next initialization.
5) If current transition altitude is not 18,000', **18000 (R4)** appears for quick resetting.

6) With the **BARO** menu open, **STD (R4)** appears to quickly set QNH to standard 29.92 inHg or 1013 mbar.

5.19. FAULTS Menu

Upon selecting the faults menu, status of the following system parameters are displayed.

1) GPS/SBAS loss of navigation due to absence of power (GPS PWR).

2) GPS/SBAS loss of navigation due to probable equipment failure (GPS EQPMNT).

3) GPS/SBAS loss of navigation due to inadequate satellites to compute a position solution (GPS SATLT).

4) GPS/SBAS loss of navigation due to a position failure that cannot be excluded within the time to alert (GPS FDE).

5) GPS/SBAS loss of integrity and loss of navigation due to loss of integrity (GPS LOI).

6) Readout of the current GPS/SBAS horizontal protection level (GPS HPL) in nautical miles. This value may be used as the estimate of position uncertainty required in RNP airspace.

7) Readout of the current GPS/SBAS vertical protection level (GPS VPL) in meters.

8) Readout of the current GPS/SBAS horizontal figure of merit (GPS HFOM) in nautical miles. This value is an indication of the 95% confidence horizontal position accuracy.

9) Readout of the current GPS/SBAS vertical figure of merit (GPS VFOM) in meters. This value is an indication of the 95% confidence vertical position accuracy. (For example, the MSL altitude used in the TAWS algorithms use geodetic height converted to MSL with the current Earth Gravity Model (EGM) database. For this to be considered valid for use as MSL altitude, the VFOM must be less than or equal to 106 feet). Additionally, the tertiary source for vertical speed is GPS/SBAS vertical speed providing the VFOM is less than or equal to 106 feet. When AGL altitude is based on BARO, it is because the RADALT is in a failed state...
and the VFOM exceeded 106 feet rendering the vertical component of
GPS altitude invalid in the MSL altitude calculation.

10) An indication of whether the GPS/SBAS receiver has a valid almanac
in memory (GPS ALMANAC).

11) GPS/SBAS loss of navigation due to no valid SBAS message received
for four seconds or more (SBAS MSG).

12) GPS/SBAS loss of navigation due to insufficient number of SBAS
HEALTHY satellites (SBAS HLTH).

13) Loss of communications with the analog interface (AIU).

14) Loss of communications with the traffic sensor.

15) An indication of ADS-B position validity (ADSB POSN), an indication
of whether maintenance of the ADS-B receiver is required (ADSB MAINT)
and an indication of whether the Conflict Situational Awareness
algorithm is working (ADSB CSA).

Figure 5-28: FAULTS Menu

(a) Shown if optional WX-500 installed
(b) Shown if optional traffic sensor installed
(c) Shown if optional AIU installed
(d) Shown if optional ADS-B datalink installed
(f) Shown if optional weather radar installed
(g) Shown if optional weather radar installed, weather radar type is
RDR-2000, RDR-2100 or RDR-1600 and external weather radar
control panel installed.
5.19.1. FAULTS Menu (Step-By-Step) (PFD)

1) Press **MENU (R1)**, within 10 seconds press **FAULTS (L5)** to view the faults menu.

2) Faults menu appears. View status of GPS and equipment parameters.

5.19.2. FAULTS Menu (Step-By-Step) (MFD)

1) Press **MENU (R1)**, within 10 seconds press **FAULTS (L1)** to view the faults menu.

2) View status of GPS and equipment parameters.

5.20. Fuel Totalizer Quantity Setting (SET FUEL) Menu

The fuel quantity setting menu allows the pilot to:
1) If a fuel totalizer is configured in the aircraft limits, set the fuel totalizer quantity in increments of volume units.

2) If an aircraft fuel caution or aircraft fuel warning is configured in the aircraft limits, set minimum or emergency fuel bugs respectively in increments of volume units.

In addition, if a fuel totalizer is configured in the aircraft limits, **MAINS (R3)** is available to quickly set the quantity to the “fuel tabs” fuel capacity and **FULL (R4)** is available to quickly set the quantity to the total aircraft fuel capacity. Units of measure are shown in the quantity window. If fuel flow is available, current fuel flow is shown in the quantity window.

![Figure 5-29: SET FUEL (Totalizer Quantity Setting) Menu](image)

5.21. PAGE Menu

![Figure 5-30: MFD PAGE Menu](image)
1) **MAP**: Navigation data page

2) **HSI**: HSI page

3) **NAV LOG**: FMS page

4) **TRAFFIC**: Traffic page (See Traffic Appendix)

5) **DATALINK**: Datalink page (See Datalink Appendix)

6) **OVER**: Hover page

7) **WX-RDR**: Weather Radar Page (See Weather Radar Appendix)

8) **VIDEO**: Video page (See Video Appendix)

9) **BREAKERS**: ECBU (See ECBU Appendix)

5.21.1. MFD Page (Step-By-Step)

1) Push **TOP (2)** or **BTM (1)** to change MFD pages.

2) Push **1** and then rotate to **MAP**, **HSI**, **NAV LOG**, **STRIKES**, **TRAFFIC**, **DATALINK**, **HOVER**, **WX-RDR**, or **VIDEO** and push to enter.

3) Push **2** and then rotate to **MAP**, **HSI**, **NAV LOG**, **STRIKES**, **TRAFFIC**, **DATALINK**, **HOVER**, **WX-RDR**, or **VIDEO** and push to enter.

5.21.2. HSI Page (Step-By-Step) (MFD)

1) Push **BTM (1)**. Rotate to **HSI**. Push to enter.
2) Example shown with HSI in bottom area.

5.22. HSI Declutter (DCLTR) Menu

Upon selecting the HSI Declutter menu in the HSI page, a list appears to individually display:

1) PTR ADF1
2) PTR ADF2
3) PTR TAC1
4) PTR TAC2
5) PTR VOR1
6) PTR VOR2
5.22.1. HSI Declutter (DCLTR) Menu (Step-By-Step)

1) On MFD with HSI page already displayed, press **MENU (R1)**, within 10 seconds press **DCLTR (R4 or R8)** to enter HSI declutter menu.

2) On PFD with HSI page already displayed. Press **MENU (R1)**, within 10 seconds, press **DCLTR (R8)** to enter HSI DCLTR menu.

3) Rotate ı or ıı to **PTR ADF1, PTR ADF2, PTR TAC1, PTR TAC2, PTR VOR1, PTR VOR2**, and push to select, then press **EXIT (R1)** or rotate to **DONE** and push to enter.
5.23. NAV LOG Page (PFD or MFD)

Push 1 and rotate to NAV LOG and push to enter (see Section 3 Display Symbology for more information).

5.24. MFD Map Page Format Menu

Upon selecting the MFD (MENU (R1), within 10 seconds then FORMAT (R8) when in the Map page, the following list appears:

1) CENTER/ARC: Toggles between a centered and arced display format (if not panning).

2) HDG UP/N UP: Toggles between a heading up and North up display format (if not panning).

3) PAN ON/PAN OFF: Toggles page pan mode.

4) SYMB DCLTR: Activates a list to choose automatic or manual navigation symbol declutter. If the pilot chooses manual navigation symbol declutter, a list appears to individually select:

 a) Large airports
 b) IFR airports
 c) VFR airports
 d) VORs
 e) NDBs
 f) Fixes
 g) Terminal fixes
 h) User waypoints

Figure 5-33: MFD Symbol Declutter
Turning on VFR airports also turns on large and IFR airports. Turning on IFR airports also turns on large airports. Turning off large airports also turns off IFR and VFR airports. Turning off IFR airports also turns off VFR airports.

5) **FNCT DCLTR:** If enabled, activates a list to individually toggle display of:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>AIRSPACE</td>
</tr>
<tr>
<td>b)</td>
<td>BORDERS</td>
</tr>
<tr>
<td>c)</td>
<td>DATALINK (ADS-B)</td>
</tr>
<tr>
<td>d)</td>
<td>ETA</td>
</tr>
<tr>
<td>e)</td>
<td>H AIRWAY (High-Altitude airways)</td>
</tr>
<tr>
<td>f)</td>
<td>HSI (overlay)</td>
</tr>
<tr>
<td>g)</td>
<td>L AIRWAY (Low-altitude airways)</td>
</tr>
<tr>
<td>h)</td>
<td>LAT/LON (Current Latitude and Longitude position)</td>
</tr>
<tr>
<td>i)</td>
<td>PTR ADF1</td>
</tr>
<tr>
<td>j)</td>
<td>PTR ADF2</td>
</tr>
<tr>
<td>k)</td>
<td>PTR TAC1</td>
</tr>
<tr>
<td>l)</td>
<td>PTR TAC2</td>
</tr>
<tr>
<td>m)</td>
<td>PTR VOR1</td>
</tr>
<tr>
<td>n)</td>
<td>PTR VOR2</td>
</tr>
<tr>
<td>o)</td>
<td>Strikes (WX-500 lightning)</td>
</tr>
<tr>
<td>p)</td>
<td>TERRAIN</td>
</tr>
<tr>
<td>q)</td>
<td>TRAFFIC</td>
</tr>
<tr>
<td>r)</td>
<td>WX RDR</td>
</tr>
</tbody>
</table>
Section 5 Menu Functions and Procedures

Figure 5-34: Map Page Format Menu

Switch to centered display format (shown if arced is current display format and not panning)

Switch to arced display format (shown if centered is current display format and not panning)

Switch to heading up display format (shown if true north up is current display format and not panning)

Switch to true north up display format (shown if heading up is current display format and not panning)

Turn pan mode on (shown if pan mode is off)

Turn pan mode off (shown if pan mode is on)

AIRSPACE
- Airspace
- Borders
- Datalink NEXRAD, graphical METARS
- Estimated time of arrival
- High-altitude airways
- HSI Overlay
- Low-altitude airways
- Current latitude and longitude
 - ADF1 pointer
 - ADF2 pointer
 - TAC1 pointer
 - TAC2 pointer
 - VOR1 pointer
 - VOR2 pointer
 - Strikes
 - Terrain
 - Traffic
 - Weather Radar
 - Accept changes

BORDERS
- Large airports
- IFR airports
- VFR airports
- VORs
- NDBs
- Fixes
- Terminal fixes
- User waypoints
- Accept changes

DATALINK *
- Weather Radar
- Strikes
- Traffic
- Weather Radar
- Accept changes

ETA
- Estimated time of arrival

H AIRWAY
- High-altitude airways

L AIRWAY
- Low-altitude airways

LAT/LON
- Current latitude and longitude

PTR ADF1 *
- ADF1 pointer

PTR ADF2 *
- ADF2 pointer

PTR TAC1 *
- TAC1 pointer

PTR TAC2 *
- TAC2 pointer

PTR VOR1 *
- VOR1 pointer

PTR VOR2 *
- VOR2 pointer

STRIKES *
- Strikes

TERRAIN
- Terrain

TRAFFIC *
- Traffic

WX RDR *
- Weather Radar

DONE

(*) Shown if installed.
5.24.1. Map Page Format (Step-By-Step)

5.24.1.1. Changing MFD Page Orientation

1) Press **MENU (R1)**.

2) Within 10 seconds, press **FORMAT (R8)**.

3) If in ARC mode, rotate ▼ to **CENTER** and push to center display.

4) If in CENTER mode, rotate ▼ to **ARC** and push to change back to ARC mode.

5) If in HDG UP mode, rotate ▼ to **N UP** and push to change display to North Up orientation.

6) To enter pan mode, press **MENU (R1)**, within 10 seconds press **FORMAT (R8)**. Rotate ▼ to **PAN ON** and push to enter.

7) To turn off pan mode, either press **PN OFF (L5)**

8) Or **MENU (R1)**, within 10 seconds press **FORMAT (R8)** then push ▼ to select **PAN OFF**.
5.24.1.2. Adding LAT/LON to MFD Map Page

1) Press MENU (R1).

2) Within 10 seconds, press FORMAT (R8).

3) Rotate 1 to FNCT DCLTR.. and push to enter.

4) Rotate 1 to LAT/LON and push to select. Either press EXIT (R1) or rotate 1 to DONE and push to enter. If traffic is enabled, latitude/longitude display is removed when a traffic alert is present.

5) To turn off terrain, press MENU (R1), within 10 seconds press FORMAT (R8). Rotate 1 to TERRAIN and push to deselect.

6) To exit menu, press EXIT (R1) or rotate 1 to DONE and push to enter. When the IDU is powered down and reinitialized, terrain remains in the off condition until restored.
Section 6 Quick Start Tutorial

Quick Reference Guide (DOC 64-000096-090A)

Begin by reading the EFIS Rotorcraft Flight Manual Supplement (RFMS).

Knobs at the bottom of the IDU bezel are numbered 1-4 from the right side as noted. 4 only controls panel or display lighting brightness. To adjust panel lighting (legends, encoders, inclinometer, and buttons), push and rotate 4. To adjust display lighting (illumination of LCD display), rotate 4 without pushing. Rotate 3 to adjust the heading bug setting.

Power up the EFIS. The system performs a built-in test. If all tests pass, the system displays a screen identifying the database coverage. Press any button or push 3, 2, or 1 to acknowledge. The system begins a two-minute countdown while awaiting sensor initialization. For the purpose of flight planning, etc., press any button to override this countdown.
PFD Normal Mode

Press **BARO (R2)**.

Rotate \(\uparrow \) to proper setting and push to enter value or press **EXIT (R1)**.

Press **\(\Delta \) (R4)** to enter a destination active waypoint.

Rotate \(\uparrow \) to the desired alpha or numerical character, push to confirm, and advance to the next position. Push to enter once, until all five spaces have been either entered or viewed.

A magenta star bearing waypoint and a green diamond ground track symbol is displayed on the directional scale.

A direct route to the active waypoint is activated and appears as magenta tethered balloon on the PFI area. (Tether is not drawn if fix is not a ground location.)

Active waypoint information, including waypoint type and identifier; elevation or crossing altitude; and along-track distance are displayed below the ANLG AGL, MINI MAP, or MINI TRFC indicator, as configured.
Indicated airspeed is on the left, altitude is on the right, and heading is across the top. FMS/VLOC CDI is located on the bottom. VSI appears on the right side of the altitude tape. Time-critical caution is displayed in the primary field of view.

MFD Normal Mode

Heading up map with airspace and active waypoint information on the upper area.

The bottom area is showing the HSI page selection with FMS2 pointer in automatic waypoint sequencing along with VOR1 and VOR2 pointers showing relative bearings to associated navigation receivers and radial distance DME information on the bottom.
On MFD, press (R5) to display PFI on top and the last selected MFD mode on bottom.

On MFD, press (R5) to display MFD page on top and bottom.
Manual Leg

A manual leg has been created within a procedure and waypoint sequencing is suspended. Press **RESUME (L6)** to resume normal waypoint sequencing.

Waypoint sequencing has resumed and the next waypoint is now the active waypoint.

Flight Plans (Stored Routes)

Activate Flight Plan on PFD or MFD

1) Press **FPL (L1)**.

2) On PFD or MFD, push 1 and then rotate to desired flight plan and push to activate.

Create Flight Plan on PFD or MFD

1) Press **FPL (L1)**.

2) Rotate 1 to **CREATE-EDIT..** and push to enter.

3) Select **CREATE FLIGHT PLAN** and push to enter.

4) Press **ADD (R6)** to create first waypoint using 1 to enter waypoints from beginning to end; or press **NRST APT (L6)**, **NRST VOR (L7)**, **NRST NDB (L8)**, **NRST FIX (R6)**, **NRST USR (R7)**, or **AIRWAY (R8)** (when applicable) select next waypoint, and push to enter.

5) Press **SAVE (R8)** or **LOCK (L8)** to save flight plan.

6) Press **EXIT (R1)** to exit flight planner.

Waypoints

Create a User Waypoint on PFD or MFD

1) Press **MENU (R1)**.
2) Press DESIG (L3). Results are never seen in the PFI area or ND if USER WPTS in the symbol declutter menu remains deselected.

Edit a User Waypoint PFD or MFD

1) Press FPL (L1).
2) Rotate to CREATE-EDIT.. and push to enter.
3) Rotate to EDIT USER WPT and push to enter.
4) Rotate to highlight waypoint to edit and push to enter.
5) Edit waypoint. Press SAVE (R7) or (R8) to create new waypoint as the active waypoint and begin navigation guidance.
 a) If SAVE (R7) is pressed, EDIT WHICH USER WAYPOINT appears for further action. If none is desired, press EXIT (R1) to exit menu.
 b) If (R8) is pressed, a new active waypoint is created and navigation guidance has begun. Press EXIT (R1) to exit flight planner.

Insert Waypoint into an Active Route on PFD or MFD

1) Press ACTV (L2).
2) Rotate to location on waypoint list where added waypoint is to be inserted above.
3) Press INSERT (R2).
4) Press NRST APT (L2), NRST VOR (L3), NRST NDB (L4), NRST FIX (R2), or NRST USR (R3), or AIRWAY (R4) (when applicable) and then
 a) Rotate to make selection and push to enter, or
 b) Use to enter waypoint identifier and push to enter.
5) Press SAVE (L1) to save new active flight plan as another stored flight plan or press EXIT (R1) to save changes to active flight plan.
Add Waypoint to an Active Route on PFD or MFD

1) Press **ACTV** (L2).

2) Rotate 1 to end of active flight plan and one empty row below.

3) Press **ADD** (R2) then steps 4 and 5 as shown above.

Delete Waypoint from an Active Route on PFD or MFD

1) Press **ACTV** (L2).

2) Rotate 1 to highlight the waypoint to delete and then press **DELETE** (R3) to prompt CONFIRM DEL WPT. If part of a published procedure, press **DELETE** (R3) to prompt CONFIRM DEL PROC.

3) Rotate 1 to CONFIRM DEL WPT or CONFIRM DEL PROC and push to enter.

4) Press **SAVE** (L1) to save new active flight plan as another stored flight plan.

Omnibearing Selector Function

Automatic OBS if in Manual OBS (FMS OBS Only) (PFD or MFD)

1) With an active waypoint and FMS as the active nav source, press **OBS** (L4).

2) Push 1 **OBS:AUTO** to enter. (This is the default mode)

Manual OBS (PFD or MFD)

1) With an active waypoint and FMS as the active nav source, press **OBS** (L4). Ensure the active navigation source is FMS.

2) Press **OBS MANUAL** (R4) and then rotate 1 to desired OBS value, or press **OBS SYNC** (R3) and push 1 to enter. (This action suspends automatic waypoint sequencing.)

Approaches/Track

Select a VFR Approach on PFD or MFD

The active flight plan must contain an eligible airport for runway selection and VFR approach creation.

1) Press **ACTV** (L2).

2) Rotate 1 to desired airport or user waypoint and push to enter.
3) Rotate \(\text{①} \) to \text{VFR APPR..} \) and push to enter.

4) Rotate \(\text{①} \) to desired runway and push to enter. (For VFR approach to eligible user waypoint, this step is omitted.)

Change Runway during VFR Approach on PFD or MFD

1) Press \text{ACTV (L2)}.
2) Rotate \(\text{①} \) to destination airport and push to enter.
3) Rotate \(\text{①} \) to \text{VFR APPR..} \) and push to enter.
4) \text{PICK RW}: \) Rotate \(\text{①} \) to select desired runway and push to enter.

This deletes the previous VFR approach and creates a new VFR approach to the selected runway.

Select an IFR Approach on PFD or MFD

1) Press \text{ACTV (L2)}.
2) Rotate \(\text{①} \) to desired eligible airport and push to enter.
3) Rotate \(\text{①} \) to \text{IFR APPR..} \) and push to enter.
4) \text{PICK APPR}: \) Rotate \(\text{①} \) to desired approach and push to enter.
5) \text{PICK TRANS}: \) Rotate \(\text{①} \) to desired transition and push to enter.
6) \text{PICK RW}: \) Rotate \(\text{①} \) to desired runway and push to enter.

Change Runway during IFR Approach on PFD or MFD

1) Press \text{ACTV (L2)}.
2) Rotate \(\text{①} \) to destination airport and push to enter.
3) \text{PICK APPR}: \) Rotate \(\text{①} \) to desired approach. Push to enter.
4) \text{PICK TRANS}: \) Rotate \(\text{①} \) to desired transition (when applicable). Push to enter.
5) \text{PICK RW}: \) Rotate \(\text{①} \) to desired runway. Push to enter.
6) Push \(\text{①} \) to \text{CONFIRM REPLACE APPROACH}.

This deletes the previous IFR approach and creates a new IFR approach to the selected runway.
Create NRST ILS Approach on PFD or MFD

1) Press NRST (R3).

2) Rotate 1 to ILS.. and push to enter.

3) Rotate 1 to desired airport (beginning with “ILS”) and push to enter.

4) ILS frequency is sent to NAV1 and NAV2 standby positions. Further pilot action is necessary to swap frequencies to respective active positions.

NOTE:

The heading bug is automatically activated to the current bug setting to act as a starting point for receiving vectors (with or without autopilot enabled). It is recommended to align the heading bug with the aircraft heading or set the heading bug to the assigned vector heading before pressing the knob to confirm the selection.

5) Push 1 to CONFIRM ACTIVATE ILS. (Previous active flight plan is deleted.)

6) A direct flight plan to the airport associated with the ILS is created.

7) If the heading bug is turned off, it is activated to current heading to act as a starting point for receiving vectors (with or without autopilot enabled.)

8) A vectors-to-final ILS approach to the ILS is activated.

9) Automatic HSI nav source switching to the VLOC1 pilot side and VLOC2 co-pilot side occurs.

10) With crossfill normal, both pilot side and co-pilot side VLOC1 and VLOC2 (regardless of active nav source selection), OBS settings are set to the associated localizer course. (With crossfill inhibited, this action only occurs on side where NRST ILS menu was activated.)

Any previous waypoints from the deleted active flight plan need to be added to the new NRST ILS active flight plan if necessary.
XFILL SYNC Operation

Crossfill is the normal default mode of operation.

1) During crossfill inhibited operation, **XFILL INHBT** appears on the PFD in the lower left corner.

2) When the pilot and co-pilot sides are not synchronized, **XFILL ARM** appears in lower left corner of the PFD.

3) When the pilot and co-pilot sides are not synchronized, press **MENU (R1)** then **XFILL SYNC (L1)** to synchronize the pilot and co-pilot active flight plan parameters from the side where the button press occurred.
Section 7 IFR Procedures

7.1. EFIS Navigation Operational Capabilities

The installed Genesys Aerosystems EFIS, receives GPS/SBAS satellite data from the Genesys Aerosystems TSO-C145c GPS Beta 3 sensor, meets TSO-C146c Class 3, and complies with AC 20-138D for navigation using GPS and GPS/SBAS (within the coverage of a satellite-based augmentation system complying with ICAO Annex 10) for enroute, terminal area, non-precision approach, and approach procedures with vertical guidance operations. Non-precision approach operations include those based on conventional navigation aids with “or GPS” in the title and those with “GPS” and “RNAV (GPS)” in the title to “LNAV” and “LP” minimums. Approach procedures with vertical guidance includes “RNAV (GPS) to “LNAV/VNAV” and “LPV” minimums.

Navigation information is referenced to the WGS-84 reference system, and should only be used where the Aeronautical Information Publication (including electronic data and aeronautical charts) conform to WGS-84 or equivalent.

The Genesys Aerosystems EFIS, as installed, complies with the requirements for GPS oceanic/remote navigation, when used in conjunction with the RAIM prediction program. This does not constitute an operational approval. The VNAV system meets the accuracy requirements of VFR/IFR enroute, terminal, and approach VNAV operation within the conterminous U.S. and Alaska in accordance with the criteria in AC 20-138D (as revised).

The navigational equipment as installed complies with the requirements established for the navigation specifications in Table 7-1.

<table>
<thead>
<tr>
<th>Navigation Specification</th>
<th>Operational Requirements/ Authorizations</th>
<th>Required Equipment</th>
<th>Reference Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceanic and Remote Areas of Operation</td>
<td>GNSS FDE availability must be verified prior to flight. Maximum predicted FDE unavailability is 25 minutes. No time limit using GNSS as the primary navigation sensor.</td>
<td>Dual Genesys GPS/SBAS systems, which meet TSO-C146c, with GPS sensor data from the Genesys TSO-C145c receivers.</td>
<td>AC 20-138D AC 91-70B This does not constitute operational approval.</td>
</tr>
</tbody>
</table>
Table 7-1: Navigational Operational Capabilities

<table>
<thead>
<tr>
<th>Navigation Specification</th>
<th>Operational Requirements/Authorizations</th>
<th>Required Equipment</th>
<th>Reference Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNAV-10 RNP-10</td>
<td>GNSS FDE availability must be verified prior to flight. Maximum predicted FDE unavailability is 25 minutes. ANP does not exceed RNP. No time limit using GNSS as the primary navigation sensor.</td>
<td>Dual Genesys GPS/SBAS systems, which meet TSO-C146c, with GPS sensor data from the Genesys TSO-C145c receivers.</td>
<td>AC 20-138D This does not constitute operational approval.</td>
</tr>
<tr>
<td>B-RNAV/ RNAV-5 RNP-5</td>
<td>ANP does not exceed RNP. No time limit using GNSS as the primary navigation sensor.</td>
<td>Single Genesys GPS/SBAS systems, which meet TSO-C146c, with GPS sensor data from the Genesys TSO-C145c receivers.</td>
<td>AC 20-138D This does not constitute operational approval.</td>
</tr>
<tr>
<td>RNP-4 Oceanic and Remote Area Operations</td>
<td>GNSS FDE availability must be verified prior to flight. Maximum predicted FDE unavailability is 25 minutes. ANP does not exceed RNP. No time limit using GNSS as the primary navigation sensor.</td>
<td>GPS/SBAS system with flight management system capabilities and navigation data display on EFIS, when combined with other aircraft equipment.</td>
<td>AC 20-138D This does not constitute operational approval.</td>
</tr>
<tr>
<td>Navigation Specification</td>
<td>Operational Requirements/Authorizations</td>
<td>Required Equipment</td>
<td>Reference Guidance</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>RNAV-2</td>
<td>GNSS is required for takeoff in P-RNAC airspace. GNSS FDE availability must be verified prior to flight. Maximum predicted FDE unavailability is 25 minutes. ANP does not exceed RNP. No time limit using GNSS as the primary navigation sensor.</td>
<td>At least one Genesys GPS/SBAS, which meets TSO-C146c, with GPS sensor data from the Genesys TSO-C145c receivers.</td>
<td>AC 20-138D This does not constitute operational approval.</td>
</tr>
<tr>
<td>RNAV-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-RNAV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV Routes (DPs, STARS, Q, and T Routes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNP-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNP-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navigation Specification</td>
<td>Operational Requirements/ Authorizations</td>
<td>Required Equipment</td>
<td>Reference Guidance</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>RNP-APCH [titled RNAV (GPS) or RNAV (GNSS)] – including RNP procedures to a minimum value of RNP-0.3 (LNAV minimums and LPV minimums) RNP AR-APCH procedures, and approach procedures with RF legs are NOT authorized.</td>
<td>All instrument approach procedures that are retrieved from the navigation system database are authorized.</td>
<td>At least one Genesys GPS/SBAS, which meets TSO-C146c, with GPS sensor data from the Genesys TSO-C145c receivers.</td>
<td>AC 20-138D This does not constitute operational approval.</td>
</tr>
<tr>
<td>Navigation Specification</td>
<td>Operational Requirements/Authorizations</td>
<td>Required Equipment</td>
<td>Reference Guidance</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| RNP AR-APCH procedures, and approach procedures with RF legs | All instrument approach procedures that are retrieved from the navigation system database are authorized. GNSS is required to initiate RNAV (GPS) approach procedures. For RNAV (GPS) approach procedures, a missed approach is required if both GNSS sensors become unavailable. ANP does not exceed RNP (except during a missed approach procedure following loss of GNSS navigation.) Maximum predicted RAIM outage is 5 minutes. | At least one Genesys GPS/SBAS, which meets TSO-C146c when GPS sensor data is from a TSO-C145c receiver. | AC 20-138D
This does not constitute operational approval. |
Table 7-1: Navigational Operational Capabilities

<table>
<thead>
<tr>
<th>Navigation Specification</th>
<th>Operational Requirements/Authorizations</th>
<th>Required Equipment</th>
<th>Reference Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced RNP functions as follows: - RF Legs - Parallel Offsets - Scalable RNP - Fixed Radius Transitions (FRT)</td>
<td>GNSS FDE availability must be verified prior to flight. Maximum predicted FDE unavailability is 25 minutes. ANP does not exceed RNP. No time limit using GNSS as the primary navigation sensor.</td>
<td>At least one Genesys GPS/SBAS, which meets TSO-C146c when GPS sensor data is from a TSO-C145c receiver.</td>
<td>AC 20-138D This does not constitute operational approval.</td>
</tr>
<tr>
<td>Enroute, Terminal and Approach Vertical Navigation (VNAV)</td>
<td>Use of vertical glide path (GP) guidance to a published DA is approved.</td>
<td>At least one Genesys GPS/SBAS, which meets TSO-C146c, with GPS sensor data from the Genesys TSO-C145c receivers.</td>
<td>AC 20-138D This does not constitute operational approval.</td>
</tr>
</tbody>
</table>

7.2. Active Flight Plan

Before using the Genesys EFIS GPS navigation system to fly any part of an instrument procedure in VMC or IMC, always compare each leg of the applicable and current published charted procedure to the flight plan displayed on the map. This EFIS and FMS may not support some specific navigation leg types. All pilots must understand how each leg is depicted and navigated prior to conducting the procedure. Not all airport diagrams
or instrument approach plates are supported by the Navigation/Charts database.

After updating the navigation database and planning to fly an instrument procedure, practice in the RUN DEMONSTRATOR/TRAINING PROGRAM to view how each leg is depicted.

If navigation planning includes manual sequencing of any leg in a procedure, verify what specific navigation guidance the EFIS provides. When any procedure includes ARINC-424 legs defined by headings, or that terminate at a specific altitude, the pilot must understand how the EFIS behaves and how system behavior can affect coupled autopilot operations.

Upon activation of the active flight plan menu, the application checks for an active waypoint. If there is no active waypoint, **NO ACTIVE WPT** appears. Otherwise, a nav log of waypoints in the active flight plan is presented with the following:

1) Waypoint identifier and characterization (default, overfly [OF], or no radius [OR])

2) Symbol designating waypoint type and what type of procedure (if any) the waypoint is associated

3) VNAV altitudes and offsets associated with each waypoint

4) Information related to flight plan path between each waypoint

In the case of an approach with a final approach segment data block, the VNAV offset readout associated with the missed approach point is “GPI” to designate distance to the glide path intercept point. When courses are presented as part of the path information, they are displayed referenced to either magnetic or true north depending upon the status of the true north discrete input. If referenced to magnetic north, the course is indicated with the degree (°) symbol. Otherwise, a stylized true north (T) symbol appears.

The active waypoint is designated by an asterisk and is magenta but turns amber (yellow) during a GPS LON caution.

<table>
<thead>
<tr>
<th>Table 7-2: VNAV Altitudes and Offsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Source</td>
</tr>
<tr>
<td>Navigation database or manually entered</td>
</tr>
<tr>
<td>MYNN</td>
</tr>
<tr>
<td>MYEH</td>
</tr>
<tr>
<td>MYEM</td>
</tr>
<tr>
<td>MYER</td>
</tr>
</tbody>
</table>
A suppressed waypoint (designated by brackets) is an airport associated with an IFR or VFR approach procedure. After an approach procedure is activated, the associated airport is no longer part of the active flight plan for guidance purposes. However, the associated airport is still shown in the nav log for it to be highlighted for information or to activate other procedures to the airport. Since only one approach may be active at any given time, only one waypoint may be suppressed at any given time.

NOTE:

Adding a STAR procedure with neither an instrument approach nor a SID does not suppress the airport waypoint. Adding a STAR to a different airport in the active flight plan does not change the original suppressed waypoint airport.

A skipped waypoint is a waypoint associated with a dynamic termination leg with a zero length. These are either:

1) An altitude termination leg when current aircraft altitude is above the termination altitude; or

2) System-created (i.e., not NavData® specified) intercept to a course to a fix leg where there is insufficient distance to calculate an intercept heading.
To add a waypoint to the end of the active flight plan, rotate through each waypoint of the flight plan to one position past the end. If not, the application makes the selected waypoint active. Otherwise, a list is presented.

Upon selection of a waypoint from the selection list, the EFIS checks whether the selected waypoint meets the criteria for waypoint activation, manual VNAV parameter entry, custom holding pattern entry, manual overfly characterization, VFR approach entry, IFR approach entry, STAR entry, or DP entry. If it does, a list is presented as follows:

1) **WAYPOINT**: If valid, make the selected waypoint the active waypoint. Option valid for any waypoint except:
 a) Suppressed waypoint;
 b) Skipped waypoint;
 c) A waypoint following a discontinuity; or
 d) The first waypoint.

2) **VNAV**: If valid, enter a manual VNAV altitude and offset for the selected waypoint. This menu level allows for synchronizing the VNAV altitude to current altitude and for removing the manual VNAV altitude and offset entries. These altitudes are settable in increments of 100 feet and distances of 1 NM. Option valid for any waypoint except:
 a) Suppressed waypoint
 b) Skipped waypoint;
 c) A manual termination waypoint;
 d) A waypoint that is part of an IFR or VFR approach;
 e) A SAR pattern exit waypoint;
 f) A parallel offset entry or exit waypoint; or
 g) One of the following types of termination legs:
 i) Dynamic;
 ii) Altitude;
 iii) DME;
 iv) Radial; or
 v) Intercept

3) **HOLD**: If valid, enter a manual holding pattern at the selected waypoint. Option valid for any waypoint except:
 a) Suppressed waypoint;
 b) Skipped waypoint;
 c) A manual termination waypoint;
Section 7 IFR Procedures

4) **SAR PTRN**: If valid, create and enter a SAR pattern as defined in the SAR appendix. If SAR patterns are enabled in the EFIS limits this option is valid for any waypoint except:

a) Suppressed waypoint;

b) Skipped waypoint;

c) A manual termination waypoint;

d) A waypoint that is part of an IFR or VFR approach;

e) A holding waypoint;

f) A SAR pattern exit waypoint;

5) **SAR SGMNT**: Select which segment within the SAR pattern should be active for navigation guidance. If the selected waypoint is the active waypoint and is one of the following types of SAR patterns:

a) Expanding square;

b) Rising ladder; or

c) Sector search
6) **OFLY/AUTO**: If the selected waypoint is neither suppressed, skipped, nor a manual termination, change the waypoint’s overfly characterization. The choices are:

 a) **AUTO**: Reset automatic overfly characterization by FMS.

 b) **OVERFLY**: Force the overfly characterization to be an overfly adjust-exit waypoint and force the inbound course to go directly to the waypoint regardless of the amount of course change required.

 c) **NO RADIUS**: Force the turn radius at the waypoint to be zero. This forces the inbound course and outbound course to go directly to and from the waypoint regardless of the amount of course change required.

 NOTE:

 It is not possible to track a “NO RADIUS” path perfectly, but the FMS path guidance quickly recaptures the outbound course after resuming automatic waypoint sequencing. Designating a waypoint as a “NO RADIUS” waypoint affects the turn radius used to calculate procedure turn and holding pattern leg paths.

7) **VFR APP**: If selected waypoint is a user waypoint with an approach bearing, a VFR approach to the user waypoint based upon the approach bearing is created, and the user waypoint is suppressed. If the selected waypoint is a VFR airport or an IFR airport with surveyed runways, the pilot is presented with a list of runways. After selecting a runway, a VFR approach to the runway is created, and the airport waypoint is suppressed. Activating a VFR approach deletes any pre-existing IFR or VFR approaches. If a heading bug is not active, activating a VFR approach activates the heading bug on current aircraft heading and is used to define the course intercept angle.

8) **IFR APP**: If selected waypoint is an airport with an IFR approach, the pilot is presented with a list of available approaches (including, if applicable, the five-digit channel number, followed by a list of available transitions, if there are more than one) and a list of runways (if there are surveyed runways at the airport). After selection, the appropriate IFR approach is created, and the airport waypoint is suppressed. Activating an IFR approach deletes any pre-existing IFR or VFR approaches. If there is a pre-existing STAR to the airport, the IFR approach waypoints are inserted after the STAR waypoints. If a heading bug is not active and the activated transition is “Vectors to
Final,” activating an IFR approach activates the heading bug on current aircraft heading for purposes of defining the course intercept angle.

9) **STAR**: If selected waypoint is an airport with a STAR, the pilot is presented with a list of available STARs, followed by a list of available transitions (if there are more than one) and a list of runways (if there are surveyed runways at the airport). After selection, the appropriate STAR is created. Activating a STAR automatically deletes any pre-existing STAR. If there is a pre-existing approach (IFR or VFR) to the airport, STAR waypoints are inserted prior to the approach waypoints.

10) **DP**: This option is invalid if the selected waypoint is a holding pattern waypoint or SAR pattern exit waypoint. (This forces a pilot to deactivate a manual holding pattern or SAR pattern prior to activating an IFR approach). If selected waypoint is an airport with a DP, the pilot is presented with a list of DPs, followed by a list of available transitions (if there are more than one) and a list of runways (if there are surveyed runways and more than one runway authorized for the DP). After selection, the appropriate DP is created, and upon activation, deletes any pre-existing DPs.

7.3. IFR Procedures

Pilots operating in a radar environment are expected to associate departure headings or an RNAV departure advisory with vectors or the flight path to the planned route or flight. Use of both types of departure procedures; Obstacle Departure Procedures (ODP), which are printed either textually or graphically, and Standard Instrument Departure procedures (SIDs), which are always printed graphically. All DPs, either textual or graphic may be designed using either conventional or RNAV criteria. RNAV procedures have RNAV printed in the title.

ODPs are not found in the navigation database, and therefore the climb angle found in the PFD bugs menu should be set to comply with the steeper than normal climb gradient during the departure until established on the enroute structure. ODPs are recommended for obstruction clearance and may be flown without ATC clearance, unless an alternate departure procedure (SID or radar vector) has been specifically assigned by ATC.

Approach minima are never coded in NavData®. On some approaches, the altitude coded at the MAP for a non-precision approach coincides with an MDA (normally where the final approach course does not align with the runway), but more often the coded altitude is some height above the threshold.
7.4. Overview of Procedures and Instrument Approaches

This Genesys Aerosystems EFIS provides 3D GPS precision and non-precision instrument approach guidance using a system integral TSO C146c BETA 3 GPS receiver with GPS and augmented GPS with SBAS (Satellite Based Augmentation System) commonly referred to as WAAS (Wide Area Augmentation System). In order to support full integration of RNAV procedures into the National Airspace System (NAS), a charting format for instrument approach procedures (IAPs) designed to avoid confusion and duplication of instrument approach charts was created.

Use of this GPS receiver provides a level of certified service supporting RNAV (GPS) approaches to LNAV, LP, LNAV/VNAV, and LPV lines of minima within system coverage. Some locations close to the edge of the coverage may have lower availability of vertical guidance.

Approach with vertical guidance (APV) procedures are defined in ICAO Annex 6 and include approaches such as the LNAV/VNAV procedures presently being flown with barometric vertical navigation (BARO-VNAV). These approaches provide vertical guidance but do not meet the more stringent standards of a precision approach. With the WAAS BETA 3 GPS receiver and updatable navigation database in this system, these approaches may be flown using an electronic glide path, which eliminates errors introduced by using barometric altimetry.

In addition to LNAV/VNAV procedures, APV takes advantage of the high accuracy guidance and increased integrity provided by GBS/SBAS. This SBAS (TEROS/ICAO) generated angular guidance allows use of the same TERPS approach criteria for ILS approaches. The resulting approach procedure minima, localizer performance with vertical guidance (LPV), have a decision altitude as low as 200 feet height above touchdown (EASA OPS LPV 250 ft.) with visibility minimums as low as ½ mile (providing the terrain and airport infrastructure and regulations support the lowest minima criteria.)

Another non-precision GPS/SBAS approach, certified as an localizer performance (LP) approach where terrain or obstructions prohibit the certification of the LPV vertically guided approach, takes advantage of the angular lateral guidance and smaller position errors (provided by GPS/SBAS) to provide a lateral only procedure similar to an ILS localizer. LP procedures may provide lower minima than a LNAV procedure due to the narrower obstacle clearance surface. In the LP approach, vertical guidance is for information only and is based on SBAS or BARO information.

The Genesys Aerosystems EFIS guides the pilot through every step of the approach procedure with HITS 3D symbology. The system defines a
desired flight path based upon the active flight plan. The current position of the aircraft is determined relative to the desired path in order to determine lateral deviation for display on the GPS/SBAS CDI and VDI. The EFIS auto-sequences from one waypoint to the next in accordance with the flight plan along the flight path with the following exceptions:

1) Pilot has selected a manual GPS/SBAS OBS (shown).
2) Active waypoint is the missed approach waypoint, and missed approach procedure has not been armed (ARM) nor initiated (MISS) (shown).
3) Aircraft is in a published or manually created holding pattern, and pilot has not chosen to continue (CONT) out of the holding pattern (shown).
4) Active waypoint is the last waypoint of the active flight plan (no flag shown).
5) Leg following active waypoint is a manual termination leg, and the pilot has not chosen to resume (RESUME) to the waypoint following the manual termination (shown).
6) The aircraft is in a repeating SAR pattern (Race Track, Sector Search, or Orbit) and the pilot has not chosen to continue out of the SAR pattern (shown).
7) Where automatic waypoint sequencing is suspended due to reasons 1, 2, or 4 above, the EFIS automatically switches from TO operation to FROM operation when appropriate. If not suspended, automatic waypoint sequencing occurs upon the following conditions:
 a) Bearing to the transition point (turn bisector for the fly-by waypoint, active waypoint for fly-over waypoint) is more than 90° from the current course (transition from “TO” to “From” operation);
 b) Aircraft location is within one turn diameter (based upon current true Airspeed and 15° angle of bank) of the transition point; and
 c) Aircraft heading is within 90° of the current course (generally pointed in the correct direction).

7.4.1. Operations Outside GPS/SBAS Coverage Area

When outside of a GPS/SBAS service provider’s coverage area, the GPS receivers can revert to using FDE for integrity. The GPS receiver uses GPS/SBAS integrity or FDE, whichever provides the best protection level.
GPS/SBAS equipment does not have any limitations in oceanic and remote areas provided the operator obtains an FDE prediction program.

7.4.2. Highway in the Sky (Skyway)

When not decluttered, the PFD displays the active navigation route or manual OBS course 3D manner with a series of skyway boxes, which overlay the flight plan route at a desired altitude and provide lateral and vertical guidance. Skyway boxes conform to the VNAV requirements of GPS/SBAS receiver requirements (TSO-C-146C). The top and bottom of the boxes are parallel to the horizon on straight leg segments and dynamically tilt with respect to the horizon on turning leg segments based on leg segment turn radius and ground speed.

<table>
<thead>
<tr>
<th>Type HITS Lines</th>
<th>Fully Integrated Autopilot</th>
<th>Partially Integrated Analog Autopilot</th>
<th>Un-Integrated Autopilot or No Autopilot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dashed</td>
<td>Not coupled to skyway</td>
<td>Coupled to skyway.</td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td>Coupled to Skyway</td>
<td>Autopilot is either in HDG mode with LNAV heading/roll-steering sub-mode engaged or in NAV/APR mode with FMS1 or FMS2 as the selected navigation source.</td>
<td>Always Solid</td>
</tr>
</tbody>
</table>

When the active route is in view, up to five boxes are shown with the dimensions being a constant 400 feet wide (±200 feet from the desired lateral path) by 320 feet tall (±160 feet from the desired vertical path) spaced horizontally 2000 feet.

Skyway boxes are drawn using the hidden surface removal techniques of the terrain and obstruction rendering, so a skyway box behind terrain appears to be so. Skyway boxes disappear in basic mode and unusual attitude mode. In reversionary mode 1 (GPS failure), skyway boxes disappear after one minute to indicate degraded navigation performance.
Figure 7-2: Highway in the Sky Five Boxes

Skyway box altitude is controlled by VNAV altitude, aircraft altitude, climb performance, and climb/descent angle setting (in PFD BUGs menu outside of the FAF when an instrument approach is loaded). If no VNAV altitude is set, the skyway boxes describe the desired lateral flight path at the aircraft's current altitude.

With a VNAV altitude set, the boxes provide both lateral and vertical guidance. Climb and descent angle settings are controlled individually with a resolution of 0.1°.

When no VNAV altitudes associated with a waypoint exist and a target altitude is set, HITS box altitudes emanate from the current aircraft altitude and indicate a climb or descent, as appropriate, until reaching the target altitude. When a climb is shown, the HITS boxes are drawn at the higher of actual climb angle or the dynamic climb angle setting. When a descent is shown, the HITS boxes are drawn at an angle corresponding to the descent angle setting in the PFD BUGs menu.

NOTE:

The purpose of this symbology is to emulate an altitude pre-selector and give guidance to climb or descend real-time as if being issued an assigned altitude from ATC.
When at least one VNAV altitude associated with a waypoint exists, HITS boxes are guided by VNAV waypoints determined by VNAV altitude and VNAV offsets from flight plan waypoints. The two sources for VNAV altitudes come from the navigation database or are manually input through the ACTV menu. VNAV altitudes are automatically computed by the system using “look-ahead” rules if not coming from the navigation database or manually input.

When “look-ahead” finds a further VNAV altitude constraint above the previous VNAV altitude constraint (climb commanded), then an automatic VNAV altitude is continuously calculated for the waypoint based upon an immediate climb to the altitude constraint at the dynamic climb angle.

When “look-ahead” finds a further VNAV altitude constraint below the previous VNAV altitude constraint (descent commanded), then an automatic VNAV altitude is calculated for the waypoint based upon a descent to reach the VNAV altitude constraint at the associated waypoint using the descent angle setting. If no further VNAV altitude constraints are found, then the automatic VNAV altitude is set to the last valid altitude constraint.

When a VNAV climb is desired, the HITS boxes are drawn at a vertical position that is higher of the following:

1) The dynamic climb angle emanating from the aircraft’s present position (aircraft-referenced);

2) The dynamic climb angle emanating from the next waypoint VNAV altitude (geo-referenced forward); OR

3) The climb angle setting emanating from the previous waypoint VNAV altitude (geo-referenced backward).

NOTE:

The geo-referenced backward calculation is only considered when the current leg is part of a procedure and is designed to provide pilot awareness if a specified climb angle gradient is not being met.

Once the HITS boxes intercept the VNAV altitude, further boxes are drawn with a zero angle to show a level-off followed by a level segment. Since five HITS boxes are shown, the level-off depiction becomes a compelling anticipatory cue for the pilot.

VNAV climb guidance is shown in Figure 7-3, Figure 7-4, and Figure 7-5.
When a VNAV descent is desired, boxes are drawn with a zero angle until reaching a descent point. Further boxes are drawn downward at an angle corresponding to the descent angle setting. The descent point is defined...
by the intercept of a line emanating upward from the subsequent VNAV waypoint at the descent angle setting and a line representing level flight at the previous VNAV altitude. On the final approach segment of an IFR approach, descent angle and VNAV waypoint are defined in Table 7-4.

Table 7-4: Final Segment of IFR Approach, Descent Angle and VNAV Waypoint

<table>
<thead>
<tr>
<th>Condition</th>
<th>VNAV Waypoint</th>
<th>Descent Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFR approach with valid final approach segment data block containing a non-zero glide path angle</td>
<td>Glide Path Intercept Point (GPIP) as defined in final approach segment data block</td>
<td>Descent angle as defined in final approach segment data block</td>
</tr>
<tr>
<td>Absent or invalid final approach segment data block, or final approach segment data block glide path angle is set to 0°</td>
<td>Missed approach point location</td>
<td>Straight line from FAF to MAP location and altitudes</td>
</tr>
<tr>
<td>No intermediate waypoints exist between FAF and MAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent or invalid final approach segment data block, or final approach segment data block glide path angle is set to 0°</td>
<td>Missed approach point location</td>
<td>Steepest descent angle based upon straight lines from FAF and subsequent intermediate waypoints to MAP location and altitudes</td>
</tr>
<tr>
<td>Intermediate waypoints exist between FAF and MAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On the final approach segment of a VFR approach procedure, the higher of the descent angle setting or 3° is used.

Because five HITS boxes are shown, the descent point depiction is an anticipatory cue. Figure 7-7 depicts descent guidance and creates an easily understood, yet safe, VNAV paradigm to meet the VNAV requirements current guidance.

Furthermore, the paradigm is biased towards keeping the aircraft at the highest altitude possible for the longest period of time. The climb paradigm compensates for an aircraft's ability to climb more steeply than specified and warns of being below a desired climb gradient when the aircraft is
unable to meet the specified climb angle. The descent paradigm encourages flying stabilized approaches.

Table 7-5: VNAV Paradigm

<table>
<thead>
<tr>
<th>Normal Descent</th>
<th>Final Approach Segment Descent w/FAS DB and Non-zero Glide Path Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| ![Diagram](image3) | ![Diagram](image4) |

Final Approach Segment Descent w/o FAS Data Block Glide Path Angle or Intermediate Waypoints

Final Approach Segment Descent w/o FAS Data Block Glide Path Angle and with Intermediate Waypoint

The VNAV paradigm scheme was used to create an easily understood, yet safe, method to meet certification requirements. Simplicity is the primary objective and this paradigm is biased towards keeping the aircraft at the highest altitude possible for the longest time. The climb paradigm automatically compensates for an aircraft’s ability to climb more steeply than specified and also warns of being below a desired climb gradient when the aircraft is unable to meet the specified climb angle. Furthermore, this descent paradigm encourages flying stabilized, and continuous descent profiles.
When automatic waypoint sequencing is suspended due to reasons 1, 2, or 4 in § 7.5, the EFIS switches from “TO” to “FROM” operation when appropriate. If not suspended, automatic waypoint sequencing occurs in following conditions:

1) Bearing to the transition point (turn bisector for fly-by waypoint, active waypoint for fly-over waypoint) is more than 90° from the current course (i.e., transition from “TO” to “FROM” operation);

2) Aircraft location is within two turn diameters (based upon current true airspeed and 15° angle of bank) of the active waypoint location; and

3) Aircraft heading is within 90° of the current course (i.e., generally pointed in the correct direction).

The desired flight path is created from a sequence of straight, left turning, and right turning leg segments designed to provide smooth skyway, GPS/SBAS CDI, and lateral autopilot guidance. Each leg between waypoints is composed of up to nine segments. Radii for turning segments (other than DME arc or radius to a fix segment) are calculated with the parameter speed determined as follows:
1) If the waypoint is part of a DP and within 30NM of the departure runway, speed is the pre-programmed procedure speed.

2) If the waypoint is part of a STAR and within 30NM of the arrival runway, speed is the pre-programmed procedure speed.

3) If the waypoint is part of an IFR or VFR approach procedure, speed is the preprogrammed procedure speed.

4) If the waypoint is part of a holding pattern, speed is the preprogrammed procedure speed.

5) Within a SAR pattern, speed is the lower of holding speed or procedure speed.

6) Where a fixed-radius transition (FRT) is defined by the navigation database for a waypoint, that turn radius is used for the turning segment. FRT is used in enroute flight in order to save the number of waypoints and to provide a smoother transition. The RF leg can only be used in a SID or in a STAR. It is the flight plan leg stored in the navigation database, which is defined by constant radius turns around a given fix.

7) Otherwise, speed is the current true airspeed or procedure speed, whichever is higher.

In all cases, if NavData® derived speed limit is associated with the waypoint, speed is the lower of the NavData® derived speed limit or the speed determined above.

7.4.4. Fly-Over Waypoints

To create the desired flight path, each waypoint is designated as a fly-over or a fly-by waypoint. Waypoints are further subdivided into waypoints with a defined entry heading and waypoints with a defined exit heading. Waypoint auto-sequencing for fly-by waypoints occurs at the bisector of the turn. Waypoint auto-sequencing for fly-over waypoints occurs over the waypoint.
These waypoints are type fly-over with defined entry heading:

1) Waypoint leading into discontinuity;
2) Waypoints which are marked as overfly in the navigation database or menu system;
3) Exit from holding pattern;
4) Exit from procedure turn;
5) Entry into holding pattern;
6) Missed approach point;
7) Phantom waypoint (created by inserting a waypoint into the active flight plan or performing Direct-To function within the active flight plan – avoids S-turns);
8) Last waypoint;
9) Direct-To waypoint (created by creating a new active flight plan with the Direct-To function – avoids S-turns);
10) Reference (takeoff runway end) waypoint of a DP;
11) Waypoint leading into discontinuity; and
12) Altitude, DME, or radial termination legs (ARINC-424 path types CA, FA, VA, CR, VR, CD, FD, and VD; see Table 7-6).
13) Waypoints marked as overfly in the navigation database.

<table>
<thead>
<tr>
<th>Path</th>
<th>Designator</th>
<th>Terminator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant DME arc</td>
<td>A</td>
<td>Altitude</td>
</tr>
<tr>
<td>Course to</td>
<td>C</td>
<td>Distance</td>
</tr>
<tr>
<td>Direct Track</td>
<td>D</td>
<td>DME Distance</td>
</tr>
<tr>
<td>Course from a Fix to</td>
<td>F</td>
<td>Fix</td>
</tr>
<tr>
<td>Holding Pattern</td>
<td>H</td>
<td>Next Leg</td>
</tr>
<tr>
<td>Initial</td>
<td>I</td>
<td>Manual Termination</td>
</tr>
<tr>
<td>Constant Radius</td>
<td>R</td>
<td>Radial Termination</td>
</tr>
<tr>
<td>Track Between</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Heading To</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Examples: **CF** = Course to Fix, and **FM** = Course from a Fix to a Manual Termination, etc.

These waypoints are type fly-over with defined exit heading:
1) Entry into procedure turn; and
2) Waypoint exiting a discontinuity with the exception of phantom waypoints or DP reference waypoints;
3) First waypoint with the exception of start waypoints or DP reference waypoints
4) Course to a fix legs that are not to the FAF/FAWP are fly-by with defined entry heading. All other waypoints are fly-by with defined exit heading.
5) Entry into SAR pattern.

7.4.5. Fly-By Waypoints

Course to a fix legs that are not to the FAF/FAWP are Fly-By with defined entry heading. All other waypoints are Fly-By with defined exit heading. Leg segments for paths are constructed by the EFIS (see Figure 7-8).

Figure 7-8: Fly-By Waypoints

NOTE:
Entry adjustments should be expected anytime a turn exceeds 120°. Turns greater than 120° should not be used in conjunction with RNP routes. (RNP standards specifically exclude such turns from RNP requirements.)
<table>
<thead>
<tr>
<th>Path Type</th>
<th>Waypoint</th>
<th># of Segments and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight Leg, DME</td>
<td>Fly-By Fly-By</td>
<td>2nd half of fly-by turn at entry waypoint. WGS-84 geodesic or arc path from entry to exit turns. 1st half of fly-by turn at exit waypoint.</td>
</tr>
<tr>
<td>Arc or Radius to a Fix</td>
<td>Fly-By Fly-Over Defined Exit Heading</td>
<td>2nd half of fly-by turn at entry waypoint. WGS-84 geodesic or arc path from entry to exit turns. Turn to exit heading prior to exit waypoint.</td>
</tr>
<tr>
<td>Fly-By</td>
<td>Fly-Over Defined Exit Heading Fly-By</td>
<td>2nd half of fly-by turn at entry waypoint. WGS-84 geodesic or arc path from entry to exit waypoint.</td>
</tr>
<tr>
<td>Fly-Over Defined Entry Heading</td>
<td>Fly-By Fly-Over Defined Exit Heading</td>
<td>WGS-84 geodesic or arc path from entry waypoint to exit turn. 1st half of fly-by turn at exit waypoint.</td>
</tr>
<tr>
<td>Fly-Over Defined Exit Heading</td>
<td>Fly-Over Defined Exit Heading Fly-By</td>
<td>WGS-84 geodesic or arc path from entry waypoint to exit turn. Turn to exit heading prior to exit waypoint.</td>
</tr>
<tr>
<td>Fly-Over Defined Entry Heading</td>
<td>Fly-Over Defined Exit Heading Fly-By</td>
<td>WGS-84 geodesic or arc path from entry waypoint to exit waypoint.</td>
</tr>
<tr>
<td>Fly-Over Defined Exit Heading</td>
<td>Fly-By</td>
<td>Turn from entry heading after entry waypoint. WGS-84 geodesic or arc path from entry to exit turns. 1st half of fly-by turn at exit waypoint.</td>
</tr>
<tr>
<td>Fly-Over Defined Exit Heading</td>
<td>Fly-Over Defined Exit Heading Fly-By</td>
<td>Turn from entry heading after entry waypoint. WGS-84 geodesic or arc path from entry to exit turns. Turn to exit heading prior to exit waypoint.</td>
</tr>
</tbody>
</table>
Table 7-7: Leg Segments for Paths Constructed by EFIS

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Waypoint</th>
<th># of Segments and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entry</td>
<td>Exit</td>
</tr>
<tr>
<td>Fly-Over</td>
<td>Defined Entry Heading</td>
<td>Defined Entry Heading</td>
</tr>
<tr>
<td>Procedure Turn</td>
<td>Fly-Over Defined Exit Heading</td>
<td>Fly-Over Defined Entry Heading</td>
</tr>
<tr>
<td>Holding Pattern</td>
<td>Fly-Over Defined Entry Heading</td>
<td>Fly-Over Defined Entry Heading</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7-7: Leg Segments for Paths Constructed by EFIS

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Waypoint</th>
<th># of Segments and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entry</td>
<td>Exit</td>
</tr>
<tr>
<td>Holding pattern</td>
<td>Holding pattern</td>
<td>Holding pattern inbound leg (length based upon either time or distance as specified by navigation database).</td>
</tr>
</tbody>
</table>

7.4.6. Direct-To

If the EFIS generates a WGS-84 geodesic path to a designated “To” fix, the aircraft captures this path without “S-turning” or undue delay. Where the selected “To” fix is in the active flight plan, the required transition is created as follows:

1) A phantom waypoint is created at the current aircraft location.
2) Waypoints prior to the Phantom waypoint are automatically decluttered from the flight plan.
3) Phantom waypoint is designated a fly-over defined entry heading waypoint where entry heading is current aircraft track.

7.4.6.1. Direct-To Unnamed Waypoints Inside Procedures

The following identifiers are for unnamed waypoints inside a published procedure and are found on the map or inside the active flight plan.

1) -ALT- altitude terminations
2) -DIR- waypoints that begin a Direct-To leg
3) -DME- distance or DME terminations
4) -INT- intercept terminations
5) -RAD- radial terminations
6) -MAN- manual terminations

Figure 7-9: Unnamed Waypoints

7.5. Discontinuities

When the EFIS is unable to construct a smooth flight path as described above due to active flight plan waypoint spacing (i.e., spacing too close for turn radius), a discontinuity is placed between the waypoints. When a
discontinuity exists, no path nor skyway is drawn between the waypoints. The pilot cannot activate the waypoint exiting the discontinuity, as it is not possible to provide path guidance to this waypoint. Attempts to activate the waypoint exiting the discontinuity activates the next waypoint or, if there is no next waypoint (i.e., end of active flight plan), activation of the waypoint leading into the discontinuity.

7.5.1. Manual Termination Legs

Manual termination legs (ARINC 424 path types FM and VM) are a special case and are handled as follows:

1) The manual termination leg is a discontinuity
2) Waypoint sequencing is suspended on the leg prior to the manual termination leg
3) Once the CDI transitions to FROM operation, RESUME (L6) appears
4) When ready to end manual navigation and resume a path to the waypoint following the manual termination leg, press RESUME (L6) to create and activate a Direct-To path to the waypoint.

NOTE:

If the manual termination leg is not followed by another waypoint (other than a suppressed waypoint), RESUME (L6) does not appear, because there would be no waypoint-to-waypoint sequencing to resume.

7.6. Magnetic Course

The source of magnetic variation used for paths defined using magnetic course is in accordance with the following:

1) If the leg is part of a database terminal area procedure and the magnetic variation is specified by the State for that procedure, the magnetic variation to be used is the value specified.
2) If the leg is not part of a procedure and the active fix is a VOR, the magnetic variation to be used is the published station declination for the VOR.
3) If the leg is not part of a procedure and the terminating fix is not a VOR, the magnetic variation to be used is defined by the system using an internal model.
The EFIS computes magnetic variation at any location within the region where flight operations may be conducted using magnetic north reference. The assigned magnetic variation is calculated with the NIMA GEOMAG algorithm and World Magnetic Model appropriate to the five-year cycle.

MAG VAR DATA: WMM-2020 (D1CDE26D)

Figure 7-10: MAG VAR Database

7.6.1. AHRS Modes for Heading Source

AHRS Slaved—EFIS Magnetic North: Standard mode of operation. Everything displayed relative to magnetic north drift free.

AHRS Slaved—EFIS True North: Everything displayed relative to true north with drift free heading. The preferred way to operate in areas where navigation is done relative to true north. (See Section 9 Appendix for limitations on Earth’s magnetic flux horizontal field.)

AHRS Free/“DG”—EFIS Magnetic North: Use when operating around significant magnetic disturbances in areas where navigation is done relative to magnetic north. Ensure the compass rose is slewed to a magnetic north value.

AHRS Free/“DG”—EFIS True North: Method of operation in high-latitude areas where navigation is accomplished relative to true north. Heading is not drift free and requires periodic correction. This mode may also be used when operating around significant magnetic disturbances in areas where navigation is done relative to true north. Ensure the compass rose is slewed to a true north value.

7.6.2. GPS Altitude

WGS-84 ellipsoid altitude received from the GPS/SBAS is converted to geodetic (MSL) altitude using the EGM 2008 geoidal database, which is revised on a twelve-year cycle.

7.6.3. Dead Reckoning

The EFIS has dead reckoning capability and is active whenever the GPS/SBAS sensor is not sending a valid position. The EFIS projects the last known GPS/SBAS position forward using TAS and heading, corrected for last known wind as it continues to navigate using this position and the active flight plan. The system provides the capability to determine bearing to an airport, based upon the dead reckoning position.
7.6.4. Geodesic Path Computation Accuracy

The cross-track path deviation error between the computed path used to determine cross-track deviations and the true WGS-84 geodesic is less than 10% of the horizontal alert limit of the navigation mode applicable to the leg containing the path.

7.6.5. Parallel Offsets

The parallel offset is a route parallel to, but offset from, the original active route. The basis of the offset path is the original flight plan leg(s) and one or more offset reference points as computed by the EFIS. The computed offset reference points are located so they lie on the intersection of lines drawn parallel to the host route at the desired offset distance and the line that bisects the track change angle, except where the parallel offset ends. In this case, the offset reference point is located abeam of the original flight plan waypoint at the offset distance.

The parallel offset function is not available nor applies to:
1) Legs that are apart of approach procedures (IFR and VFR); or

2) Legs with complex geometries or that begin or end with dynamic terminations (ARINC 424 path types other than CF, DF, or TF or any leg where the starting waypoint is not a fixed position); or

3) Legs that begin at an aircraft starting position (reference waypoint in a DP or Start/Phantom waypoints created by the Direct-To function).

Parallel offset functions do not propagate through the following:

1) Any waypoint at the beginning or end of a route discontinuity; or

2) Any waypoint at the beginning or end of a prohibited leg type; or

3) A waypoint with an unreasonable path geometry (defined as a turn greater than 120°.)

When the parallel offset function begins or ends within a flight plan due to the above constraints, parallel offset entry (PTK+) or exit (PTK-) waypoints are inserted into the flight plan. [PTK ENDING] appears in sufficient time to alert the pilot to return to the original path. Discontinuities precede parallel offset entry waypoints and follow parallel offset exit waypoints. This allows the pilot to navigate to and from the parallel offset as required.

![Figure 7-12: Parallel Offset PTK-](image)

The EFIS provides guidance to parallel tracks at a selected offset distance. When executing a parallel offset, the navigation mode and all performance requirements of the original route in the active flight plan are applicable to the offset route. The EFIS provides for entry of offset distance in increments of 1 NM, left or right of course, and is capable of offsets of at least 20 NM. Offset mode is indicated with an advisory flag, i.e., [PTK = L 20NM]. When
in offset mode, the EFIS provides reference parameters (e.g., cross-track deviation, distance-to-go, time-to-go) relative to the offset path and offset reference points.

Once a parallel offset is activated, the offset remains active for all flight plan route segments until removed automatically (transitioning through a parallel track exit waypoint), until the flight crew enters a “Direct-To” routing or activates a new flight plan route, or until (manual) cancellation.

NOTE:
If a parallel offset is entered in the active flight plan and then cancelled, that active flight plan is no longer eligible for configuring another parallel offset without deleting and reopening due to the creation of a discontinuity.

<table>
<thead>
<tr>
<th>Table 7-8: Parallel Offsets Symbols and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 7-8: Parallel Offsets Symbols and Description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>The absence of PTK (L4) indicates a parallel offset is not allowed for reasons stated above.</td>
</tr>
<tr>
<td>![Symbols]</td>
<td>Indicates each waypoint is a part of the parallel offset.</td>
</tr>
</tbody>
</table>

7.7. Navigation Database Requirements

The updateable navigation database contains at least the following location and path information, referenced to WGS-84, with a resolution of 0.01 minute (latitude/longitude) and 0.1° (for course information) or better at all of the following for the area(s) in which IFR operations are intended:

1) Airports.

2) VORs, DMEs (including DMEs collocated with localizers), collocated VOR/DMEs, VORTACs, and NDBs (including NDBs used as locator outer marker).

3) All named waypoints and intersections shown on enroute and terminal area charts.

4) All airways shown on enroute charts, including all waypoints, intersections, and associated RNP values (if applicable). Airways are retrievable as a group of waypoints. Select the airway by name to load the appropriate waypoints and legs between desired entry and exit points into the flight plan.

5) RNAV DPs and STARs, including all waypoints, intersections, and associated RNP values (if applicable). DPs and STARs are retrievable as a procedure. Select the procedure by name to load the appropriate waypoints and legs into the flight plan.

6) LNAV approach procedures in the area(s) in which IFR operation is intended consist of:
 a) Runway number and label (required for approach identification);
b) Initial approach waypoint (IAWP);

c) Intermediate approach waypoint(s) (IWP), when applicable;

d) Final approach waypoint (FAWP);

e) Missed approach waypoint (MAWP);

f) Additional missed approach waypoints, when applicable; and

g) Missed approach holding waypoint (MAHWP).

The complete sequence of waypoints and associated RNP values (if applicable), in the correct order for each approach, is retrievable as a procedure. Select the procedure by name to load the appropriate waypoints and legs into the flight plan.

NOTE:

Waypoints used as a final approach waypoint (FAWP) and LTP/FTP/MAWP in an LNAV/VNAV procedure are uniquely identified as such to provide proper approach mode operation.

7) LPV, LP, and/or LNAV/VNAV published procedures are available in the area(s) where IFR operation is intended. Select a procedure by name to load the appropriate waypoints and legs into the active flight plan. Waypoints used as a final approach waypoint (FAWP) and LTP/FTP/MAWP in an LPV or LP procedure are uniquely identified as such to provide proper approach mode operation.

NOTE:

Manual entry and or update of the navigation database is not possible. Recalling data from storage does not prevent it from being retained for later use.

The obstruction database is distributed by a government agency in each country. Not all countries have obstruction databases available.

7.8. Default GPS/SBAS Navigation Modes

In the default GPS/SBAS mode, the EFIS has enroute, terminal, LNAV approach, LNAV/VNAV approach, LP approach, LPV approach, VFR approach, and departure navigation modes. Mode annunciation, alert limits
Section 7 IFR Procedures

(horizontal and vertical), and CDI FSD (horizontal and vertical) are determined by navigation mode.

<table>
<thead>
<tr>
<th>Navigation Mode</th>
<th>Annunciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enroute</td>
<td>None</td>
</tr>
<tr>
<td>Terminal</td>
<td>TERMINAL</td>
</tr>
<tr>
<td>LNAV Approach</td>
<td>LNAV APPR</td>
</tr>
<tr>
<td>LNAV/VNAV Approach</td>
<td>LNAV/VNAV APPR</td>
</tr>
<tr>
<td>LP Approach</td>
<td>LP APPR</td>
</tr>
<tr>
<td>LPV Approach</td>
<td>LPV APPR</td>
</tr>
<tr>
<td>VFR Approach</td>
<td>VFR APPR</td>
</tr>
<tr>
<td>Departure</td>
<td>TERMINAL</td>
</tr>
</tbody>
</table>

The system switches to default navigation modes based upon region of operation as defined in Figure 7-10.

<table>
<thead>
<tr>
<th>Default Nav Mode</th>
<th>Definition of Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departure</td>
<td>Selected when active waypoint is first waypoint of a departure or missed approach procedure and active leg heading is aligned (±3°) with active runway heading. Also, set when active waypoint is MAWP but a missed approach has been manually activated.</td>
</tr>
<tr>
<td>VTF Approach (LNAV, LNAV/VNAV, LP, or LPV)</td>
<td>VTF IFR approach has been selected; and within 30NM of the active runway; and FAWP is active waypoint*; and bearing to FAWP is within 45° of final approach segment track (treated as a mode entry criteria); and desired track to FAWP is within 90° of final approach segment track (treated as a mode entry criteria).</td>
</tr>
<tr>
<td>Approach (LNAV, LNAV/VNAV, LP or LPV)</td>
<td>IFR approach has been selected; and within 30NM of the active runway; and MAWP or FAWP is active waypoint; and if FAWP is active waypoint: bearing to FAWP is within 45° of final approach segment track (treated as a mode entry criteria); and</td>
</tr>
</tbody>
</table>
Table 7-10: Default Navigation Modes Based Upon Region of Operation

<table>
<thead>
<tr>
<th>Default Nav Mode</th>
<th>Definition of Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFR Approach</td>
<td>desired track to FAWP is within 90° of final approach segment track (treated as a mode entry criteria); and either segment leading into FAWP is not a holding pattern, or pilot has elected to continue out of holding.</td>
</tr>
<tr>
<td>Terminal</td>
<td>Not in departure mode; and Not in approach mode; and active waypoint is part of a departure or active waypoint and previous waypoint are parts of an arrival or approach or within 30NM of the departure airport, arrival airport, or runway.</td>
</tr>
<tr>
<td>Enroute</td>
<td>Not in departure, approach, nor terminal modes.</td>
</tr>
</tbody>
</table>

NOTE:

During RNP 0.3 Approach (manually or coded) the scale remains in RNP 0.3.

7.9. GPS/SBAS CDI Scale

Table 7-11: Summary of Changes In Cross-Track FSD

<table>
<thead>
<tr>
<th>From Enroute</th>
<th>To Enroute</th>
<th>To Terminal</th>
<th>To Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Change from ±2 NM FSD to ±1 NM FSD over distance of 1 NM; start transition when entering terminal mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Terminal</td>
<td>To Enroute</td>
<td>To Terminal</td>
<td>To Approach</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Change from ±1 NM FSD to ±2 NM FSD over distance of 1 NM; start transition when entering enroute mode.</td>
<td>If VTF, switch immediately. Otherwise, change from ±1 NM FSD to approach FSD over distance of 2 NM; start transition at 2 NM from FAWP.</td>
<td></td>
</tr>
</tbody>
</table>

| From Approach | | Change to ±1 NM. |
|---------------| | |

| From Departure | | If initial leg is aligned with runway, change from ±0.3 NM FSD to ±1 NM FSD at turn initiation point of first fix in departure procedure. |

7.9.1. Alerting Scheme for LNAV/VNAV Procedures

During normal operation with FMS source of navigation guidance, when an LNAV/VNAV procedure has been entered into the active flight plan and the EFIS is in LNAV/VNAV, the vertical and lateral integrity flags are out of view, and guidance displays show the deviations from track in vertical and lateral dimensions. The linear vertical scale limits of the VDI for LNAV/VNAV and LPV approaches are shown in Figure 7-13.
NOTE:
For RNP 0.3 routes, time to alert (TTA) is the same as for the approach. For RNP 0.3, the EFIS uses a 10-second TTA when using GPS-only, and a 2-second TTA when using EGNOS.

7.9.2. Alerting Scheme for LPV/LP Procedures

During normal operation in with FMS source of navigation guidance, when an LPV or LP procedure has been entered into the active flight plan and the EFIS is in LPV or LP, the vertical and lateral integrity flags are out of view (only lateral integrity flag for LP). Additionally, the guidance displays show the deviations from track in vertical and lateral dimensions (only lateral for LP).
NOTE:
The sensitivity change from ±0.3NM to ±1NM can take as long as 30 seconds to provide a smooth transition for autopilots.

The linear lateral scale limits of the CDI for LNAV approach procedure.

Figure 7-14: FSD Lateral Deviation Indicator Linear Deviation (not VTF Approach)
Figure 7-15: FSD Lateral Deviation Indicator Linear Deviation VTF Approach
NOTE:
Non-Numeric Cross-Track Deviation
The full-scale deflection for LNAV is either identical to LNAV/VNAV or one of the following:
Angular deviations

1) If a VTF approach has not been selected:
 a) Prior to 2NM from the FAWP, the FSD is ±1NM
 b) Between 2NM from the FAWP and the FAWP, the FSD is gradually changed to the FSD specified in c) below at the FAWP;
 c) At and beyond the FAWP, but before initiating a missed approach, the FDS is the minimum of; constant FSD of ±0.3 NM; or angular FSD defined by a ±2.0° wedge with origin located 10,000 feet past the MAWP. The FSD continues to decrease or reach a minimum of ±350 feet.

2) If a VTF has been selected:
 a) The FSD is the minimum of; constant FSD of ±1NM; or angular FSD defined by a ±2.0° wedge with origin located 10,000 feet past the MAWP. The FSD continues to decrease or reach a minimum of ±350 feet.

7.10. Approach Type Selection

The EFIS selects the approach type (LNAV, LNAV/VNAV, LP, or LPV) when entering approach mode with the following order of precedence and prerequisites:

1) LPV:
 a) LPV Enable is enabled;
 b) ARINC-424 “Level of Service” indicates LPV minimums are published;
 c) Valid long-term, fast and ionospheric SBAS corrections are available and being applied to at least 4 GPS satellites;
 d) Final approach segment data block exists and passes CRC check; and
e) Horizontal and vertical alert limits from final approach segment data block are predicted to be supported.

![Figure 7-16: GPS Mode (LPV APPR)](image)

2) LP: (Same precedence and prerequisites as LPV)

3) LNAV/VNAV:
 a) ARINC-424 “Level of Service” indicates LNAV/VNAV minimums are published;
 b) If a final approach segment data block exists, LPV Enable is enabled;
 c) If a final approach segment data block exists, it passes CRC check; and
 d) Horizontal alert limit of 556m (.3NM) is predicted to be supported.

NOTE:

Because the EFIS inherently supports barometric VNAV, it is not a prerequisite that the vertical alert limit be supportable, nor is it a prerequisite that valid long-term, fast, and ionospheric SBAS corrections to be available and applied to at least four GPS satellites. Rather, the vertical alert limit (50m) and SBAS correction tests are used to determine whether to present guidance based upon GPS altitude or barometric altitude.
4) **LNAV**: Default approach type selected when none of the above selections are made, and there are no prerequisites for selecting LNAV.

The EFIS continuously displays the approach type (mode indication) after selection. The EFIS does not degrade the approach type after selection unless the approach procedure is reselected or changed.

NOTE:

These are GPS/SBAS modes and still appear during a ground-based approach such as an ILS.

Some instrument procedures include notes stating, “RNP 0.3 required,” and are coded as an RNAV procedure. In these cases, select manual RNP to see the RNP and ANP values on the PFD.

7.10.1. **Approach Path Definition (GPS Procedures)**

Normal IAP path definitions are as specified in the procedure contained in the navigation database. Deviations are provided with respect to the active leg of the approach procedure.

7.10.2. **VTF IFR Approach**

In addition, the pilot may select a VTF IFR approach, indicating the pilot does not intend to fly the entire procedure. When a VTF IFR approach is selected, the EFIS creates an initial point (IP) waypoint on the extended final approach course to provide deviations relative to the extended final approach course. The IP is a fly-over defined exit heading waypoint, and the leg prior to the IP is designated a discontinuity. Until the FAWP is sequenced, the EFIS indicates a VTF IFR approach has been selected to indicate guidance is not relative to a published approach path, and TERPS clearances are not assured.

7.10.3. **VTF VFR Approach**

The pilot may select a VFR approach to a runway or user waypoint with a defined approach bearing. When a VFR approach is selected, the EFIS creates an IP waypoint approximately 12 NM on the extended final approach course to provide deviations relative to the extended final approach course. The IP is designated as a fly-over defined exit heading waypoint, and the leg prior to the IP is designated as a discontinuity.
Figure 7-17: VTF VFR Approach

As depicted in Figure 7-17, during the VTF VFR approach, the aircraft proceeds towards the IP. Since the IP is designated as a discontinuity, proceeding direct is not possible. When attempting to proceed direct to the IP, only the active leg between the IP and RW12 is activated.

7.11. Missed Approach and Departure Path Definition

Once on the final approach segment, the pilot may initiate an immediate missed approach or arm the system to execute the missed approach at the MAWP. If armed before crossing the MAWP, the equipment arms the missed approach for automatic initiation at the MAWP. If a missed approach is not initiated prior to crossing the MAWP, the EFIS switches to FROM mode at the MAWP and continues on the same course.
If the pilot initiates the missed approach, the EFIS provides guidance relative to the procedure. If a missed approach is armed prior to crossing the MAWP, the desired path to and after the MAWP is defined by the procedure. If the first leg in the missed approach procedure is not a straight path aligned within 3° of the final approach course, the FSD changes to terminal mode FSD (±1 NM) when the missed approach is initiated. Otherwise, the FSD changes to ±0.3 NM when the missed approach is initiated (departure mode) and changes to terminal mode FSD (±1 NM) at the turn initiation point of the first waypoint in the missed approach procedure.

The pilot may select DP guidance and, if the first leg in the DP is not a straight path aligned within 3° of the runway heading, terminal mode FSD (±1NM) is used. Otherwise, the FSD is ±0.3 NM (departure mode) and changes to terminal mode FSD (±1 NM) at the turn initiation point of the first waypoint in the DP.

7.12. Loss of Navigation Monitoring

The EFIS continuously monitors for loss of navigation capability. In manual or automatic RNP mode prior to sequencing the FAWP, the LON caution is displayed with a 10-second time to alert the RNP value is less than 2NM and a 30-second time to alert otherwise. RNP is also a statement of navigation performance necessary for operation within a defined airspace. Use the Faults menu to distinguish the cause of the LON caution. The caution returns to its normal state upon termination of the responsible condition.

<table>
<thead>
<tr>
<th>Mode of Flight</th>
<th>HAL</th>
<th>Time to Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNP: 0.10A</td>
<td>As manually set or automatically retrieved</td>
<td>10 Seconds (RNP< 2NM) 30 Seconds (otherwise)</td>
</tr>
<tr>
<td>RNP: 15.0A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(See Note 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enroute</td>
<td>2 NM</td>
<td>30 Seconds</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>1 NM</td>
<td>10 Seconds</td>
</tr>
<tr>
<td>LNAV APPR</td>
<td>0.3 NM</td>
<td>10 Seconds</td>
</tr>
<tr>
<td>LNAV/UNNAV APPR</td>
<td>0.3 NM</td>
<td>10 Seconds</td>
</tr>
<tr>
<td>LP APPR</td>
<td>0.3 NM</td>
<td>10 Seconds</td>
</tr>
<tr>
<td>LPV APPR</td>
<td>0.3 NM</td>
<td>10 Seconds</td>
</tr>
<tr>
<td>Departure</td>
<td>0.3 NM</td>
<td>10 Seconds</td>
</tr>
</tbody>
</table>

Note 1: Only applicable prior to sequencing FAWP. Meeting loss of integrity criteria after sequencing the FAWP is defined as LON.
7.12.1. Automatic RNP Mode

In automatic RNP mode, after sequencing the FAWP, the EFIS indicates when the navigation system is no longer adequate to conduct or continue the approach by displaying the LON condition inside the CDI on the transmit enabled display. The flag is latched until no longer in an approach mode.

Figure 7-19: LON Indication

NOTE:

This aircraft is equipped for the following individual levels of RNP but may not be capable due to limited satellite coverage. Manual RNP is selectable between 0.10NM and 15NM as follows:

1) 0.01NM increments between RNP 0.10 and RNP 0.3
2) 0.1NM increments between RNP 0.3 and RNP 2
3) 1NM increments between RNP 2 and RNP 15

7.12.2. Faults Menu

Use the faults menu to distinguish the cause of the LON caution. Table 7-13 explains conditions and caution termination for each mode of flight.

Table 7-13: Summary of Faults Menu

<table>
<thead>
<tr>
<th>Mode of Flight</th>
<th>Conditions</th>
<th>Caution Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual RNP</td>
<td>LON displayed with a 10-second time to alert if RNP value is less than 2NM and a 30-second time to alert.</td>
<td>Returns to normal state immediately upon termination of responsible condition.</td>
</tr>
<tr>
<td>RNP: 0.10M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNP: 15.0M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic RNP</td>
<td>After sequencing the FAWP, LON displayed when navigation system is no longer is adequate to conduct or continue the approach.</td>
<td>Latched until equipment no longer in an approach mode.</td>
</tr>
<tr>
<td>RNP: 0.10A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNP: 15.0A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7-13: Summary of Faults Menu

<table>
<thead>
<tr>
<th>Mode of Flight</th>
<th>Conditions</th>
<th>Caution Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enroute and Terminal</td>
<td>LON displayed when navigation system is no longer adequate to conduct or continue the navigation.</td>
<td>Returns to normal state immediately upon termination of responsible condition.</td>
</tr>
<tr>
<td>TERMINAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNAV Approach mode</td>
<td>Upon passing the FAWP, flag is latched until EFIS is no longer in an approach mode.</td>
<td>Returns to normal state immediately upon termination of responsible condition.</td>
</tr>
<tr>
<td>LNAV APPR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNAV/VNAV Approach mode</td>
<td>LON displayed when navigation system is no longer adequate to conduct or continue the approach.</td>
<td>After sequencing the FAWP, LON/VERT LON flags are latched until the equipment is no longer in an approach mode. As defined above with the exception that when the LNAV/VNAV approach mode is predicated upon Barometric VNAV. (See Note1)</td>
</tr>
<tr>
<td>LNV/UHV APPR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP or LPV Approach mode</td>
<td>LON or VERT LON displayed when navigation system is no longer adequate to conduct or continue the approach.</td>
<td>Prior to sequencing the FAWP, flags return to normal state immediately upon termination of the responsible condition.</td>
</tr>
<tr>
<td>LP APPR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: A supplemental test is added for lateral and vertical flagging. A supplemental test is added for vertical flagging when barometric altitude information is in a failed state.

7.12.3. Loss of Integrity Caution Monitoring

The EFIS provides a caution, independent of any operator action, when the equipment has a loss of integrity monitoring. When Horizontal Protection Level (HPL) exceeds the applicable Horizontal Alert Limit (HAL) for the longer than applicable time to alert and HPLSBAS exceeds the HAL for the current navigation mode for longer than 2 seconds. There are two types of HPL, HPLFD, or HPLSBAS but only one transmitted by the receiver as valid at any time.
7.13. Selection of an Instrument Procedure

When an instrument procedure is selected and active, the receiver notifies the pilot of the most accurate level of service supported by the combination of the GPS/SBAS signal, receiver, and selected approach using naming conventions on the minima lines of the selected approach procedure. Once the level of service has been given, the EFIS operates in this mode for the duration of the procedure, unless the level of service is unavailable. The EFIS cannot change back to a more accurate level of service until the next time an approach is activated.

The following includes examples of step-by-step procedures:

1) Standard Instrument Departure (DP)
2) VFR Approach to User Waypoint
3) Standard Terminal Arrival Route (STAR)
4) ILS Instrument Approach
5) ILS Instrument Approach with Manual Termination Leg
6) LOC Back Course Instrument Approach
7) RNAV (GPS) Instrument Approach to LP Minima
8) RNAV (GPS) Instrument Approach to LPV Minima
9) RNAV (RNP) Instrument Approach to RNP 0.30 DA
10) NRST ILS Instrument Approach
11) VOR/DME Instrument Approach with Automatic Navigation Source Switchover
12) Instrument Approach with Missed Approach Flown to Alternate Fix
7.13.1. **Standard Instrument Departure (DP) (Step-By-Step)**

The following example includes the execution of a Standard Instrument Departure procedure from Dallas/Fort Worth Airport Texas USA (KDFW) with radar vectors to the assigned route.

Figure 7-20: Standard Instrument Departure (DP)
1) Press **ACTV (L2)** departure airport must be entered as a waypoint.

2) Rotate 🔄 to desired airport (KDFW) and push to enter.

3) Rotate 🔄 to DP.. and push to enter.

4) Rotate 🔄 to desired DP (ALIAN2). Push to enter.

5) Rotate 🔄 to desired runway (RW36). Push to enter.

6) ATC issues radar vectors to assigned route as published in the DP text notes.

7) Push 🔄, rotate 🔄 to NAV LOG, and then push to enter. View first portion and then rotate 🔄 to view remainder of NAV LOG.
7.13.2. VFR Approach to User Waypoint (Step-By-Step)

To create a VFR approach procedure for any of the possible 998 user waypoints stored in the system, it is assumed that user waypoints have been uncluttered on the Map page and user waypoints are visible. In this scenario, a new user waypoint is created at the present location.

Not all menu steps are depicted in the EFIS views since they are described in Section 5 Menu Functions and Step-By-Step Procedures.

1) While maneuvering 20NM Southwest of Tampa International Airport, an island. Press MENU (R1), within 10 seconds press FORMAT (R8), rotate Ⓥ to PAN ON, and then push to enter.

2) Press NORTH (L7) an adequate amount of times to position the Panning ownship symbol near the abandoned runway. Press WEST (R8) to position panning ownship symbol directly over the desired landing runway center.

3) Press MENU (R1), within 10 seconds press DESIG (L3), which drops a user waypoint automatically named PN001.
4) Before a VFR approach can be created to this waypoint, it must be edited with an approach bearing and saved.

5) Assuming crossfill is normal, on either MFD or PFD, press FPL (L1), rotate 1 to CREATE-EDIT.., and then push to enter.

6) Rotate 1 to EDIT USER WPT and then push to enter.

7) Rotate 1 to PANNING 004 (PN004) and then push to enter.

8) Rotate 1 and push to sequence all five spaces to create desired name for user waypoint (EGGMT) and then push to enter through entire renaming process.

NOTE:

EFIS is capable of storing 998 user waypoints. Duplicate user waypoint names are not accepted.

9) Either press SAVE (R7) to save the changes or press (R8) to save changes and begin navigation guidance to user waypoint (EGGMT) and automatically return to EDIT WHICH USER WAYPOINT menu.
10) In step 9 on the MFD or PFD, (R8) was pressed followed by EXIT (R1) to exit EDIT WHICH USER WAYPOINT menu.

11) Press ACTV (L2) to open active flight plan.

12) Push (L1) to open list of available options for the user waypoint EGGMT.

13) With EGGMT as the active waypoint, press ACTV (L2) on any PFD or MFD. Push (L1) to see options, rotate to VFR APPR., and then push to enter.

14) Push (L1) to accept the use of EGGMT as a waypoint.

NOTE:
If crossfill is inhibited, operation can only be accomplished on the side with EGGMT in the active flight plan.

15) EGGMT is now a suppressed waypoint.

16) Rotate (L1) to change map scale to 5NM (inner scale) 10NM (outer scale) and then turn the aircraft for a left downwind toward the IP. (Automatically created approximately 12NM out on the 270° approach bearing to the runway.)

17) Press INFO (L3) to reveal the active waypoint name and then push (L1) to show the following information about EGGMT.
18) 19° elevation and USER APPR indicates the status of how EGGMT is being used.

19) On a right base leg, the top of descent is observed as . This can be changed to a default -3° or any degree between \[DCND\ ANG = -0.1° \] and \[DCND\ ANG = -20.0° \].

20) Press MENU (R1), within 10 seconds press BUGS (R2), and then VNAV CDA (R4). Push ℹ️ to enter DCND ANG..., rotate ℹ️ to \[DCND\ ANG = -3.0° \] and push to enter.

21) The aircraft is on final, approaching the top of descent “T/D” to the EGGMT user waypoint.
Section 7 IFR Procedures

7.13.3. Standard Terminal Arrival Route (STAR) (Step-By-Step)

Figure 7-21: Standard Terminal Arrival Route (STAR)
If the selected waypoint is an airport with a published STAR, this option is available for selection from a list of available STARs, transitions, and runways. After selection, the appropriate STAR is created and displayed on the Map page. Activating a STAR deletes any pre-existing STAR, and it is inserted prior to any approach waypoints if previously entered.

STARs normally terminate at a fix near the airport, so a radar vector or feeder route is used for transition to the approach phase of the arrival. If an instrument approach is activated during the STAR, the approach waypoints are inserted after the STAR.

The following example includes the execution of a Standard Terminal Arrival Route procedure into Memphis, TN (KMEM) followed by an ILS RWY 36R.

1) Arrival airport must be entered as a waypoint.

2) Push 1 with desired airport (KMEM) highlighted.

3) Rotate 1 to STAR.. and push to enter.

4) PICK STAR: Rotate 1 to desired STAR (DAWGG2). Push to enter.

5) PICK TRANS: Rotate 1 to desired transition (*ARG). Push to enter. *= Most logical transition from avenue of arrival.

6) PICK RW: Rotate 1 to desired runway and push to enter.
7) ATC clears direct VCN and ILS RWY 24. Press ACTV (L2), rotate ₁ to ARG, press ₄ (R4), and push ₁ to enter (see § 7.13.4 for loading an ILS).

8) Push ₁ and rotate to NAV LOG. Push to enter to view first portion and then rotate ₁ to view remainder of NAV LOG.
7.13.4. ILS Instrument Approach (Step-By-Step)

All approach operations begin with the same basic steps. This example selects COPTER ILS or LOC RWY 22 at New York, LaGuardia (KLGA).

Figure 7-22: ILS Instrument Approach (KPNE)
1) Press **ACTV (L2)**. Rotate ![image](image1.png) to desired airport and push to enter.

2) Rotate ![image](image2.png) and select **IFR APPR...** Push to enter.

3) **PICK APPR**: Rotate ![image](image3.png) to desired approach. Push to enter.

4) **PICK TRANS**: Rotate ![image](image4.png) to transition (* indicates most logical from current position). Push to enter.

5) **PICK RW**: Rotate ![image](image5.png) to landing runway. Push to enter.

6) If instructed to hold at GREKO as published, rotate ![image](image6.png) to highlight **GREKO** and push to enter. Rotate ![image](image7.png) to **HOLD..** and push to enter and enter holding direction and leg length of time. Push to enter.

7) Holding pattern is created and is the next leg to be sequenced. ATC issues clearance for the COPTER ILS 22 at KLGA and to maintain 2000’.
8) Established in the HOLD as directed at 2000’. When ATC issues clearance for the approach.

9) Press **CONT (L6)** to continue waypoint sequencing to the FAF.

10) Passing the FAF, press **ARM (L6)** to arm the missed approach procedure and continue waypoint sequencing.
11) Push 1 and rotate to HSI and push to enter. Inside the FAF with the ND displaying the HSI page.

12) Press MENU (R1), within 10 seconds press ZOOM (R3) to emulate the outside view in the PFI area. Over the middle marker and with zoom mode on.
13) During the missed approach, press **MENU (R1)**, within 10 seconds press **ZOOM OFF (R3)** to restore normal wide field of view in the PFI area.

14) Missed approach segment appears as magenta and white dashed lines. The next leg (*PROUD) has an altitude termination leg of 3000’.
7.13.5. **ILS Approach with Manual Termination Leg in MAP (Step-By-Step)**

This example selects RAF Cranwell United Kingdom (EGYD) with -ALT- termination leg followed by an immediate manual termination leg requiring pilot action to resume automatic waypoint sequencing.

Figure 7-23: ILS Approach (EGYD)
1) Press **ACTV (L2)**. Rotate ⬇️ to the destination airport and push to enter. (EGYD)

2) Rotate ⬇️ to **IFR APPR..** and push to enter.

3) **PICK APPR:** Rotate ⬇️ to desired approach and push to enter.

4) **PICK TRANS:** Rotate ⬇️ to desired transition and push to enter (* indicates most logical from present position).

5) **PICK RW:** Rotate ⬇️ to desired runway (colors the active runway light gray).

6) Passing the FAF, press **ARM (L6)** to arm the missed approach procedure and resume automatic waypoint sequencing.
7) Over the middle marker above glide slope and on the localizer.

8) Past the MAWP, auto nav source switches to FMS1. The current -ALT- (altitude termination leg) climbing to 2680' with green altitude predictor arc indicating climb performance achieves leg requirement.
9) Automatic waypoint sequencing suspended and ready for pilot action to press **RESUME (L6)**.

10) After **RESUME (L6)** is pressed, normal waypoint sequencing resumes, course to next active waypoint appears as a magenta line, and active waypoint information is updated.
7.13.6. LOC Back Course Instrument Approach (Step-By-Step)

This example includes a LOC/DME back course approach at Santa Maria, California, USA (KSMX) with attention drawn to OBS settings and includes blue numbers to associate places of reference on the chart and the EFIS.

Figure 7-24: LOC Back Course Approach
1) ① Press **ACTV (L2)**. Rotate ① to airport active waypoint. Push to enter.

2) Rotate ① to **IFR APPR..** and push to enter.

3) **PICK APPR:** Rotate ① to **LBCA** and push to enter.

4) **PICK TRANS:** Rotate ① to transition (* indicates most logical from current position). Push to enter.

5) **PICK RW:** Rotate ① to desired runway. Push to enter.

6) ② Assume ATC issued clearance to proceed direct to **KOAKS**. Press **ACTV (L2)** and ④ (R4) and then push ①.

7) Press **LNAV (L5)** (autopilot enabled) to turn off HDG BUG sub-mode and begin tracking LNAV course to **KOAKS**.
8) To set minimum altitude, press **MENU (R1)**, within 10 seconds press **BUGS (R2)**, **MINS (R3)**, and then rotate ‑ to **MIN ALT.** and push to enter. Rotate ‑ to 1100 and push to enter.

9) Press **OBS (L4)**, and then press **NAV VLOC1 (L3)** or **NAV VLOC2 (L4)**, as applicable.

10) Rotate ‑ to set back course bearing of 300° and push to enter. This results in proper sensing of back course CDI indications. In this example, the aircraft is on course as indicated by the cyan CDI diamond.

11) After passing the FAF (CAMCO), **MISS (L5)** and **ARM (L6)** appear. In this case, there is no suspend advisory due to the stepdown fix of PATER 3.8 NM ahead.
12) Approaching PATER (fly-by waypoint symbol) stepdown fix with the missed approach procedure armed. The green arc altitude predictor indicates arrival at minima over the runway.

13) Passing the MAWP, nav source automatically switches to FMS2 and CDI color changes from cyan to magenta.
14) **Entering HOLD at GLJ and navigating on FMS2.**

11) **CONT (L6)** appears as a reminder to press when ready to leave the HOLD and continue to the destination KSMX.
7.13.7. RNAV (GPS) Instrument Approach to LP Minima (Step-By-Step)

Figure 7-25: RNAV (GPS) Instrument Approach to LP Minima

The following procedure is demonstrated on the pilot-side PFD with the flight plan already loaded with KFRG as the last waypoint in the active flight
plan. For brevity, all steps are described but not necessarily accompanied with an image and includes blue numbers to associate places of reference on the chart and the EFIS. The Radio page is set as per guidance found in the ARM appendix and the entire procedure is flown while uncoupled to the autopilot.

1) Press ACTV (L2). Rotate ➀ to KFRG waypoint and then push to enter.

2) Rotate ➀ to IFR APPR.. and then push to enter.

3) ➀ PICK APPR: Rotate ➀ to desired instrument approach with matching 5-digit channel number from instrument approach chart and then push to enter.

4) PICK TRANS: Rotate ➀ to – VTF – and then push to enter.

5) ➁ PICK RW: Rotate ➀ to assigned runway for landing and then push to enter. (Colors RW01 light gray.)
6) ATC issues radar vector to fly 325° to **DEUCE** and maintain 4000’.

7) Rotate ③ to 325° and then push to enter.

8) ATC now issues clearance direct **DEUCE** and cleared for RNAV RWY1 approach.

9) Press **ACTV (L2)**, rotate ① to **DEUCE**, press ⑫ (R4), and then push ① to enter.
10) **Past the FAF (DEUCE)** press **ARM (L6)** for one touch arming of the missed approach leg.

11) This leg changes the VDI source to **UNU1-G** and **LP_APPR** replaced **TERMINAL** for an indication of the approach mode.

12) The following conditions are met:

 a) ARINC-424 “Level of Service” indicates LP minimums are published;

 b) Valid long-term fast and ionospheric SBAS corrections are available and being applied to at least 4 GPS satellites;

 c) Final approach segment data block exists and passes the BIT; and

 d) Horizontal alert limit from final approach segment data block are predicted to be supported.
13) Minimums are set to 400’ DA. Glide path is based on UNU1-C.

14) EFIS is coupled in HDG sub-mode LNAV.

15) Missed approach executed.

16) Nav source remains FMS1, but FSD scaling automatically switched to 0.3NM.

17) Active waypoint information describes the altitude termination leg ahead.
7.13.8. **RNAV (GPS) Instrument Approach to LPV Minima (Step-By-Step)**

This example includes an RNAV (GPS) RWY 32 approach to Wichita, Kansas, USA (KICT) and includes blue numbers to associate places of reference on the chart and the EFIS.

![Figure 7-26: RNAV (GPS) Instrument Approach to LPV Minima](image)

Figure 7-26: RNAV (GPS) Instrument Approach to LPV Minima
1) To select airport from active flight plan, press **ACTV (L2)**, rotate ➡️ to desired airport ➡️, and push to enter.

2) Rotate ➡️ to IFR APPR.. and push to enter.

3) **PICK APPR:** Rotate ➡️ to desired approach, for example, RNAV32 (99617). Verify WAAS channel number ➡️ matches instrument approach chart and push to enter.

4) **PICK TRANS:** Rotate ➡️ to the desired transition and push to enter (* indicates transition following likely avenue of actual arrival direction).

5) **PICK RW:** Rotate ➡️ to assigned landing runway. (Active runway is light gray for identification purposes.)

6) Press **ACTV (L2)** to view flight plan. Passed BADAC a new active waypoint, USOMY is shown on the active flight plan.
7) Inside of USOMY with LPV APPR present indicating the GPS mode of operation and top of descent ahead while approaching LPV glide slope from below.

8) On final approach course and approaching FAF, LPV APPR appears along with the VDI.
9) Upon passing FAF VUDYU, MISS (L5) and ARM (L6) appear for possible pilot action. SUSPEND does not appear due to upcoming stepdown fix of HOLUS.

10) Upon passing HOLUS, press ARM (L6) to continue auto waypoint sequencing. This is the latest point on the approach to press ARM (L6).
11) FPM lined up on the active runway on glide path approaching minimums with CDI centered on glide path approaching minimums of 1580’ MSL.

12) Below minimums with FPM aligned with touchdown zone on runway. Minimums are amber (yellow) and flashing as the audible alert, “Minimums, Minimums,” sounds.
13) Past the MAWP, NAV source remains FMS2 and scale automatically changes to 0.3NM FSD.

12) Satisfying the altitude termination leg of 1572’ during the missed approach leg.

14) Established in hold at CEPGA. Press CONT (L6) to continue waypoint sequencing to next leg (KEQA) in active flight plan.
7.13.9. RNAV (RNP) Instrument Approach to RNP 0.30 DA (Step-By-Step)

This example includes an RNAV (RNP) RWY 19 approach to Ronald Reagan Washington National (KDCA) via radar vectors to (IAF) FERGI intersection and includes blue numbers to associate places of reference on the chart and the EFIS.

Figure 7-27: RNAV (RNP) Instrument Approach to RNP 0.3 DA
Section 7 IFR Procedures

1) On PFD or MFD press **FPL (L1)**. Rotate ‍ to **CREATE-EDIT..** and push to enter.

2) Rotate ‍ to **ACTIVATE FLIGHT PLAN** and push to enter. Rotate ‍ to **ABAL-KOCA** and push to enter. This is a locked flight plan, which cannot be edited.

3) Press **EXIT (R1)** to exit **CREATE-EDIT..** menu and return ND area to original page.

4) ‍ To select airport from active flight plan, press **ACTV (L2)**, rotate ‍ to desired airport, and then push to enter.

5) Rotate ‍ to **IFR APPR..** and then push to enter.

6) **PICK APPR:** Rotate ‍ to desired approach ‍. Push to enter ‍. (*indicates this approved procedure. No ground nav aids are necessary).

7) **PICK TRANS:** Rotate ‍ to **FERGI** ‍ and then push to enter (*indicates most logical from current position).

8) **PICK RW:** Rotate ‍ to desired runway and then push to enter.
9) ATC issues clearance to hold at FERGI 138° inbound, right turns, 2-mile legs, and maintain 3,000’. Press ACTV (L2), rotate accordingly, and then push to enter holding as shown and then push to enter.

10) Active flight plan now includes the manually entered holding pattern at FERGI. All previous white course lines were erased when Direct to FERGI was entered.

11) Established in the hold at FERGI with remaining flight plan in view on map. ATC issues clearance for the RNAV (RNP) RWY 19 approach.

12) Press CONT (L6) to exit holding and continue on the approach.
13) Past FERGI and now on active leg to DARIC with descent to 2,600’ based on VNV1-B and RNP status of:

- **RNP**: 1.0A
- **ANP**: 0.1

14) **DA** minima set to 550’ as aircraft approaches DARIC.
15) Past SETOC (FAF), press **ARM (L6)** as glide path is maintained as per VDI.

16) Approaching JUBOL on glide path. Approaching DA 550’.

17) Press **ARM (L6)** to arm the approach or **MISS (L5)** to immediately execute the missed approach procedure.

18) Avoidance of overflying any portion of prohibited area (P56) is assured.
19) Below minima, runway insight and continue to land.

This procedure required RNP 0.3 and ANP was 0.1.
7.13.10. NRST ILS Instrument Approach (Step-By-Step)

This method does not require the airport to be in the active flight plan. This example selects ILS RWY 32 at Whiting FLD NAS SOUTH (KNDZ) with the NRST ILS method of creation.

Figure 7-28: NRST ILS Instrument Approach
1) Press **NRST (R3)** then rotate ⦅ to **ILS**... Push to enter. This action clears any prior active flight plan.

2) Rotate ⦅ to highlight desired airport with “ILS” on the left. Push to enter.

3) Push ⦅ to **CONFIRM ACTIVATE ILS**. (See Section 6 for description of NRST ILS on PFD or MFD.)

Following actions occur:

a) Direct flight plan to the ILS airport is created.

b) A vectors-to-final ILS approach is activated.

c) Heading bug is activated to the current heading.

d) VLOC 1 and VLOC 2 OBS are set to the associated localizer course.

e) ILS frequency is automatically transmitted to NAV1 and NAV2 in standby position. (Pilot must ensure correct frequency is swapped to active position and identified on both nav receivers)

f) EFIS changes to LOC2, and VDI indicates source of glide slope GS2 when it appears.
4) SMURF is the active waypoint. Press \(\text{R4} \) then push 1 to enter a direct route with navigation guidance to FAF.

5) With aircraft now tracking directly to the SMURF (FAF) on the magenta line.

6) Press \(\text{MENU (R1)} \), within 10 seconds press \(\text{BUGS (R2)}, \) \(\text{MINS (R3)} \), and push 1 to select DEC HT.. and rotate to enter 250’ then push to enter to set decision height.

7) Press \(\text{MENU (R1)} \), within 10 seconds press \(\text{BUGS (R2)} \), and then \(\text{MINS (R3)} \). Rotate 1 to MIN ALT.. and push to enter. Rotate 1 to create MINIMUM ALT (430’ MSL) and push to enter.

8) Passing the FAF (SMURF), MISS (L5) and ARM (L6) appear. Press ARM (L6) to arm the missed approach procedure and continue automatic waypoint sequencing.

9) HITS indicates guidance to follow GPS overlay of the localizer and glide slope. However, the localizer source for CDI and glide slope receiver VDI are the primary sources for guidance on this ILS approach.
10) Inside 2.0 NM final with indicating the GPS mode of LNAV APPR. GPS mode automatically switched to LNAV APPR and replaced TERMINAL.

11) Push 1 and rotate to HSI and push to enter to display the HSI page.

12) Below DH over the inner marker with zoom mode on and stabilized at 90 KIAS on the localizer centerline.
13) During the missed approach, the navigation source automatically switches to FMS1 with 0.3NM FSD, and terminal mode is active while within the terminal area.

14) [ALT - 800'] The missed approach altitude termination leg vertical constraint is going to be achieved and no pilot action is required. If actual altitude is higher than 800', this waypoint becomes “SKIPPED”.
7.13.11. VOR/DME Instrument Approach (Step-By-Step)

This example loads the Elizabeth City Regional, North Carolina, USA VOR/DME RWY 28 approach and is flown via the east arc followed by a missed approach. Blue numbers associate locations on chart and EFIS.

Figure 7-29: VOR/DME Instrument Approach
1) With destination airport entered as the waypoint, rotate 1 to select IFR APPR.. and type of approach. Push to enter.

2) **PICK APPR:** Rotate 1 to select desired approach (VORDME28) and push to enter.

3) **PICK TRANS:** While the most likely transition from this avenue is, it is desired to fly the arc beginning at (IAF) OCSIP. Rotate 1 to desired arc at OCSIP. Push to enter.

4) **PICK RW:** Rotate 1 to desired runway. Push to enter.

5) Press **ACTV (L2).** Rotate 1 to view procedure and select fix for compliance with ATC clearance (OCSIP). Press 2 (R4) and push 1 to enter.
6) A magenta line leads from -DIR- current position to 3 OCSIP, which is now the active waypoint. 3000' is the VNAV altitude, and aircraft is flying in the HITS boxes.

7) Established on the 11 DME ARC 4 with NAV1 and NAV2 set on 112.5 MHz for ECG VOR and inbound FAC set at 270° on both VORs with DME indicating on both nav sources. Press OBS (L4) and return NAV source to FMS1 (L2) and push to enter.

8) To set published minima, press MENU (R1), within 10 seconds press BUGS (R2), and then MINS (R3). Rotate 1 to MIN ALT.. to minima 380’ and push to enter.
9) Established inbound on the final approach course to the FAF SOFIE 5 crossing top of descent symbol ahead indicating when descent can be commenced to cross the FAF at 1400’. Nav source is VOR1 and HITS source is GPS. The primary lateral source is the VOR and DME for this instrument approach.

10) After passing the FAF, **MISS (L5)** and **ARM (L6)** appear. Press **MISS (L5)** to immediately execute the missed approach procedure or press **ARM (L6)** to arm the missed approach procedure upon crossing the MAWPT.
11) Established at 90 KIAS on short final with the runway in sight .8 NM ahead at the same angle as shown on the instrument approach chart.

12) After passing the MAWPT and the missed approach procedure automatically sequenced, aircraft begins following the dashed magenta missed approach course lines on the MAP. NAV source automatically switched to FMS1 and 1.0 NM FSD.

TERMINAL is reference to still being in the terminal area and TAWS terrain alerts are still inhibited.
7.13.12. ILS or LOC RWY 1 Instrument Approach with Missed Approach Flown to Alternate Fix (Step-By-Step)

This example loads the Akron-Canton, Ohio, USA, ILS or LOC RWY 1 approach with the missed approach flown to the alternate missed approach fix (KEATN).

During the instrument approach clearance, ATC advised that in the event of a missed approach, plan to fly the alternate missed approach instructions to **KEATN** intersection and hold as published. The ILS RWY 1 instrument approach is loaded and the active flight plan is opened and **1** is rotated to one position past (KCAK) and **INSERT (R2)** is pressed and KEATN entered with **2** and pushed to enter.

1) **1** Create KEATN waypoint in active flight plan. Push **1** to enter.

2) Press **ACTV (L2)** and rotate **1** to KEATN and push to enter.

3) Rotate **1** to **HOLD**... Push to enter.
4) Create published holding pattern at KEATN. Rotate/push 1 through the process and push to enter. Observe KEATN is in correct position in active flight plan after (KCAK).

5) Enroute to CABLE (FAF) for the ILS RWY 01 observe where KEATN is located on the ND.

6) 2 Upon executing the missed approach, press ACTV (L2), rotate 1 to KEATN, press (R4), and then push 1 to enter a direct routing to KEATN.

7) Verify active flight plan has holding pattern entered as published and is depicted correctly.
8) Established in the holding pattern at KEATN. When cleared to continue to next waypoint on Active flight plan, press **CONT (L6)** to resume waypoint sequencing. If an approach is necessary at the destination, KCGF, the approach can be loaded without losing the holding pattern at KEATN, since it was not part of the KCAK ILS 01 instrument approach procedure.
NOTE:

PFD Bugs menu VNAV descent angles are not applicable for inside the FAF during a published instrument procedure.

IFR enroute, terminal, and instrument approach navigation predicted upon EFIS is prohibited unless the pilot verifies the currency of the navigation database or verifies each selected waypoint for accuracy by reference to current approved data.

Instrument approach navigation must be accomplished in accordance with the approved instrument procedures. These procedures are retrieved from the EFIS navigation database. Before conducting an instrument procedure, the procedure should be verified by reference to current approved data.

Navigation databases should be current for the duration of the flight. If the Aeronautical Information Regulation and Control (AIRAC) cycle is due to change during the flight, operators and pilots should establish procedures to ensure the accuracy of navigation data including suitability of navigation facilities used to define the routes and procedures for flight. Once acceptable means to compare aeronautical charts (new and old) to verify navigation fixes prior to departure, electronic data have traditionally been verified against paper products. If an amended chart is published for the procedure, do not use the database to conduct the operation.

There may be a slight difference between the navigation information portrayed on the chart and the primary navigation display heading. Differences of three degrees or less may result from equipment manufacturer’s application of magnetic variation and are operationally acceptable.

GPS receivers do not “fail down” to lower levels of service once the approach has been activated.

If only LPV VLON appears, use the LNAV minima if the rules under which the flight is operating allow changing the type of approach being flown after commencing the procedure. If the lateral integrity limit is exceeded on an LP approach, a missed approach is necessary, since the lateral alarm limit may not be reset while the approach is active.
Section 8 Terrain Awareness Warning System

8.1. HTAWS (Terrain Awareness and Warning System) Functions

The IDU provides TSO-C194 HTAWS functionality. With the rotorcraft configuration and external sensors/switches, the system is configured to options found in Table 8-1:

1) **Terrain Display**: Terrain and obstacles on PFD and Map.

2) **Forward Looking Terrain Awareness (FLTA)**: Alerts to hazardous terrain or obstructions in front of the aircraft.

3) **Excessive Rate of Descent (GPWS Mode 1)**: Alerts when hazardously high rate of descent above terrain (i.e., descending into terrain).

4) **Excessive Closure Rate to Terrain (GPWS Mode 2)**: Alerts when hazardously high rate of change above terrain (i.e., flying level over rising terrain).

5) **Sink Rate after Takeoff or Missed Approach (GPWS Mode 3)**: Alerts when loss of altitude is detected immediately after takeoff or initiation of a missed approach.

6) **Flight into Terrain when not in Landing Configuration (GPWS Mode 4)**: Alerts when descending into terrain without properly configuring the aircraft for landing.

7) **Excessive Downward Deviation from an ILS Glide Slope (GPWS Mode 5)**: Alerts when deviating below glide slope on the final approach segment of an ILS approach.

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>TAWS Class</th>
<th>Terrain Display</th>
<th>FLTA</th>
<th>GPWS Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotorcraft RG</td>
<td>Enhanced</td>
<td>✓</td>
<td>✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Rotorcraft FG</td>
<td>Enhanced</td>
<td>✓</td>
<td>✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Rotorcraft Normal</td>
<td>Normal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Notes: RG = Retractable Gear, FG = Fixed Gear

8.2. Terrain Display

The display of terrain on the PFD and Map are described in Sections 3 Display Symbology and 5 Menu Functions and Step-By-Step Procedures.
8.3. Forward Looking Terrain Alert Function

FLTA function uses the following to alert to hazardous terrain or obstructions within a search envelope in front of the aircraft:

1) Terrain database
2) Obstruction database
3) Airport and runway database
4) Aircraft position
5) Aircraft track
6) Aircraft ground speed
7) Aircraft bank angle
8) Aircraft altitude
9) Aircraft vertical speed
8.3.1. FLTA Modes

FLTA mode is either slaved to the GPS/SBAS navigation mode or set automatically based upon default mode logic.

8.3.2. GPS/SBAS Navigation Mode Slaving

The EFIS performs TSO-C146c GPS/SBAS system functions in addition to the TAWS functions. As a result, GPS/SBAS navigation mode is available as an input to the TAWS. The pilot may select an IFR procedure (approach, DP, or STAR), which automatically changes the GPS/SBAS navigation mode to enroute, terminal, departure, or IFR approach as appropriate. In addition, the pilot may select a VFR approach to any runway or user waypoint with a defined approach path. Selection of a VFR approach causes automatic GPS/SBAS navigation mode changes to enroute, terminal, or VFR approach as appropriate.

When slaved, the GPS/SBAS active runway threshold or user waypoint is the reference point for automatic FLTA inhibiting. The advantage is the GPS/SBAS navigation modes are a direct indication to the FLTA function of pilot intent.

8.3.3. Default FLTA Mode

If the default FLTA navigation mode is higher in precedence than the GPS/SBAS navigation mode, FLTA mode is slaved to the default FLTA navigation mode. These modes and order of precedence are:

1) **Departure Mode**: Enabled when in ground mode. Reference point for automatic FLTA inhibiting and mode envelope definition is the last point at which the ground definition was satisfied (near the liftoff point). Departure Mode ends upon climbing through 1500 feet above or traveling more than 6NM from the reference point.

![Figure 8-3: Default FLTA INHBT](image)

2) **Other Modes**: For other default FLTA modes, reference point for automatic FLTA inhibiting and mode envelope is the nearest runway threshold or the nearest user waypoint with a defined approach bearing. TAWS continuously searches all runway thresholds at the
nearest three airports to determine the nearest runway threshold. TAWS performs a search for the nearest three airports and nearest user waypoints with a defined approach bearing every 3NM of distance traveled. Modes are as follows:

a) **Approach Mode**: When within 1900 feet and 5NM of the reference point.

b) **Terminal Mode**: From 5NM to 15NM from the reference point when below an altitude that varies from 1900 feet (at 5NM) to 3500 feet (at 15NM) above the reference point.

c) **Enroute Mode**: When not in any other mode.

![Figure 8-4: FLTA INHBT Mode Areas](image)

8.3.4. **FLTA Search Envelope**

The FLTA search envelope is an area in front of and below the aircraft. If terrain or obstructions are found within the FLTA search envelope, a caution or warning is given. Dimensions of the search envelope depend upon TAWS type, FLTA mode, and aircraft track, ground speed, bank angle, and vertical speed. Basic envelope parameters are as follows:

1) **TAWS Type**: Determines value of several parameters used to calculate the search envelope.

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-Off Rule</td>
<td>10% of vertical speed</td>
</tr>
<tr>
<td></td>
<td>Used for level off leading for descending flight reduced required terrain clearance (RTC)</td>
</tr>
</tbody>
</table>
Table 8-2: FLTA Search Envelope for HTAWS

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>36 seconds of forward range search envelope</td>
</tr>
<tr>
<td></td>
<td>Reduced to 24 seconds when low altitude mode is engaged.</td>
</tr>
<tr>
<td></td>
<td>After calculations, GPS/SBAS HFOM is added to range.</td>
</tr>
<tr>
<td>Enroute Mode Level/Climbing Flight RTC</td>
<td>150 feet</td>
</tr>
<tr>
<td>Terminal Mode Level/Climbing Flight RTC</td>
<td>Reduced to 100 feet when low altitude mode is engaged.</td>
</tr>
<tr>
<td>Approach Mode Level/Climbing Flight RTC</td>
<td>100 feet</td>
</tr>
<tr>
<td>Departure Mode Level/Climbing Flight RTC</td>
<td>100 feet</td>
</tr>
<tr>
<td>Enroute Mode Descending RTC</td>
<td>100 feet</td>
</tr>
<tr>
<td>Terminal Mode Descending RTC</td>
<td>100 feet</td>
</tr>
<tr>
<td>Approach Mode Descending RTC</td>
<td>100 feet</td>
</tr>
<tr>
<td>Departure Mode Descending RTC</td>
<td>100 feet</td>
</tr>
</tbody>
</table>

2) **Aircraft Track**: Terrain search envelope is aligned with aircraft track.

3) **Aircraft Ground speed**: Used in conjunction with range parameter to determine the look-ahead distance and used with FLTA mode to determine search volume width as follows:

 a) **Enroute Mode**: Based on a 30° change in track followed by 30 seconds of flight at aircraft ground speed. Maximum width is 0.5NM either side of track.

 b) **Terminal Mode**: Based on a 15° change in track followed by 30 seconds of flight at aircraft ground speed. Maximum width is 0.5NM either side of track.

 c) **Approach Mode**: Based on a 10° change in track followed by 30 seconds of flight at aircraft ground speed. Maximum width is 0.3NM either side of track.

 d) **Departure Mode**: Based on a 10° change in track followed by 30 seconds of flight at aircraft ground speed. Maximum width is 0.3NM either side of track.

After calculating search volume width as described above, the GPS/SBAS HFOM is added to search volume width.
4) **Aircraft Bank Angle**: Used to expand the search volume in the direction of a turn and require at least 10° of bank. In addition, search volume expansion is delayed, so at 10° of bank, the bank angle must be continuously held for 3.25 seconds. The amount of delay is reduced linearly with increased bank angle so at 30° of bank there is no delay time. Delaying is intended to reduce nuisance search volume expansions when experiencing bank angle excursions due to turbulence.

5) **Aircraft Vertical Speed**: Used to determine which RTC values should be used. At vertical speeds > -500 fpm, level and climbing flight RTC values are used. At vertical \(\leq -500 \) fpm, descending flight RTC values are used. In addition, vertical speed is used to increase the descending flight RTC value used by the system. The increase in descending flight RTC is based upon a three-second pilot reaction time and VSI leading according to the level-off rule parameter.
8.3.5. FLTA Alerts and Automatic Pop-Up

When terrain or obstructions fall within the FLTA search envelope, an FLTA warning is generated. Terrain rendering is enabled when an FLTA warning is initiated or upgraded as follows:

1) On PFD, terrain rendering is enabled;
2) On navigation display screen, terrain rendering is only enabled if TAWS Inhibit is not enabled.

In addition, when an FLTA warning is initiated or upgraded, an automatic pop-up mode is engaged and bottom area display:

1) Switches to navigation display.
2) Switches to aircraft centered and heading up.
3) Panning disabled.

Figure 8-6: PFD in Pop-Up Mode
4) Scale set to:
 a) 10 NM (ground speed > 200 knots)
 b) 5 NM (ground speed \(\leq \) 200 knots and > 100 knots)
 c) 2NM (ground speed \(\leq \) 100 knots)

After the pop-up mode is engaged, the pilot may change any setting automatically changed by the pop-up mode. In addition, \textbf{RESET (L5)} appears for 20 seconds to reset the previous screen configuration with one button press. Pop-ups only occur on IDU #1, and do not occur:

1) If TAWS Inhibit is enabled;
2) In essential mode, with a standalone (non-overlaid) OASIS/EICAS function.

8.4. **Excessive Rate of Descent (GPWS Mode 1)**

GPWS Mode 1 function is present in Enhanced HTAWS and uses aircraft vertical speed information and AGL altitude to alert when the rate of descent is hazardously high as compared to height above terrain. GPWS Mode 1 has a caution and warning threshold. When below the thresholds, a GPWS Mode 1 warning is generated.

<table>
<thead>
<tr>
<th>Sink Rate (fpm)</th>
<th>Caution Threshold</th>
<th>Warning Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1000</td>
<td>62.5% \times (Sink Rate – 600)</td>
<td>PULL UP PULL UP</td>
</tr>
<tr>
<td>1000 to 3000</td>
<td>Lesser of:</td>
<td>66% \times (Caution Threshold)</td>
</tr>
<tr>
<td></td>
<td>750 or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25% \times (Sink Rate)</td>
<td></td>
</tr>
</tbody>
</table>

\textbf{Table 8-3: HTAWS GPWS Mode 1 Envelope}
8.5. Excessive Closure Rate to Terrain (GPWS Mode 2)

GPWS Mode 2 function is present in Enhanced HTAWS only and uses filtered AGL rate and AGL altitude to alert when the rate of change of height above terrain is hazardously high as compared to height above terrain (i.e., flying level over rising terrain). Envelope selection is determined as follows and is based upon a 10-second sampling time.

There are two Mode 2 envelopes: Mode 2A, which is active when not in landing configuration, and Mode 2B, which is active when in landing configuration. Envelope selection is determined as follows.

<table>
<thead>
<tr>
<th>Table 8-4: HTAWS GPWS Mode 2 Envelopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landing Gear</td>
</tr>
<tr>
<td>Retractable</td>
</tr>
<tr>
<td>Fixed</td>
</tr>
</tbody>
</table>

When the GPWS Mode 2 envelope is pierced, a GPWS Mode 2 warning is generated.
Table 8-5: HTAWS GPWS Mode 2A Envelopes (NOT in Landing Configuration)

<table>
<thead>
<tr>
<th>AGL Rate (fpm)</th>
<th>AGL Altitude (ft.)</th>
<th>Caution Threshold</th>
<th>Warning Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1905</td>
<td>125% × (AGL Rate – 1600)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1905</td>
<td>20% of the lesser of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Airspeed (KIAS)</td>
<td>AGL Rate (fpm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 90</td>
<td>3120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90 to 130</td>
<td>3120 + 72 × (Airspeed – 90)</td>
<td>66% × (Caution Threshold)</td>
</tr>
<tr>
<td></td>
<td>> 130</td>
<td>6000</td>
<td></td>
</tr>
</tbody>
</table>

Table 8-6: HTAWS GPWS Mode 2B Envelopes (Landing Configuration)

<table>
<thead>
<tr>
<th>AGL Altitude (ft.)</th>
<th>Caution Threshold</th>
<th>Warning Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesser of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% × (AGL Rate – 2000)</td>
<td></td>
<td>66% × (Caution Threshold)</td>
</tr>
</tbody>
</table>

Figure 8-8: Rotorcraft GPWS Mode 2
8.6. Sink Rate after Takeoff or Missed Approach (GPWS Mode 3)

GPWS Mode 3 function uses aircraft vertical speed information and AGL altitude to alert when sink rate is detected immediately after takeoff or initiation of a missed approach. GPWS Mode 3 is armed by either being in ground mode or by being on the first leg of a missed approach procedure (as determined by the GPS/SBAS) with distance to the active runway threshold increasing. GPWS Mode 3 is disarmed upon climbing through 400 feet AGL, traveling more than 3NM from the last point at which the ground definition was satisfied (this is near the liftoff point), or transitioning to the second leg of a missed approach procedure. GPWS Mode 3 has a caution threshold based upon height above terrain and vertical speed. When below the caution threshold (AGL threshold = 1.4 x sink rate), a GPWS Mode 3 caution is generated.

Figure 8-9: GPWS Mode 3 Warning (Sink Rate after Takeoff or Missed Approach)

8.7. Flight into Terrain when not in Landing Configuration (GPWS Mode 4)

GPWS Mode 4 function is present in Enhanced HTAWS and uses aircraft speed information and AGL altitude to alert when descending into terrain without properly configuring the aircraft for landing. There are two Mode 4 envelopes: Mode 4A, which gives cautions when landing gear is in other than landing configuration, and Mode 4B, which gives cautions when landing gear are in other than landing configuration. Applicability of Mode 4 envelopes to aircraft types are as defined in Table 8-7.
Table 8-7: HTAWS GPWS Mode 4 Envelopes

<table>
<thead>
<tr>
<th>Landing Gear</th>
<th>Mode 4A</th>
<th>Mode 4B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retractable</td>
<td>Landing Gear Up</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Fixed</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Mode 4 envelope consists of low-speed and high-speed regions.

Table 8-8: HTAWS GPWS Mode 4 Alerting Criteria

<table>
<thead>
<tr>
<th>Region</th>
<th>Caution Flag</th>
<th>Single Voice Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Speed</td>
<td></td>
<td>“Too Low Gear”</td>
</tr>
<tr>
<td>High-Speed</td>
<td></td>
<td>“Too Low Terrain”</td>
</tr>
<tr>
<td>Autorotation expansion, when engaged, regardless of speed</td>
<td></td>
<td>“Too Low Gear”</td>
</tr>
</tbody>
</table>

Mode 4 alerting criteria require the Mode 4 envelope to be entered from above so changing aircraft configuration while within a Mode 4 envelope does not generate an alert.

Table 8-9: HTAWS GPWS Mode 4A Envelopes

<table>
<thead>
<tr>
<th>Segment</th>
<th>Speed (KIAS)</th>
<th>AGL Altitude (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A Low-Speed</td>
<td>< 100</td>
<td>150</td>
</tr>
<tr>
<td>4A High-Speed</td>
<td>≥ 100</td>
<td>(400 in autorotation)</td>
</tr>
</tbody>
</table>

Figure 8-11: Rotorcraft GPWS Mode 4
8.8. Excessive Downward Deviation from an ILS Glide Slope (GPWS Mode 5)

GPWS Mode 5 function is present in Enhanced HTAWS only and uses ILS glide slope deviation information and AGL altitude to alert when an excessive downward glide slope deviation is detected on the final approach segment of an ILS approach. GPWS Mode 5 is armed when a valid glide slope signal is being received, and the aircraft is below 1000’ AGL.

GPWS Mode 5 has a caution and warning threshold. When below a threshold, a GPWS Mode 5 warning is generated. The curve compares glide slope deviation to AGL altitude.

Table 8-10: HTAWS GPWS Mode 5 Envelopes

<table>
<thead>
<tr>
<th>Caution Threshold</th>
<th>Warning Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater of:</td>
<td>Greater of:</td>
</tr>
<tr>
<td>1.3 + 1.4% ×</td>
<td>2 + 1% ×</td>
</tr>
<tr>
<td>[(150 – AGL Altitude)] Dots</td>
<td>[(150 – AGL Altitude)] Dots</td>
</tr>
<tr>
<td>or 1.3 Dots</td>
<td>or 2 Dots</td>
</tr>
</tbody>
</table>

![Figure 8-12: Rotorcraft GPWS Mode 5](image)

8.9. External Sensors and Switches

TAWS requires a variety of inputs from external sensors and switches to perform its functions as follows:
1) **GPS/SBAS Receiver.** Source of aircraft position, geodetic height, horizontal figure of merit (HFOM), vertical figure of merit (VFOM), loss of integrity (LOI), and loss of navigation (LON). Connects directly to the IDU.

2) **Air Data Computer (ADC).** Source of barometric altitude, outside air temperature, and vertical speed. Connects directly to the IDU.

3) **ILS Receiver.** Glide slope receiver is the source of glide slope deviation.

4) **Radar Altimeter (RA).** Source for radar altitude.

5) **Gear Position Sensors.** As configured in the system limits, source of landing gear position.

6) **TAWS Inhibit Switch.** As configured in the system limits, used for manual inhibiting of TAWS alerting functions. Gives an indication of actuation (e.g., toggle/rocker or button with indicator light and ![TAWS INHIBT](image)

7) **Low Altitude Mode Switch.** As configured in the system limits, used for inhibiting and modifying HTAWS alerting functions to allow normal operation at low altitudes. Low Altitude Mode Switch is of the latching type and gives an obvious indication of actuation (e.g., toggle/rocker or button with indicator light and ![TAWS LOW ALT](image) in the lower left corner of PFI area on PFD).

8) **Audio Mute Switch.** Momentarily activated to silence active audible alerts. It is connected directly to the IDU.

9) **Glide Slope Deactivate Switch:** As configured in the system limits, momentarily activated to inhibit GPWS Mode 5 function.

10) **Low Torque Sensor:** A low torque discrete, as configured in the system limits and used for inhibiting and modifying HTAWS alerting functions during an autorotation.

Table 8-11: External Sensors and Switches (Applicable TAWS)

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>Rotorcraft RG</th>
<th>Rotorcraft FG</th>
<th>Rotorcraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTAWS Class</td>
<td>Enhanced</td>
<td>Enhanced</td>
<td>Normal</td>
</tr>
<tr>
<td>GPS/SBAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ADC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gear Position Sensor</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAWS Inhibit Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Audio Cancel Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Low Altitude Mode Switch</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Table 8-11: External Sensors and Switches (Applicable TAWS)

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>Rotorcraft RG</th>
<th>Rotorcraft FG</th>
<th>Rotorcraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Torque Sensor</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ILS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Radar Altimeter</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Glide Slope Deactivate Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Notes: RG = Retractable Gear; FG = Fixed Gear

8.10. TAWS Basic Parameter Determination

Fundamental parameters used for TAWS functions are as follows.

Table 8-12: HTAWS Basic Parameters Determination

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft position, ground speed, and track</td>
<td>GPS/SBAS</td>
<td>HFOM must be less than or equal to the greater of 0.3 NM or the horizontal alert limit (HAL) for mode of flight</td>
</tr>
</tbody>
</table>
| MSL Altitude | GPS/SBAS | Geodetic height converted to MSL with current EGM database. To be considered valid to use as MSL altitude, VFOM must be less than or equal to 106 feet. Barometric altitude is based upon a barometric setting in the following order of preference:
1) If either the pilot or co-pilot system is operating in QNH mode, the QNH barometric setting is used (i.e. on-side barometric setting preferred); or
2) If GPS/SBAS geodetic height has been valid within the last 30 minutes, a barometric setting derived from the GPS/SBAS geodetic height is used.
If neither of the above conditions is met, MSL altitude is marked as invalid.
When a reporting station elevation is determined and outside air...
Table 8-12: HTAWS Basic Parameters Determination

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperature</td>
<td>temperature is valid, a temperature correction is applied. TAWS uses the lower of the barometric altitude or the temperature-corrected altitude. In the case of QNH-mode barometric setting, reporting station elevation is derived from waypoint or active runway elevations in the active flight plan using the following logic:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) If the aircraft is in TERMINAL, DEPARTURE, IFR APPROACH, or VFR APPROACH mode and an active runway exists, reporting station elevation is the elevation of the active runway threshold.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Otherwise, if the aircraft is in TERMINAL mode, reporting station elevation is the elevation of the airport causing TERMINAL mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) In ENROUTE mode, no reporting station elevation is determined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the case of GPS/SBAS geodetic height-based barometric setting, reporting station elevation is the GPS MSL altitude reported at the time the barometric setting was determined (see Section 3 Display Symbology).</td>
</tr>
<tr>
<td>Terrain Data</td>
<td>Terrain Database</td>
<td>To be considered valid, the following must apply: 1) Aircraft position is valid; 2) Aircraft position is within the boundaries of the terrain database; and 3) Terrain database is not corrupt as determined by built-in test at system initialization and during runtime.</td>
</tr>
</tbody>
</table>
Table 8-12: HTAWS Basic Parameters Determination

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstacle Data</td>
<td>Obstacle Database</td>
<td>To be considered valid, the following must apply:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) Aircraft position is valid;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Aircraft position is within the boundaries of the obstacle database; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Obstacle database is not corrupt as determined by built-in test at system initialization.</td>
</tr>
<tr>
<td>AGL Altitude</td>
<td>Radar Altitude</td>
<td>Secondary source is MSL altitude less terrain altitude.</td>
</tr>
<tr>
<td>Vertical Speed</td>
<td>Instantaneous Vertical Speed</td>
<td>IVSI values come from barometric vertical speed from an ADC “quickened” with vertical acceleration from an AHRS. Secondary source for vertical speed is barometric vertical speed from an ADC. Tertiary source for vertical speed is GPS/SBAS vertical speed providing the VFOM is less than or equal to 106 feet.</td>
</tr>
<tr>
<td>Terrain Closure Rate</td>
<td>Smoothed first derivative of AGL altitude</td>
<td>Due to multiple sources for altitude, there are multiple sources for terrain closure rate.</td>
</tr>
<tr>
<td>Runway/Reference point location</td>
<td>EFIS navigation database</td>
<td>To be considered valid, the following must apply:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) Aircraft position is valid;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Aircraft position is within boundaries of the navigation database; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Navigation database is not corrupt as determined by a built-in test at system initialization.</td>
</tr>
</tbody>
</table>

8.11. TAWS Automatic Inhibit Functions (Normal Operation)

The following automatic inhibit functions occur during normal TAWS operation to prevent nuisance warnings:
1) **FLTA function** is automatically inhibited when in terminal, departure, IFR approach, or VFR approach modes and within 2 NM and 1900’ of the reference point.

2) **GPWS Modes 1 through 4** are automatically inhibited when below 50 feet AGL (radar altimeter AGL altitude) or below 100 feet AGL (terrain database AGL altitude).

3) **GPWS Mode 4** is inhibited while Mode 3 is armed.

4) **GPWS Mode 5** is inhibited below 200’ AGL. This form of automatic inhibit remains active until the aircraft climbs above 1000’ AGL and prevents nuisance alarms on missed approach when glide slope receiver detects glide slope sidelobes.

5) **FLTA function** is automatically inhibited when indicated airspeed or ground speed is below the HTAWS FLTA inhibit speed.

8.11.1. TAWS Automatic Inhibit Functions (Abnormal Operation)

The following automatic inhibit functions occur during the specified abnormal operations:

1) **Autorotation detection:** When the low torque sensor is active, an Enhanced HTAWS enters autorotation mode. In this mode:

 a) FLTA is inhibited;

 b) GPWS Mode 1 is inhibited;

 c) GPWS Mode 2 is inhibited; and

 d) GPWS Mode 4 uses a modified envelope (see § 8.7).

2) **System Sensor/Database Failures:** System sensor failures, non-installation of optional sensors, database failures, and combinations thereof affect TAWS.

<table>
<thead>
<tr>
<th>Table 8-13: TAWS Automatic Inhibit Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GPS/SBAS (H)</td>
</tr>
<tr>
<td>TD</td>
</tr>
<tr>
<td>ILS</td>
</tr>
<tr>
<td>MSL</td>
</tr>
<tr>
<td>GPS/SBAS (H) + RADLT</td>
</tr>
</tbody>
</table>

8-18 IDU-680 EFIS Software Version 9.0A (Rotorcraft) 1st Ed Apr 2021
Table 8-13: TAWS Automatic Inhibit Functions

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Parameters Lost</th>
<th>Terrain Displaced</th>
<th>FLTA</th>
<th>GPWS Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSL Altitude, VSI</td>
<td>Inhibit</td>
<td>Inhibit</td>
<td>Inhibit</td>
</tr>
<tr>
<td>GPS/SBAS (V) + ADC</td>
<td>MSL Altitude, VSI</td>
<td>Inhibit</td>
<td>Inhibit</td>
<td>Inhibit</td>
</tr>
<tr>
<td>TD + RADLT</td>
<td>Terrain Elev., AGL Altitude</td>
<td>Inhibit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSL + RADLT</td>
<td>MSL Altitude, AGL Altitude</td>
<td>Inhibit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS/SBAS (V) + ADC + RADLT</td>
<td>MSL Altitude, VSI, AGL ALT</td>
<td>Inhibit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1) Combinations listed give the minimum combinations with the worst consequences. Many other combinations are possible, but their effects are subsumed within the combinations listed.

2) GPS/SBAS (H) = HFOM > max (0.3NM, HAL). Indication is loss of terrain display on PFD and ND.

3) GPS/SBAS (V) = VFOM > 106°.

4) GPS/SBAS = GPS/SBAS (H) + GPS/SBAS (V). Indication is loss of terrain display on PFD and Map.

5) TD = Terrain Data invalid. This would be due to being beyond the database boundaries or database corruption.

6) ADC = Air Data Computer. Indication is ADC1 FAIL, ADC2 FAIL, or ADC1/2 FAIL, or red Xs indicating a single ADC failure.

7) RADALT = Radar Altimeter. Indication is lack of radar altimeter source flag on radar altimeter display.

8) ILS = ILS Glide Slope Deviation. Indication is lack of glide slope needles.

9) MSL = MSL Altitude Invalid. In the absence of other failures, indication is PLT1 TAWS or CPLT1 TAWS.
8.11.2. TAWS Manual Inhibit Functions

The pilot may select the following manual inhibit functions:

1) **Terrain Display** may be inhibited using an EFIS soft menu declutter control.

![Terrain Display Functionality SVS TAWS](image)

Figure 8-13: Terrain Display Functionality SVS TAWS
2) **All TAWS** alerting functions (including pop-up functionality) are inhibited with the external TAWS inhibit switch, which does not affect the terrain display function, including FLTA warning (red) and caution (amber [yellow]) cells on MAP page and PFI.

3) **Low Altitude Mode Switch** may be actuated to inhibit or modify parameters for alerting functions. This switch desensitizes HTAWS when purposefully flying VFR at low altitudes with the following effects:
 a) GPWS Mode 1 is inhibited.
 b) GPWS Mode 2 is inhibited.
 c) GPWS Mode 3 is inhibited.
4) **GPWS Mode 5** is inhibited with the glide slope cancel switch when below 1000' AGL. GPWS Mode 5 manual inhibit automatically resets by ascending above 1000' AGL.

8.12. **TAWS Selections on PFD**

Terrain and obstruction symbology for FLTA alerts meet the following requirements:

1) Terrain cells that pierce the FLTA warning volume are colored red.

2) Terrain cells that pierce the FLTA caution volume are colored yellow.

3) Obstructions whose tops pierce the FLTA warning volume are visually distinct from the non-alerting obstructions and flash.

4) Obstructions whose tops pierce the FLTA caution volume are visually distinct from non-alerting obstructions.

PFD declutter menu includes three option possibilities for TAWS:

1) SVS TAWS

2) SVS BASIC

3) None

The following figures show all possible scenarios including “None” where the aircraft pierces the TAWS FLTA terrain envelope, and SVS TAWS is enabled for the safest possible warning alert condition.
Figure 8-15: PFD SVS BASIC
TAWS FLTA Terrain Caution: Amber (Yellow)
TAWS FLTA Terrain Warning: Red

Figure 8-16: PFD SVS TAWS and Terrain Warning
Obstruction within TAWS FLTA Caution envelope with audible alert “Caution Obstruction, Caution Obstruction.” Obstruction symbols flash.

Figure 8-17: PFD SVS TAWS and Obstruction Caution
Obstruction within TAWS FLTA warning envelope with audible alert “Warning Obstruction, Warning Obstruction.” Obstruction symbols flash.

Figure 8-18: PFD Obstruction Warning
If SVS TAWS and SVS BASIC were not selected and the aircraft pierced the TAWS FLTA Terrain envelope, the EFIS automatically enables SVS TAWS. **TERRAIN** takes precedence over **OBSTRUCTION**.

Figure 8-19: Automatic PFD Terrain Caution
Section 9 Appendix

9.1. Appendix

This section contains a variety of useful information not found elsewhere in the document and includes operating tips, system specifications, feedback forms, and environmental requirements.

9.2. Operating Tips

With the Genesys Aerosystems EFIS installed and certified in all categories of certified aircraft, numerous tips and suggestions are available for obtaining the maximum performance and benefit from this system. Additional operating tips are available with future releases of this publication.

9.3. Domestic or International Flight Planning

Due to the differences in every aircraft avionics suite installation for the pilot to determine what equipment code is applicable for domestic or international flight plans, the aircraft operator must determine which certifications pertain to them. Visit the FAA website, www.faa.gov, for flight plan guidance for both domestic and international filers, as well as, information and documentation regarding FAA, ICAO, and flight services agreements and procedures.

9.4. Descent Planning

Instead of performing conventional time/speed/distance/descent-rate calculations, use the waypoint symbol for descent planning. Simply maintain the cruise altitude until the “X” at the bottom of the waypoint symbol is 2-3 degrees below the horizon (as indicated by the pitch scale) then begin a 2-3 degree descent. Maintain the correct descent angle by keeping the flight path marker positioned on the waypoint “X” symbol. Following the skyway boxes assures the VNAV descent angle is maintained.

9.5. Terrain Clearance

Use the flight path marker to evaluate climb performance for terrain clearance. If climbing at the best climb speed to clear terrain and the flight path marker is overlaying the terrain, which must be cleared, the climb rate is insufficient. Either the course or climb rate must be altered to adequately clear the terrain. If the flight path marker is well clear of the terrain (overlaying blue sky), the climb is sufficient for the present time, and no further action is necessary until level off.
9.6. Departure Airport Information

On startup, all information for the departure airport is readily available. The altimeter is automatically set to the nearest IFR runway touchdown zone elevation (if Baro Autosetting on Startup is enabled in EFIS limits). Press NRST (R3) to reveal the nearest airports. When highlighted, all important data such as elevation, frequencies, and runway lengths are displayed.

9.7. Unique Names for Flight Plans

Multiple routes between the same airport pairs are numbered automatically (KCEW-KDHN) [0], (KCEW-KDHN) [1], etc.). The work-around is to apply this easily remembered differentiation. If a route is routinely flown from one airport to another but different routing is necessary due to weather, hot MOA areas, etc., up to 10 different flight plans may be created for the same destination.

As an example for departing Sikes on a northern routing (KCEWN) or a southern routing (KCEWS), create two different user waypoints at the departure airport named KCEWN and KCEWS followed by different routing to clear whatever creates the necessity for specific routing, e.g. a MOA.

9.8. Altimeter Settings

Use caution when setting the altimeter and inadvertently changing the transition level. If this is reset to a lower than normal altitude, CHK BARO may appear due to the altimeter setting not on 29.92 inHg or 1013 mbar.

9.9. Warnings, Cautions, and Advisories

Review Section 2 System Overview for the conditions precisely defining scenarios for various time-critical warning alerts, warning alerts, master visual and audio alerts, time-critical caution alerts and advisory alerts, as they appear including the conditions and time delay when applicable.

9.10. Magnetic vs. True North Modes of Operation

There are two modes for the AHRS:

1) Slaved mode (i.e., compass rose stabilized by Earth’s magnetic flux horizontal field) is the normal mode. It works well over most of the surface of the earth (i.e., areas with a horizontal field of 5000nT or above, which includes about 2/3rds of Canadian NDA). ADAHRS senses magnetic flux with a 3D magnetometer. Performance in small horizontal fields is installation dependent as variable magnetic disturbances from the aircraft may begin to predominate.
2) Free or “DG” mode (i.e., compass rose not stabilized by the Earth’s magnetic flux horizontal field and subject to drift) is used in areas of magnetic disturbances (oilrigs, MRI machines, etc.) or in areas where the horizontal field is too weak. In Free/”DG” mode, heading no longer corrects towards Earth’s magnetic flux horizontal field, and the pilot may “slew” the heading solution.

![Figure 9-1: US/UK World Magnetic Model](image)

There are two modes for the EFIS:

1) Magnetic North mode: Heading from AHRS (whether slaved or Free/”DG”) is used as-is and is expected to reflect Magnetic North. GPS Track is converted from true north-referenced to magnetic north-referenced using a magnetic variation database. PFD scenes and compass rose symbols are aligned with magnetic north. Wind is displayed referenced to magnetic north.

2) True North mode: GPS track is used as-is and reflects true north. When AHRS is in slaved mode, heading from AHRS is converted from magnetic north-referenced to true north-referenced using a magnetic variation database. When AHRS is in Free/”DG” mode, heading from the AHRS is used as-is and is expected to reflect true north. PFD scenes and compass rose symbols are aligned with true north. Wind is displayed referenced to true north.
NOTE:

Designating magnetic north vs. true north mode is critical since it determines how inputs are used – i.e., the relationship between GPS track and ADAHRS heading. Mixing things up in Free/DDG” mode (i.e., slewing the compass rose to match magnetic north when in true north mode and vice-versa) may result in large errors in wind calculations and GPS track/flight path marker displays.

9.11. Altitude Miscompare Threshold

The altitude miscompare threshold is based upon allowable altitude error. There are two components to allowable altitude error, instrument error and installed system error. Table 9-1 defines the allowable instrument error is based upon the values of SAE AS802A Table 1.

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Allowed Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Level</td>
<td>25’</td>
</tr>
<tr>
<td>1,000’</td>
<td>25’</td>
</tr>
<tr>
<td>2,000’</td>
<td>25’</td>
</tr>
<tr>
<td>3,000’</td>
<td>25’</td>
</tr>
<tr>
<td>4,000’</td>
<td>25’</td>
</tr>
<tr>
<td>5,000’</td>
<td>25’</td>
</tr>
<tr>
<td>8,000’</td>
<td>30’</td>
</tr>
<tr>
<td>11,000’</td>
<td>35’</td>
</tr>
<tr>
<td>14,000’</td>
<td>40’</td>
</tr>
<tr>
<td>17,000’</td>
<td>45’</td>
</tr>
<tr>
<td>20,000’</td>
<td>50’</td>
</tr>
</tbody>
</table>

Allowable installed system error is added on top of instrument error and these values are derived from the regulations as defined in Table 9-2.

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Allowed Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 CFR § 27.1325</td>
<td>At sea level, the greater of 30’ or 30% of the calibrated airspeed in knots. This increases proportionally to SAE AS8002A Table 1 at higher altitudes.</td>
</tr>
<tr>
<td>14 CFR § 29.1325</td>
<td></td>
</tr>
</tbody>
</table>
An allowable altitude error is computed for each compared value and added together to create the altitude miscompare threshold. This accommodates for the values deviating in different directions.

Worked example for a calibrated airspeed of 100 knots and comparing a first altitude of 3,490’ with a second altitude of 3,510’:

1) Calculate allowable instrument error based upon altitudes:
 Allowable Instrument Error #1 = 50’
 Allowable Instrument Error #2 = 50’

2) Calculate allowable installed system error based upon altitudes and calibrated airspeed:
 Allowable Installed System Error #1 = 30’
 Allowable Installed System Error #2 = 30’

3) Calculate altitude miscompare threshold based upon sum of above allowable errors:
 Altitude Miscompare Threshold = 160’

9.12. Airspeed Miscompare Threshold

Airspeed miscompare threshold is based upon allowable airspeed error. There are two components to allowable airspeed error, instrument error and installed system error. Table 9-3 defines the allowable instrument error is based upon the values of SAE AS8002A Table 3.

<table>
<thead>
<tr>
<th>Calibrated Airspeed</th>
<th>Allowed Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 knots</td>
<td>5 knots</td>
</tr>
<tr>
<td>80 knots</td>
<td>3 knots</td>
</tr>
<tr>
<td>100 knots</td>
<td>2 knots</td>
</tr>
<tr>
<td>120 knots</td>
<td>2 knots</td>
</tr>
<tr>
<td>150 knots</td>
<td>2 knots</td>
</tr>
<tr>
<td>200 knots</td>
<td>2 knots</td>
</tr>
</tbody>
</table>

Allowable installed system error is added on top of instrument. Error and these values are derived from the regulations as defined in Table 9-4.

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Allowed Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 CFR § 27.1323</td>
<td>Starting from $(0.8 \times V_{CLIMB})$: Greater of 5 knots or 3%. Do not perform a comparison if either value is below $(0.8 \times V_{CLIMB})$.</td>
</tr>
</tbody>
</table>
Table 9-4: Airspeed Regulatory Reference

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Allowed Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 CFR § 29.1323</td>
<td>For climbing flight (VSI > 250 feet per minute): Starting from ((V_{\text{TOS}} - 10)): 10 knots</td>
</tr>
<tr>
<td></td>
<td>Do not perform a comparison if either value is below ((V_{\text{TOS}} - 10))</td>
</tr>
<tr>
<td></td>
<td>For other flight regimes: Starting from ((0.8 \times V_{\text{TOS}})): Greater of 5 knots or 3%</td>
</tr>
<tr>
<td></td>
<td>Do not perform a comparison if either value is below ((0.8 \times V_{\text{TOS}}))</td>
</tr>
<tr>
<td></td>
<td>System uses (V_{\text{CLIMB}}) as a substitute for (V_{\text{TOS}}).</td>
</tr>
</tbody>
</table>

An allowable airspeed error is computed for each compared value and added together to create the airspeed miscompare threshold and accommodates for the values deviating in different directions.

9.13. Jeppesen Sanderson NavData® Chart Compatibility

As GPS navigation, flight management systems, computer flight maps, and computer flight planning systems have gained acceptance, avionics companies and software developers have added more features. Even with the many systems available today, paper enroute, departure, arrival, and approach charts are still required and necessary for flight. Avionics systems, flight planning, computer mapping systems, and associated databases do not provide all of the navigation information needed to conduct a legal and safe flight. They are not a substitute for current aeronautical charts.

See www.Jeppesen.com for the latest information on coding instrument procedures, naming conventions, altitudes within the database, and aeronautical information compatibility.

For information, definitions, and examples, visit the FAA website, www.faa.gov, to view the Instrument Procedures Handbook.

9.15. Data Logging and Retrieval

The EFIS logs all data associated with a flight, including all flight instrument and navigation data, which may be downloaded for review after flight. Data from the last 5 flights or 20 hours are logged at a one-second interval.
Data logging files contain recordings of flight and engine parameters of up to five hours each from the previous five system operations. During system operation, flight and engine parameters are recorded every one second. Each time the parameters are recorded, a Zulu time stamp followed by three lines of comma delimited ASCII text data are written where the first line contains flight parameters and, the second line contains engine parameters.

With IDU powered off, open USB door, and insert USB flash drive. Power up, and select `Download LOG Files` to create a “log” directory on the USB flash drive and copy the data logging files into the directory.

CAUTION:

Always install a valid USB flash drive in the IDU prior to activating any GMF to avoid erroneous failure indications or corruption of the IDU.

9.15.1. Delete LOG Files

1) If there are problems updating a navigation database or application software due to an excessively large log file, select “Delete Log Files” to delete all log files in the log directory.

Files named “LOG00.dat” thru “LOG04.DAT” and “MSGLOG.DAT” are deleted. This does not affect operations of the EFIS, as the EFIS generates new “LOG00.DAT” and “MSGLOG.DAT” files once a flight has started.

2) Press any button on the IDU or push 🅱️ to return to the Ground Maintenance menu.

9.15.2. Logged Flags and Custom CAS Messages

Flags and custom CAS messages are logged in memory to a file named “caslog00.csv” (*.csv files may be opened in Microsoft Excel or similar spreadsheet software). In addition, data from the previous four flights are saved in files “caslog01.csv” through “caslog04.csv.” Upon system start, the existing “caslog00.csv” through “caslog03.csv” files are renamed “caslog01.csv” through “caslog04.csv,” and “caslog00.csv” is opened for active logging.

The first line of the log files contains column headings related to the flag’s text (for standard warning functions) or the “CAS Log File Text” parameter (for custom CAS messages). All standard warning functions are logged.
Only custom CAS messages with valid “CAS Log File Text” parameters (i.e., not an empty string) are logged. Within the data fields of the log file, values are written as defined in Table 9-5.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL</td>
<td>0</td>
</tr>
<tr>
<td>ADVISORY</td>
<td>1</td>
</tr>
<tr>
<td>CAUTION</td>
<td>2</td>
</tr>
<tr>
<td>WARNING</td>
<td>3</td>
</tr>
</tbody>
</table>

9.16. Routes and Waypoints

9.16.1. VFR Flight Planning

The navigation database includes VFR waypoints, which consist of five digits beginning with “VP.” These may be found on VFR charts and should be loaded in the FMS prior to flight to ensure they are available in the database, and info checked for proper location.

9.16.2. Download Routes and User Waypoints

1) Select **Download Routes and User Waypoints** from the GMF to download all routes and user waypoints stored in the IDU to the USB flash drive. This option is useful for fleet operations where multiple aircraft fly the same routes.

2) Routes are stored on USB flash drive as NAME1-NAME2.RTE where NAME1 is the 1 to 5-character designation of the origin waypoint and NAME2 is the 1 to 5-character designation of the destination waypoint. User waypoints are stored on the USB flash drive as “USER.DAT.”
9.16.3. Upload Routes and User Waypoints

To copy all routes and user waypoints from a USB flash drive to the IDU, select Upload Routes and User Waypoints from GMF. Use this option in conjunction with the “Download Routes and User Waypoints” option to upload the same routes and user waypoints in multiple aircraft.

9.16.4. Delete Routes and User Waypoints

When corrupted routes cause the IDU to continually reboot, select “Delete Routes” on the Ground Maintenance page to remove all routes and the user waypoint file (USER.DAT) from the IDU.

<table>
<thead>
<tr>
<th>Examples of Asterisk Locations</th>
<th>Meaning of Asterisk Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved approaches are noted</td>
<td>Approved approaches are</td>
</tr>
<tr>
<td>by an asterisk (*) before the</td>
<td>noted by an asterisk (*)</td>
</tr>
<tr>
<td>approach procedure label.</td>
<td>before the approach</td>
</tr>
<tr>
<td>These approaches do not</td>
<td>procedure label.</td>
</tr>
<tr>
<td>require any ground based</td>
<td>These approaches do not</td>
</tr>
<tr>
<td>navigational aids.</td>
<td>require any ground</td>
</tr>
<tr>
<td>Instrument approach title</td>
<td>Instrument approach</td>
</tr>
<tr>
<td>includes “RNAV” or “(GPS).”</td>
<td>title includes “RNAV”</td>
</tr>
<tr>
<td>Transition most likely selected</td>
<td>Transition most likely</td>
</tr>
<tr>
<td>due to avenue of arrival.</td>
<td>selected due to avenue</td>
</tr>
<tr>
<td>(Not all instrument procedures</td>
<td>of arrival. (Not all</td>
</tr>
<tr>
<td>include a transition.)</td>
<td>instrument procedures</td>
</tr>
<tr>
<td>Examples include “VOR or GPS</td>
<td>include a transition.)</td>
</tr>
<tr>
<td>RWY…” or “RNAV (GPS) RWY…”</td>
<td></td>
</tr>
</tbody>
</table>

Table 9-6: Summary of Asterisk Symbology Use
Table 9-6: Summary of Asterisk Symbology Use

<table>
<thead>
<tr>
<th>Examples of Asterisk Locations</th>
<th>Meaning of Asterisk Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image of LND Waypoint with asterisk]</td>
<td>In addition to the magenta color, asterisk designates the active leg.</td>
</tr>
<tr>
<td>![Image of UEAB Waypoint with asterisk]</td>
<td>Asterisk designates the nearest end point.</td>
</tr>
</tbody>
</table>

9.18. Changing Instrument Approach Procedure at Same Airport

Changing complete instrument procedures is the same for a STAR, or DP. Changing the runway assigned is similar as changing the instrument approach procedure.

1) NAV LOG shows the ILS RWY 20R procedure loaded and currently in the active flight plan.

2) ATC advises that the ILS is out of service and to plan on the RNAV (RNP) Z RWY 20R instrument approach at KSNA.

3) On any IDU, press **ACTV (L2)**, rotate 1 to (KSNA), and push to enter. (Example on the PFD.)
4) Rotate ① to **IFR APPR..** and push to enter.

5) Rotate ① to *RNAV20RZ and push to enter.

6) Rotate ① to desired transition and push to enter. In this case, DSNEE is not the most logical transition based on orientation and position.

7) Rotate ① to runway contained within ATC clearance (or choice) and push to enter.

8) Push ① to confirm replacing approach procedure.

9) ATC issues clearance to maintain 4,600' and fly direct to DEKRT intersection.

10) Rotate ① to DEKRT, press (R4) then push ① to enter.

11) Push ① to enter for the EFIS to overfly DEKRT as a waypoint.

12) Continue to reset minima, QNH, etc., and proceed with new approach procedure.

NOTE:

With changing of the original active flight plan, it is extremely important to verify the OBS settings and ILS frequencies with current NAV data and set/identified correctly in the EFIS and navigation receivers.
9.19. **EFIS NAV Source Management**

The default navigation source is FMS when the EFIS initializes and this NAV source can never be decluttered from the system. Most EFIS installations are configured with dual VOR navigation receivers bringing the maximum NAV sources to three total.

With FMS as the selected NAV source, VOR1 and VOR2 OBS settings can be set for later use and left in the background. Only one NAV source can be indicated at a time in the CDI area. While on NAV source VOR1 or VOR2, the FMS is displayed in the form of HITS guidance and MFD page magenta line. The selected NAV source is never hidden and always indicated as shown in Table 9-7.

![Figure 9-3: NAV Source Management](image)

Figure 9-3: NAV Source Management
Table 9-7: NAV Source Indications

<table>
<thead>
<tr>
<th>Nav Source</th>
<th>Indication</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMS (GPS1 or GPS2 source of navigation guidance)</td>
<td>2.0NM ○ ○ ↑ ○ ○ 204°A HDG: LNAU</td>
<td>enroute mode of navigation.</td>
</tr>
<tr>
<td>FMS (GPS1 or GPS2 source of navigation guidance)</td>
<td>ANG ○ ○ ↑ ○ ○ 010°A HDG: LNAU</td>
<td>LP/LPV approach mode of navigation.</td>
</tr>
<tr>
<td>HSI (GPS1 or GPS2 source of navigation guidance)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR1 navigation receiver when tuned to a VOR frequency. VLOC1 navigation receiver tuned to an ILS/localizer frequency.</td>
<td>ANG ○ ○ ↑ ○ ○ 149° HDG: LNAU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANG ○ ○ ↑ ○ ○ 258° HDG: LNAU</td>
<td></td>
</tr>
</tbody>
</table>
Table 9-7: NAV Source Indications

<table>
<thead>
<tr>
<th>Nav Source</th>
<th>Indication</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HSI VOR1 source of navigation guidance. HSI VLOC1 source of navigation when tuned to an ILS/localizer frequency.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOR2 navigation receiver when tuned to a VOR frequency. VLOC2 navigation receiver tuned to ILS/Localizer frequency.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSI VOR1 source of navigation guidance. HSI VLOC2 source of navigation when tuned to ILS/localizer frequency.</td>
</tr>
</tbody>
</table>
9.20. EFIS Training Tool (ETT)

See the Installation and User Guide distributed with the ETT install files for directions to install and use the EFIS Training Tool.

Use the ETT to create routes and user waypoints to save and upload into the aircraft mounted IDUs. When uploading a saved flight plan (route) into an aircraft mounted IDU, the following rules apply:

1) Either upload flight plan (route) into each IDU to ensure flight plan (route) is saved in the route directory (all other displays); Or

2) Upload flight plan (route) into one display while in the ground mode. When in flight mode, activate that flight plan and on any other display, view active flight plan, and press SAVE (L1) to save flight plan in the route directory. This action saves the new uploaded flight plan (route) in all other displays.

NOTE:

In a dual-sided system, crossfill must be enabled to save flight plan to all other displays on each side of the system.

The ETT has a bezel with simulated buttons and encoders responsive to mouse and keyboard messages. Bezel graphics are derived from actual bezel design data, and the ETT presents an active display with 1:1 pixel correspondence to an actual IDU display. The audio output capability for the ETT matches the audio functionality in the actual IDU. This training tool simulates the functionalities of the IDU, which begins flight in Reno, Nevada at approximately 8000’ MSL. If different ETT startup conditions are required, they may be edited.

Flight plans may be created (on the PFD or MFD), saved, stored, and activated in the same manner as on the EFIS displays installed in the aircraft. This allows for moving the start point to anywhere in the world where loaded NavData® is present for practicing published procedures. As with the demonstrator program, the aircraft begins flying at approximately 8000’ MSL intercepting the first leg at a 45° angle.

9.21. USB Flash Drive Limitations

When powering up the IDU with a USB flash drive inserted and “Error: No updater files found on USB drive” displays, the USB is likely not acceptable for loading or transferring data.

1) Ensure the USB flash drive with required files is properly connected.
2) Try again after reboot.

3) Press any button to continue.

4) Try a different USB flash drive.

NOTE:

USB flash drive must be formatted as FAT16 or FAT32.

If the flash drive is not recognized, try another source.
T 1. Traffic Symbology

Figure T-1: Traffic Symbology

T 1.1. Traffic Display Definitions

1) Resolution Advisory (RA): Traffic with a dangerous closest point of approach and generates climb or descent commands as defined by internal TCAS-II sensor logic.

2) Traffic Advisory (TA): Traffic with a dangerous closest point of approach as defined by internal traffic sensor logic.

3) Proximate Advisory (PA): Traffic within 6 NM and ±1200 feet from ownship that is not an RA or TA.

4) Other Traffic (OT): Traffic beyond 6 NM or ±1200 feet from ownship that is not an RA or TA.
T 1.2. Traffic Rendering Rules

<table>
<thead>
<tr>
<th>Type Traffic</th>
<th>Distance</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA Traffic (TCAS-I/II, TAS, and TIS-A)</td>
<td>Off-scale</td>
<td>Half-symbols</td>
</tr>
<tr>
<td>TA Traffic (no bearing)</td>
<td>N/A</td>
<td>Displayed with text</td>
</tr>
<tr>
<td>OT and PA traffic (no bearing)</td>
<td>Beyond 6 NM</td>
<td>Not displayed</td>
</tr>
<tr>
<td>TAS or TIS-A Sensor</td>
<td>Within 200’ of ground</td>
<td></td>
</tr>
</tbody>
</table>

Table T-2: Traffic Symbology

<table>
<thead>
<tr>
<th>Type Traffic</th>
<th>Symbology</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAS-I, TCAS-II, TAS and TIS-A</td>
<td>, , , </td>
</tr>
<tr>
<td>Other Traffic</td>
<td>Proximate Advisory (Flashing)</td>
</tr>
<tr>
<td>Ownship Symbol</td>
<td>Resolution Advisory (Flashing)</td>
</tr>
</tbody>
</table>

Table T-3: ADS-B Traffic Symbols

<table>
<thead>
<tr>
<th>High-Integrity Traffic with Track Information</th>
<th>Proximate Advisory</th>
<th>Traffic Advisory (Flashing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Integrity Traffic without Track Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degraded Position Traffic with Track Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degraded Position Traffic without Track Information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table T-4: Pilot Selected OT and PA Traffic Altitude-Filter

<table>
<thead>
<tr>
<th>Mode</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>If aircraft VSI is less than -500fpm, traffic within +2,700 and -9,900 feet of aircraft altitude displayed. If aircraft VSI is more than +500 fpm, traffic within -2,700 and +9,900 feet of aircraft altitude displayed. Otherwise, traffic within -2,700 and +2,700 feet of aircraft altitude displayed.</td>
</tr>
<tr>
<td>ABOVE</td>
<td>Traffic within -2,700 and +9,900 feet of aircraft altitude displayed.</td>
</tr>
<tr>
<td>BELOW</td>
<td>Traffic within +2,700 and -9,900 feet of aircraft altitude displayed.</td>
</tr>
<tr>
<td>NORMAL</td>
<td>Traffic within -2,700 and +2,700 feet of aircraft altitude displayed.</td>
</tr>
<tr>
<td>ALL</td>
<td>All received traffic displayed, no altitude filtering.</td>
</tr>
</tbody>
</table>

Traffic pop ups: When a traffic alert is generated, a pop-up function displays traffic on the PFI, moving map page, and mini traffic on the PFI.

Figure T-2: Traffic Pop-Ups
T 1.3. Traffic Thumbnail

When selected from declutter options, thumbnail is displayed in the lower right corner of the PFI area of the PFD above the active waypoint identifier and has clock face markings fixed at the 6 NM scale.

Figure T-3: Traffic Thumbnail

The traffic thumbnail is automatically enabled while there is an active traffic warning (TA or RA) and the aircraft is above 500’ AGL. During a traffic warning, the traffic thumbnail scale automatically adjusts in multiples of 2 NM (2 NM, 4NM, or 6NM), to optimally display the traffic. While the traffic thumbnail is mutually exclusive with the MINI MAP, and ANLG AGL, so it too disappears in the unusual attitude mode.

T 1.4. TCAS-II Traffic Resolution Advisory Indicator

When TCAS-II is enabled, the background of the VSI functions as an RA display with green and red colored regions for resolution advisory guidance.

Figure T-4: TCAS-II RA Indication

T 2. Dedicated Traffic Page

When selected, a traffic page is available based roughly on the appearance of a TCAS display and has the following elements.

T 2.1. MFD Page (PAGE) Menu

TRAFFIC: Shows the Traffic page.
T 2.2. PFD First-Level Menu in Normal Mode

Figure T-6: PFD First-Level Menu in Normal Mode
FL (L6): When Traffic page is on the bottom, replace the intruder’s relative altitude readout with absolute altitude for 15 seconds.

T 2.3. MFD First-Level Menu in Normal Mode (MFD Page in Both Areas)

FL (L2): When Traffic page is on top, replace the Intruder’s relative altitude readout with absolute altitude for 15 seconds.

FL (L6): When Traffic page is on bottom, replace the Intruder’s relative altitude readout with absolute altitude for 15 seconds.

Figure T-7: MFD First-Level Menu in Normal Mode
T 2.4. Traffic Page (Step-By-Step) (PFD or MFD)

1) On the PFD, push 1 and rotate to TRAFFIC and push to enter.

2) Traffic page scale is adjustable by rotating 1 to select 3NM radius in 5NM and 10NM ranges.

3) On MFD, rotate 2 to TRAFFIC and push to enter.

4) On the MFD, press MENU (R1), within 10 seconds press FORMAT (R4) to format the Traffic page on top.

5) On the MFD, push 1 and rotate to TRAFFIC and push to enter to display Traffic page on bottom.
6) Press **MENU (R1)**, within 10 seconds press **FORMAT (R8)** to format the Traffic page on bottom.

7) Push ¹ to open **ALT FILTER.** menu. (See Table T-3 for altitude-filter parameters)

8) Push ¹ to accept **AUTO** altitude filtering.

9) Rotate ¹ to **ABOVE** and push to accept altitude filtering.

10) Rotate ¹ to **BELOW** and push to accept altitude filtering.

11) Rotate ¹ to **NORMAL** and push to accept altitude filtering.

12) Rotate ¹ to **ALL** and push to accept altitude filtering.
13) Press **MENU (R1)**, within 10 seconds press **FORMAT (R8)** to format the Traffic page on bottom.

14) Rotate ❶ to **TCAD TEST** and push to enter. (Ground operations only.)

15) Repeat step 14 and rotate ❶ to **DCLTR..** and push to enter.

16) Push ❶ to enter check mark and show route on Traffic page.

17) The active route appears along with the traffic.

18) To save changes and exit menu, rotate ❶ to **DONE** and push to enter or press **EXIT (R1)**.
T 2.5. Traffic Display Format

The traffic display uses a centered display format with the ownship symbol (Table T-2) centered on the traffic page with data displayed out to an equal distance in all directions. When the AHRS is in DG mode, “DG” appears to the right of the ownship symbol.

T 2.6. Traffic Page Screen Range

Screen ranges are available (all distances represent the distance from the ownship symbol to the compass rose): 5NM, 10NM, and 20NM. A TCAS range ring is centered upon the ownship symbol to help judge range to displayed symbols with a 3NM radius in 5NM and 10NM ranges, has a radius of half the range in 20NM, 50NM, and 100NM ranges, and is presented on the TCAS range ring (e.g., 3NM, 10NM, 25NM, or 50NM).

T 2.7. Compass Rose Symbols

![Normal Mode](image1)

![True North Mode](image2)

Figure T-9: Traffic Page Compass Rose Symbols
The compass rose is aligned with either magnetic north or true north depending upon the status of the true north discrete input. A digital heading readout and pointer aligned with the longitudinal axis of the ownship symbol appears on the compass rose boundary circle. Compass rose symbols are as specified in Section 3 Display Symbology. A green dashed lubber line connects the center of the aircraft symbol and the track pointer.

NOTE:

The track pointer, lubber line, and altitude capture predictor arc, are not displayed when ground speed is less than 30 knots.

A pilot-settable heading bug geometrically interacting with the heading pointer appears on the compass rose.

Table T-5: Traffic Page Examples

| ![Image](image1.png) | If a target altitude is set and not captured, an altitude capture predictor arc is displayed on the lubber line at a point corresponding with predicted climb or descent distance (based upon current VSI). |
| ![Image](image2.png) | A top of descent symbol is shown at the point where a VNAV descent is predicted to commence. |
Table T-5: Traffic Page Examples

A magenta, star-shaped waypoint pointer is displayed on the heading scale at a point corresponding with the active waypoint and turns amber (yellow) in the event of GPS LON caution.

Table T-6: Clock and Options

<table>
<thead>
<tr>
<th>Feature</th>
<th>Options</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zulu or Local Time</td>
<td>hh:mm:ssZ</td>
<td>Synchronized with the GPS/SBAS constellation.</td>
</tr>
<tr>
<td></td>
<td>hh:mm:ssL</td>
<td></td>
</tr>
<tr>
<td>Traffic Status</td>
<td>Enabled or</td>
<td>If traffic is disabled, overlying red “X”. When enabled, traffic</td>
</tr>
<tr>
<td></td>
<td>Disabled</td>
<td>altitude filtering is as follows (see Table T-3).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUTO = TRFC AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABOVE = TRFC ABV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BELOW = TRFC BLW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NORMAL = TRFC NORM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALL = TRFC ALL</td>
</tr>
</tbody>
</table>

T 2.8. Clock and Options

The following are displayed in the upper right corner of traffic page.

Figure T-10: Clock and Options

Zulu Time

Local Time
T 2.9. Fuel Totalizer/Waypoint Distance Functions

As defined in Section 3 Display Symbology.

Figure T-11: Fuel Totalizer/Waypoint Distance Functions

T 2.10. Air Data and Ground Speed

As defined in Section 3 Display Symbology.

Figure T-12: Air data and Ground Speed

NOTE:

Wind information is not shown when indicated airspeed is in the noise range of less than 30 knots, when the aircraft is in the ground mode, or when the AHRS is in DG mode.

T 2.11. MFD Traffic Format Menu

Upon selecting the MFD format menu, FORMAT (R8), a list appears with the following options.

1) ROUTE ON/ROUTE OFF: Toggles active flight plan route.
2) **ALT FILTER**: Sets traffic altitude filter to **AUTO, ABOVE, BELOW, NORMAL, or ALL**.

3) **TCAD TEST**: Activates test function of TCAD.

4) **DCLTR**: Opens declutter options for selecting **ROUTE** on or off.

T 2.12. Flight Level Option

When the Traffic page is displayed, and flight level (“FL”) is activated, the system replaces the intruder’s relative altitude with absolute altitude for 15 seconds.
T 3. Flight Level Option PFD Declutter (DCLTR) Menu

Upon activating the PFD declutter menu, a list of declutter items is shown.

<table>
<thead>
<tr>
<th>Table T-7: PFD Declutter Options and Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declutter Options</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>SVN Basic</td>
</tr>
<tr>
<td>PFD Traffic Thumbnail</td>
</tr>
<tr>
<td>Perspective Traffic Depiction</td>
</tr>
</tbody>
</table>

![Figure T-15: Basic Mode Mini Traffic](image)

T 4. MFD Fault Display Menu

Loss of communications with traffic sensor (TRFC) is indicated by an “X” in place of the “OK.”

![Figure T-16: Menu Faults Status](image)

T 5. Menu Synchronization

Section 5 Menu Functions and Step-by-Step Procedures for additional information.
Table T-8: Menu Synchronization

<table>
<thead>
<tr>
<th>Menu Parameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following menu parameters are synchronized across all displays when crosslink is enabled. Otherwise, they are only synchronized onside. These parameters are FMS parameters and allow the pilot and co-pilot FMSs to be operated independently when crosslink is inhibited.</td>
<td></td>
</tr>
<tr>
<td>Traffic Filter Setting</td>
<td>The following menu parameters are only synchronized onside. These parameters are usually sensor selections or PFD options used to keep the appearance of any pilot's PFD consistent in the case of PFD reversion. The onside characteristic means that individual pilots can still adjust their PFD settings to their preference.</td>
</tr>
<tr>
<td>PFD Traffic Thumbnail Show</td>
<td>The following menu parameters are independent between displays. These are used to support non-PFD display options to give the pilot maximum MFD operating flexibility. Note that some of these parameters are also independent between top and bottom MFD areas as specified in the notes.</td>
</tr>
<tr>
<td>PFD Traffic Show</td>
<td></td>
</tr>
<tr>
<td>MFD Traffic Page Settings (show FL)</td>
<td>Independent between top and bottom 680 MFD areas</td>
</tr>
</tbody>
</table>
Remote Bugs Panel (RBP)

RBP 1. Remote Bugs Panel

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Increase/decrease HDG bug – Push to synchronize to current heading</td>
</tr>
<tr>
<td>2</td>
<td>Increase/decrease target altitude – Push to synchronize to current altitude</td>
</tr>
<tr>
<td>3</td>
<td>Moves through "Set" options – press both arrows simultaneously to place into brightness dimming mode</td>
</tr>
<tr>
<td>4</td>
<td>Main display – Indicates course, bug, angle, height, and minimums to be set with multifunction knob</td>
</tr>
<tr>
<td>5</td>
<td>Moves through "Set" options – Press both arrows simultaneously to place into brightness dimming mode</td>
</tr>
<tr>
<td>6</td>
<td>Multifunction Knob – Increase/decrease value indicated in main display, and adjust lighting when in dimming mode</td>
</tr>
<tr>
<td>7</td>
<td>LNAV – Switches autopilot roll steering between LNAV and HDG sub-modes (N/A with HeliSAS Ver 56+ installed)</td>
</tr>
<tr>
<td>8</td>
<td>VNAV – Switches autopilot pitch steering between VNAV and target altitude sub-modes</td>
</tr>
<tr>
<td>9</td>
<td>Option display – Toggles function value in main display</td>
</tr>
<tr>
<td>10</td>
<td>Set Option button – Toggles function displayed in option display (also exits brightness dimming mode)</td>
</tr>
</tbody>
</table>

Figure RBP-1: Remote Bugs Panel
The Remote Bugs Panel (RBP) promotes ease of operation while minimizing pilot workload complexity by providing dedicated controls for frequently used bugs and controls for setting IDU parameters as defined in Table RBP-1.

The heading (HDG) and altitude (ALT) knobs behave similarly as the knobs on the IDU (see Section 5 Menu Functions and Step-By-Step Procedures for HDG and ALT knob description).

During initialization, the RBP begins with “GENESYS RBP” on the main and option display screens. To access the internal light sensor control for brightness, press the two arrow buttons simultaneously and rotate the multifunction knob to make adjustments. Press the Option button to exit the brightness control program and return the RBP to normal operation.

Table RBP-1: Remote Bugs Panel (RBP)

<table>
<thead>
<tr>
<th>Button/Knob</th>
<th>Function</th>
<th>Rotate</th>
<th>Push Knob or Press Button</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDG Knob</td>
<td>Heading Bug</td>
<td>Increase or decrease</td>
<td>Synchronize to current heading</td>
</tr>
<tr>
<td>LNAV Button (With autopilot enabled)</td>
<td>LNAV</td>
<td>N/A</td>
<td>Toggle between HDG sub-mode and LNAV sub-mode. (Only active when “HDG” or “LNAV” soft tile appears on EFIS.) This function is not applicable to installations without an autopilot or installations with a fully-integrated digital autopilot (i.e., HeliSAS-E and Genesys/S-TEC DFCS) because there are no HDG or LNAV sub-modes in those integrations.</td>
</tr>
<tr>
<td>ALT Knob</td>
<td>Altitude Bug</td>
<td>Increase or decrease target altitude</td>
<td>Synchronize to current altitude</td>
</tr>
<tr>
<td>VNAV Button (With autopilot enabled)</td>
<td>VNAV</td>
<td>N/A</td>
<td>HeliSAS-E/S-TEC DFCS: Turn OFF any preselected target altitude bug. EFIS with VNAV Sub-Mode: Turn OFF target altitude bug to allow for entering VNAV sub-mode. (Only active when “VNAV” tile appears</td>
</tr>
<tr>
<td>Button/Knob</td>
<td>Function</td>
<td>Rotate</td>
<td>Push Knob or Press Button</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>on EFIS.) This function is not applicable to installations without an autopilot or installations with a fully-integrated digital autopilot (i.e., HeliSAS-E and Genesys/S-TEC DFCS) because there are no VNAV sub-modes with those integrations.</td>
</tr>
</tbody>
</table>

Function Active Nav Course

<table>
<thead>
<tr>
<th>Multifunction Knob</th>
<th>GPS Course</th>
<th>Increase or decrease</th>
<th>If a manual GPS exists: (not in automatic OBS) Synchronize to current bearing to active waypoint.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifunction Knob</td>
<td>VLOC1</td>
<td>Increase or decrease</td>
<td>Synchronize nav source course to the current bearing to the station if NAV1 or NAV2 receiver is coupled to VOR; or synchronize the VLOC1 or 2 course to current aircraft heading if NAV receiver is coupled to LOC.</td>
</tr>
<tr>
<td>Multifunction Knob</td>
<td>TAC1</td>
<td>Increase or decrease</td>
<td>Synchronize the TAC1 or TAC2 course to the current bearing to the station.</td>
</tr>
<tr>
<td>Multifunction Knob</td>
<td>ADF1</td>
<td>Increase or decrease</td>
<td>Synchronize ADF1 or ADF2 course to the current bearing to the station.</td>
</tr>
</tbody>
</table>

Preview NAV Course

<p>| Multifunction Knob | VLOC1 | Increase or decrease | Synchronize nav source course to the current bearing to the station if NAV1 or NAV2 receiver is coupled to VOR; or synchronize the VLOC1 or VLOC2 course to current aircraft heading if NAV receiver is coupled to LOC. |</p>
<table>
<thead>
<tr>
<th>Button/Knob</th>
<th>Function</th>
<th>Rotate</th>
<th>Push Knob or Press Button</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifunction Knob</td>
<td>TAC1</td>
<td>Increase or decrease</td>
<td>Synchronize the TAC1 or TAC2 course to the current bearing to the station.</td>
</tr>
<tr>
<td></td>
<td>TAC2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifunction Knob</td>
<td>ADF1</td>
<td>NA</td>
<td>Synchronize ADF1 or ADF2 course to the current bearing to the station</td>
</tr>
<tr>
<td></td>
<td>ADF2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifunction Knob</td>
<td>VLOC1</td>
<td>NA</td>
<td>Synchronize the VLOC1 or VLOC2 course to the current bearing to the station if Nav receiver is coupled to VOR; or Synchronize the VLOC1 or VLOC2 course to the current aircraft heading if NAV receiver is coupled to LOC.</td>
</tr>
<tr>
<td></td>
<td>VLOC2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifunction Knob</td>
<td>Airspeed Bug</td>
<td></td>
<td>Synchronize to current airspeed</td>
</tr>
<tr>
<td>Multifunction Knob</td>
<td>Vertical Speed Bug</td>
<td>Increase or decrease</td>
<td>Synchronize to current VSI</td>
</tr>
<tr>
<td>Multifunction Knob</td>
<td>Climb Angle Set</td>
<td></td>
<td>Set to 3°</td>
</tr>
<tr>
<td></td>
<td>Descent Angle Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifunction Knob</td>
<td>Decision Height Bug</td>
<td></td>
<td>Set to 200’ AGL</td>
</tr>
<tr>
<td>Multifunction Knob</td>
<td>Minimum Altitude Bug</td>
<td></td>
<td>Synchronize to current altitude</td>
</tr>
<tr>
<td>Set Option "-- " Button</td>
<td>GPS Course</td>
<td></td>
<td>When selected NAV source is GPS, changes OBS mode (Manual or Automatic)</td>
</tr>
<tr>
<td>Set Option "-- " Button</td>
<td>Active NAV Course</td>
<td>N/A</td>
<td>No function</td>
</tr>
<tr>
<td>Set Option "-- " Button</td>
<td>Preview Nav Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Option "-- " Button</td>
<td>VOR 1 Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Option "-- " Button</td>
<td>VOR 2 Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Option "-- " Button</td>
<td>Airspeed Bug</td>
<td></td>
<td>Toggle on or off</td>
</tr>
</tbody>
</table>
Table RBP-1: Remote Bugs Panel (RBP)

<table>
<thead>
<tr>
<th>Button/Knob</th>
<th>Function</th>
<th>Rotate</th>
<th>Push Knob or Press Button</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Option “--" Button</td>
<td>Vertical Speed Bug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Option “--" Button</td>
<td>Climb Angle Setting</td>
<td></td>
<td>No function</td>
</tr>
<tr>
<td>Set Option “--" Button</td>
<td>Descent Angle Setting</td>
<td></td>
<td>Toggle on or off</td>
</tr>
<tr>
<td>Set Option “--" Button</td>
<td>Decision Height Bug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Option “--" Button</td>
<td>Minimum Altitude Bug</td>
<td></td>
<td>Move through “Set” options. Press both arrow buttons simultaneously to place into dimming mode.</td>
</tr>
<tr>
<td>Arrow Buttons</td>
<td>Function Scroll</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Figure RBP-2: Main and Option Messages

Main Message

Option Message

Table RBP-2: Main and Option Messages - Active NAV Course Function

<table>
<thead>
<tr>
<th>Selected Active Nav Source</th>
<th>Main Message</th>
<th>Option Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>NAV FMS</td>
<td>AUTO (If EFIS in manual OBS mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAN (If EFIS in automatic OBS mode)</td>
</tr>
</tbody>
</table>
Table RBP-2: Main and Option Messages - Active NAV Course Function

<table>
<thead>
<tr>
<th>Selected Active Nav Source</th>
<th>Main Message</th>
<th>Option Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLOC1</td>
<td>NAV VOR1 (If Nav receiver coupled to VOR)</td>
<td>Current VLOC1 Course setting (degrees)</td>
</tr>
<tr>
<td></td>
<td>NAV LOC1 (If NAV receiver coupled to LOC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAV BC1 (If NAV receiver coupled to LOC BC)</td>
<td></td>
</tr>
<tr>
<td>VLOC2</td>
<td>NAV VOR2 (If Nav receiver coupled to VOR)</td>
<td>Current VLOC2 Course setting (degrees)</td>
</tr>
<tr>
<td></td>
<td>NAV LOC2 (If NAV receiver coupled to LOC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAV BC2 (If NAV receiver coupled to LOC BC)</td>
<td></td>
</tr>
<tr>
<td>TAC1</td>
<td>NAV TAC1</td>
<td>Current TAC1 Course setting (degrees)</td>
</tr>
<tr>
<td>TAC2</td>
<td>NAV TAC2</td>
<td>Current TAC2 Course setting (degrees)</td>
</tr>
<tr>
<td>ADF1</td>
<td>NAV ADF1</td>
<td>Current ADF1 Course setting (degrees)</td>
</tr>
<tr>
<td>ADF2</td>
<td>NAV ADF2</td>
<td>Current ADF2 Course setting (degrees)</td>
</tr>
</tbody>
</table>
Table RBP-3: Main and Option Messages - Preview NAV Course Function

<table>
<thead>
<tr>
<th>Selected Preview Nav Source</th>
<th>Main Message</th>
<th>Option Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLOC1</td>
<td>PRV VOR1</td>
<td>Current VLOC1 Course setting (degrees)</td>
</tr>
<tr>
<td></td>
<td>(If Nav receiver coupled to VOR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRV LOC1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(If NAV receiver coupled to LOC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRV BC1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(If NAV receiver coupled to LOC BC)</td>
<td></td>
</tr>
<tr>
<td>VLOC2</td>
<td>PRV VOR2</td>
<td>Current VLOC2 Course setting (degrees)</td>
</tr>
<tr>
<td></td>
<td>(If Nav receiver coupled to VOR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRV LOC2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(If NAV receiver coupled to LOC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRV BC2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(If NAV receiver coupled to LOC BC)</td>
<td></td>
</tr>
<tr>
<td>TAC1</td>
<td>PRV TAC1</td>
<td>Current TAC1 Course setting (degrees)</td>
</tr>
<tr>
<td>TAC2</td>
<td>PRV TAC2</td>
<td>Current TAC2 Course setting (degrees)</td>
</tr>
<tr>
<td>ADF1</td>
<td>PRV ADF1</td>
<td>Current ADF1 Course setting (degrees)</td>
</tr>
<tr>
<td>ADF2</td>
<td>PRV ADF2</td>
<td>Current ADF2 Course setting (degrees)</td>
</tr>
</tbody>
</table>

Table RBP-4: Main and Option Messages - Other Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Main Message</th>
<th>Option Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS Course</td>
<td>CRS FMS</td>
<td>AUTO (If EFIS in manual OBS mode)</td>
</tr>
<tr>
<td>(EFIS in manual OBS mode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLOC1 Course</td>
<td>CRS VOR1</td>
<td>Current VLOC1 Course setting (degrees)</td>
</tr>
<tr>
<td>(If Nav receiver coupled to VOR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRS LOC1</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Main Message</td>
<td>Option Message</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(If NAV receiver coupled to LOC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRS BC1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(If NAV receiver coupled to LOC BC)</td>
<td></td>
</tr>
<tr>
<td>VLOC2 Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRS VOR2 (If Nav receiver coupled to VOR)</td>
<td>Current VLOC2 Course setting (degrees)</td>
</tr>
<tr>
<td></td>
<td>CRS LOC2 (If NAV receiver coupled to LOC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRS BC2 (If NAV receiver coupled to LOC BC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current VLOC2 Course setting (degrees)</td>
<td></td>
</tr>
<tr>
<td>Airspeed Bug</td>
<td>SPD BUG (If airspeed bug is OFF)</td>
<td>ON (If airspeed bug is ON)</td>
</tr>
<tr>
<td></td>
<td>OFF (If airspeed bug is ON)</td>
<td></td>
</tr>
<tr>
<td>Vertical Speed Bug</td>
<td>VSI BUG (If vertical speed bug is OFF)</td>
<td>ON (If vertical speed bug is ON)</td>
</tr>
<tr>
<td></td>
<td>OFF (If vertical speed bug is ON)</td>
<td></td>
</tr>
<tr>
<td>Climb Angle Setting</td>
<td>CLIMB ANG (If decision height bug is OFF)</td>
<td>ON (If decision height bug is ON)</td>
</tr>
<tr>
<td></td>
<td>Current climb angle setting (tenths of a degree)</td>
<td></td>
</tr>
<tr>
<td>Descent Angle Setting</td>
<td>DCND ANG (If minimum altitude bug is OFF)</td>
<td>ON (If minimum altitude bug is ON)</td>
</tr>
<tr>
<td></td>
<td>Current descent angle setting (tenths of a degree)</td>
<td></td>
</tr>
<tr>
<td>Decision Height Bug</td>
<td>DEC HT (If decision height bug is OFF)</td>
<td>ON (If decision height bug is ON)</td>
</tr>
<tr>
<td>Minimum Altitude Bug</td>
<td>MIN ALT (If minimum altitude bug is OFF)</td>
<td>ON (If minimum altitude bug is ON)</td>
</tr>
<tr>
<td></td>
<td>(If minimum altitude bug is ON)</td>
<td></td>
</tr>
</tbody>
</table>
NOTE:

If NAV PREVIEW is enabled in EFIS limits, the following RBP functions are available:

1) Active Nav Course
2) Preview NAV Course (If preview source is not set to OFF)

If NAV PREVIEW is not enabled in EFIS limits, the following RBP functions are available:

1) GPS Course
2) VLOC1 Course
3) VLOC2 Course

The above two groups of RBP functions are mutually exclusive as determined by the EFIS limits settings.
WX-500 Lightning Strikes

S 1. WX-500 Data

Figure S-1: PFD with Strikes Page on Bottom

When selected, the EFIS displays cell mode or strike mode lightning strikes in correct relationship to the ownship symbol with the limits defined in Table S-1.
Table S-1: Lightning Strikes

<table>
<thead>
<tr>
<th>Time or Distance Limit</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display scale less than 25 NM</td>
<td>Strikes not shown</td>
</tr>
<tr>
<td>More than 3 minutes old</td>
<td></td>
</tr>
<tr>
<td>Strikes less than 20 seconds old</td>
<td>Lightning symbol</td>
</tr>
<tr>
<td>Strikes between 20 seconds and 2 minutes old</td>
<td>Large cross symbol</td>
</tr>
<tr>
<td>Strikes between 2 and 3 minutes old</td>
<td>Small cross symbol</td>
</tr>
</tbody>
</table>

The pilot may select either an arced or centered display format.

Arced: Ownship displaced toward the bottom of the screen. Strike data are displayed in a larger scale while displaying all data within range ahead of the aircraft.

Centered: Ownship symbol is in the center of the screen with navigation data is displayed out to an equal distance in all directions.

Strikefinder markings are aligned with either magnetic north or true north depending upon the status of the true north discrete input. When the AHRS is in DG mode, “DG” appears to the right of the ownship symbol.

S 2. Dedicated Strikes Page

S 2.1. MFD Page Menu

STRIKES: Shows the Strikes page.
S 2.1.1. MFD Strikes Page (Step-By-Step)

1) Push ✽ or ✾ and rotate to STRIKES and push to enter.

2) Example shows MFD with STRIKES in bottom area.

S 2.2. Page Screen Range

The following page screen ranges may be selected with all distances representing the distance from the ownship symbol to the Strikefinder markings: 12.5 NM, 25 NM, 50 NM, 100 NM, and 200 NM. The range ring is centered upon the ownship symbol to help judge range to displayed symbols. The range ring has half the radius of the Strikefinder markings displayed indicating the range corresponding to the radius of the range ring such as (1.5 NM, 25 NM, 50 NM, and 10 NM.) The range ring is completely visible in arced display format for the pilot to ascertain the current strike page screen setting.

S 2.3. Air Data and Ground Speed

Figure S-3: Air Data and Ground Speed in Upper Left Corner
S 2.4. Clock and Options

The following are displayed in the upper right corner:

1) **Zulu or Local Time**: As specified in Section 3 Display Symbology.

2) **WX-500 Status**: When selected, displays cell mode lightning strikes in correct relationship to the ownship symbol with the limits found in Table S-2.

Table S-2: WX-500 Status

<table>
<thead>
<tr>
<th>Strikes Page</th>
<th>Traffic Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Annunciation</td>
</tr>
<tr>
<td>System Normal, Cell Mode</td>
<td>CELL MODE annunciates mode RATE ### depicts strike rate</td>
</tr>
<tr>
<td>System Normal, Strike Mode</td>
<td>STRK MODE annunciates mode RATE ### depicts strike rate</td>
</tr>
<tr>
<td>System Failed with “Show Full Sensor Status Flag” enabled in EFIS Limits</td>
<td>STRIKES overlaid with red “X” Strike symbols removed</td>
</tr>
<tr>
<td>System in Test Mode</td>
<td>STRK TST shown Strike symbols removed</td>
</tr>
</tbody>
</table>
A new strike rate value is calculated every five seconds during normal operation, based upon strikes within the selected display range. The number of fresh strikes (less than 20 seconds old) is used to generate a strike rate representing strikes per minute. Strike rate increases are displayed immediately upon calculation, while decreases in strike rate are damped. Activating the strike clear function resets the strike rate to zero.

S 2.5. Active Flight Plan Path/Manual Course/Runways

When there is an active flight plan and the GPS/SBAS OBS setting is automatic, the flight plan path is shown on the Strikes page in correct relationship to the ownship symbol.

When there is an active waypoint and the GPS/SBAS OBS setting is manual, the course through the waypoint is shown as a pointer centered on the waypoint. The pointer matches the lateral navigation guidance on the PFD (GPS/SBAS CDI in manual OBS mode, skyway boxes, and mini-map).

The active flight plan path’s active leg/manual course and active waypoint are magenta but turn amber (yellow) in the event of a GPS LON caution. Airport runways appear in correct relationship and scale to the ownship symbol.

Figure S-5: Active Flight Plan Path/Manual Course/Runways

S 2.6. Fuel Totalizer/Waypoint Distance Functions

As defined in Section 3 Display Symbology.

Figure S-6: Fuel Totalizer/Waypoint Distance Functions
S 2.7. PFD First-Level Menu in Normal Mode

Figure S-7: PFD First-Level Menu in Normal Mode
S 2.8. MFD First-Level Menu in Normal Mode

Figure S-8: MFD First-Level Menu in Normal Mode

S 2.9. First-Level Option Descriptions

CLR STRKS (L2) or WX LGND (L2): On Strikes page with WX-500 enabled, CLR STRKS clear strikes.

2: On an MFD operating in Normal mode, if the top area is showing the Strikes page, rotate 2 to change the display scale (CW to increase, CCW to decrease).

1: On a PFD or MFD operating in Normal mode, if the bottom area is showing the Strikes page, rotate 1 to change the display scale (CW to increase scale, CCW to decrease scale).

S 2.10. Strikes Format Menu

Upon selecting the MFD format menu, FORMAT (R8) when in the Strikes page, the following option list appears:

1) CENTER/ARC: Toggles centered and arced display format.

2) ROUTE ON/ROUTE OFF: Toggles the active flight plan route.

3) STRK MODE/CELL MODE: Toggles strike and cell mode.

4) STRK TEST: Activates the WX-500 test function.
Figure S-9: Strikes Format Menu

S 2.10.1. OASIS Strikes Page Screen Overlays

Up to 8 symbology OASIS overlays are possible to appear on top of all other strikes symbology but below CAS warnings.
S 3. MFD Fault Display Menu

Loss of communications with the WX-500 is indicated by an “X” replacing the “OK”.

Figure S-10: MFD Fault Display Menu

S 4. Menu Synchronization

Section 5 Menu Functions and Step-by-Step Procedures for additional information.

Table S-3: Menu Synchronization

<table>
<thead>
<tr>
<th>Menu Parameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Selections</td>
<td>The following menu parameters are independent between displays. These are used to support non-PFD display options to give the pilot maximum MFD operating flexibility. Note that some of these parameters are also independent between top and bottom MFD areas as specified in the notes.</td>
</tr>
<tr>
<td>Strike (WX-500) Page Settings</td>
<td>Independent between top and bottom MFD areas</td>
</tr>
</tbody>
</table>
D 1. Datalink Symbology

Figure D-1: Datalink Symbology with G METAR On

Figure D-2: Datalink Symbology with NEXRAD On
Table D-1: ADS-B Data

<table>
<thead>
<tr>
<th>NEXRAD Data</th>
<th>Available if included in user subscription.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphical METAR Data</td>
<td>Available if textual METAR data is included in user subscription. Derived from textual METAR data using EFIS algorithm.</td>
</tr>
</tbody>
</table>

NEXRAD data is displayed on the ND in correct relationship as colored regions of precipitation using the convention in Table D-2.

Table D-2: Datalink NEXRAD Data

<table>
<thead>
<tr>
<th>Color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray Shading</td>
<td>Areas beyond the limits of radar coverage or areas with missing data</td>
</tr>
<tr>
<td>Magenta</td>
<td>Rain >= 50dBZ</td>
</tr>
<tr>
<td>Red</td>
<td>Rain >= 45dBZ and < 50dBZ</td>
</tr>
<tr>
<td>Light Red</td>
<td>Rain >= 40dBZ and < 45dBZ</td>
</tr>
<tr>
<td>Amber (Yellow)</td>
<td>Rain >= 30dBZ and < 40dBZ</td>
</tr>
<tr>
<td>Green</td>
<td>Rain >= 20dBZ and < 30dBZ</td>
</tr>
<tr>
<td>Cyan</td>
<td>Snow >= 20dBZ</td>
</tr>
<tr>
<td>Light Cyan</td>
<td>Snow >= 5dBZ and < 20dBZ</td>
</tr>
<tr>
<td>Magenta</td>
<td>Mixed Precipitation >= 20dBZ (Area is distinguishable from rain >= 50dBZ by graphical context)</td>
</tr>
<tr>
<td>Light Magenta</td>
<td>Mixed Precipitation >= 5dBZ and < 20dBZ</td>
</tr>
</tbody>
</table>

Graphical METARs are displayed on the ND in correct relationship to the ownership symbol.

If the airport has an available datalinked METAR, the circular part of the airport symbol is colored-fill with the coloring convention in Table D-3.

Table D-3: Graphical METAR Symbols

<table>
<thead>
<tr>
<th>Color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky Blue</td>
<td>Visual Flight Rules (VFR)</td>
</tr>
<tr>
<td>Green</td>
<td>Marginal Visual Flight Rules (MVFR)</td>
</tr>
<tr>
<td>Amber (Yellow)</td>
<td>Instrument Flight Rules (IFR)</td>
</tr>
<tr>
<td>Red</td>
<td>Low Instrument Flight Rules (LIFR)</td>
</tr>
<tr>
<td>Magenta</td>
<td>Less than Category 1 Approach Minimums</td>
</tr>
</tbody>
</table>
Table D-3: Graphical METAR Symbols

<table>
<thead>
<tr>
<th>Color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>No Data</td>
</tr>
</tbody>
</table>

Table D-4: Graphical METARS (G METARS) Screen Range

<table>
<thead>
<tr>
<th>Screen Range</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 NM</td>
<td>All G METARS with Airport Symbol and ID</td>
</tr>
<tr>
<td>100 NM</td>
<td>All G METARS with Airport Symbol only</td>
</tr>
<tr>
<td>200 NM</td>
<td>All G METARS</td>
</tr>
<tr>
<td>400 NM</td>
<td>VFR G METARS are decluttered</td>
</tr>
<tr>
<td>800NM and 1,600 NM</td>
<td>VFR and MVFR G METARS are decluttered</td>
</tr>
</tbody>
</table>

Graphical METARs are also displayed in the menu system “nearest airport,” “nearest weather,” and “info” functions.

Figure D-3: NRST Airport INFO

Graphical weather conditions data are displayed in the menu system “info” function as large colored squares per the convention in Table D-5.

Table D-5: Datalink Graphical METAR Precipitation

<table>
<thead>
<tr>
<th>Color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky blue</td>
<td>No significant precipitation</td>
</tr>
<tr>
<td>Green</td>
<td>Rain</td>
</tr>
<tr>
<td>White</td>
<td>Snow</td>
</tr>
<tr>
<td>Red</td>
<td>Hazardous weather</td>
</tr>
<tr>
<td>Right half gray</td>
<td>Obscuration to visibility</td>
</tr>
<tr>
<td>Small black square</td>
<td>High wind</td>
</tr>
<tr>
<td>centered in large square</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>No data</td>
</tr>
</tbody>
</table>

The following may be displayed on the datalink page:

1) **Convective SIGMET**: Magenta line segments showing the area boundary in correct relationship to the ownship symbol. Pilot may view
the text of individual convective SIGMETs. When viewing text, the associated symbol flashes.

2) **Icing AIRMET and SIGMET**: Cyan line segments showing the area boundary in correct relationship to the ownship symbol. Pilot may view the text of individual icing AIRMETs and SIGMETs. When viewing text, the associated symbol flashes.

3) **IFR AIRMET and SIGMET**: Red line segments showing the area boundary in correct relationship to the ownship symbol. Pilot may view the text of individual IFR AIRMETs and SIGMETs. When viewing text, the associated symbol flashes.

4) **Turbulence AIRMET and SIGMET**: Amber (yellow) line segments showing the area boundary in correct relationship to the ownship symbol. Pilot may view the text of individual turbulence AIRMETs and SIGMETs. When viewing text, the associated turbulence AIRMET or SIGMET symbol flashes.

Textual METAR and TAF data are displayed when appropriate in the menu system “info” function. Time of observation and forecast are contained within the text.

![Figure D-4: METAR and TAF Report for KGRB](image)

D 2. **MFD Page (PAGE) Menu**

DATALINK: Shows the Datalink page.
D 2.1. Ownship Symbol

When not panning with AHRS in the DG mode, “DG” appears right of the ownship symbol. The datalink page is always displayed in a North-up orientation with a boundary circle in place of the compass rose. If not in pan mode, the ownship symbol is aligned with the aircraft heading.

Figure D-5: Datalink Symbology Rotorcraft Ownship Symbol

D 2.2. Datalink Page Legend

Figure D-6: ADS-B Datalink Page Legend

D 2.3. Air Data and Ground Speed

Air data and ground speed are displayed in the upper left corner of the datalink page as specified in Section 3 Display Symbology.

D 2.4. Clock/Options

The following are displayed in the upper right corner:

1) **Zulu or Local Time**: As in Section 3 Display Symbology.

2) **Datalink Weather Status**: When status of NEXRAD, and graphical METARs, are displayed as follows.
<table>
<thead>
<tr>
<th>Condition</th>
<th>Status Annunciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never completely downlinked</td>
<td>No Annunciation</td>
</tr>
<tr>
<td>Downlinked within last 5 minutes and selected for display (*if installed, weather radar deselected from display). “Show Full MFD Status in EFIS limits.”</td>
<td>“NXRD ##” in green. ## is age in minutes. NEXRAD shown.</td>
</tr>
<tr>
<td></td>
<td>“GMTR ##” in green. ## is age in minutes. G METARS shown.</td>
</tr>
<tr>
<td>Downlinked within last 5 minutes and deselected from display (*if installed, weather radar selected for display). “Show Full MFD Status in EFIS limits.”</td>
<td>“NXRD ##” in green. ## is age in minutes. “NXRD ##” overlaid with green “X” NEXRAD not shown.</td>
</tr>
<tr>
<td></td>
<td>“GMTR ##” in green. ## is age in minutes. “GMTR ##” overlaid with green “X” G METARS not shown.</td>
</tr>
<tr>
<td>Not downlinked within last 5 minutes but downlinked within last 10 minutes and selected for display (*if installed, weather radar deselected from display). “Show Full MFD Status in EFIS limits.”</td>
<td>“NXRD ##” in amber (yellow). ## is age in minutes. NEXRAD shown.</td>
</tr>
<tr>
<td></td>
<td>“GMTR ##” in amber (yellow). ## is age in minutes. G METARS shown.</td>
</tr>
<tr>
<td>Not downlinked within last 5 minutes but downlinked within last 10 minutes and deselected from display (*if installed, weather radar selected for display). “Show Full MFD Status in EFIS limits.”</td>
<td>“NXRD ##” in amber (yellow). ## is age in minutes. “NXRD ##” overlaid with green “X” NEXRAD not shown.</td>
</tr>
<tr>
<td></td>
<td>“GMTR ##” in amber (yellow). ## is age in minutes. “GMTR ##” overlaid with green “X” G METARS not shown.</td>
</tr>
<tr>
<td>Not downlinked within last 10 minutes but downlinked within last 75 minutes and selected for display (*if installed, weather radar deselected from display).</td>
<td>“NXRD ##” in red. ## is age in minutes. NEXRAD shown.</td>
</tr>
<tr>
<td></td>
<td>“GMTR ##” in red. ## is age in minutes. G METARS shown.</td>
</tr>
<tr>
<td>Not downlinked within last 10 minutes but downlinked within last 75 minutes and deselected from display (*if installed, weather radar deselected from display).</td>
<td>“NXRD ##” in red. ## is age in minutes. “GMTR ##” overlaid with green “X”</td>
</tr>
</tbody>
</table>
Table D-6: Datalink NEXRAD Status

<table>
<thead>
<tr>
<th>Condition</th>
<th>Status Annunciation</th>
<th>Graphical METAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>selected for display). “Show Full MFD Status in EFIS limits.”</td>
<td>“NXRD ##” overlaid with green “X”</td>
<td>G METARS not shown.</td>
</tr>
<tr>
<td></td>
<td>NEXRAD not shown.</td>
<td></td>
</tr>
<tr>
<td>Not downlinked within last 75 minutes (timed-out). “Show Full MFD Status</td>
<td>“NXRD XX” in red “NXRD XX” overlaid</td>
<td>“GMTR XX” in red “GMTR XX” overlaid</td>
</tr>
<tr>
<td></td>
<td>in red “X” NEXRAD not shown.</td>
<td>with red “X” G METARS not shown.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D 2.5. Datalink Page Screen Orientation

Figure D-8: Datalink Screen Range

When selected, screen ranges (all distances represent distance from the ownship symbol to the boundary circle) are available. Radius of the range ring is presented on the range ring.

Table D-7: Datalink Screen Ranges

<table>
<thead>
<tr>
<th>Ownship to Boundary Circle</th>
<th>Radius Range Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 NM</td>
<td>25 NM</td>
</tr>
<tr>
<td>100 NM</td>
<td>50 NM</td>
</tr>
<tr>
<td>200 NM</td>
<td>100 NM</td>
</tr>
<tr>
<td>400 NM</td>
<td>200 NM</td>
</tr>
<tr>
<td>800 NM</td>
<td>400 NM</td>
</tr>
<tr>
<td>1,600 NM</td>
<td>800 NM</td>
</tr>
</tbody>
</table>
D 2.6. Boundary Circle Symbols

A white triangular heading pointer aligned with the longitudinal axis of the ownship symbol appears on the boundary circle with a green diamond-shaped track pointer aligned with the aircraft’s track across the earth. A green dashed lubber line connects the center of the aircraft symbol and the track pointer.

![Figure D-9: Boundary Circle Symbol](image)

If a target or VNAV altitude is set and not captured, an altitude capture predictor arc is displayed on the lubber line at a point corresponding with predicted climb or descent distance (based upon current VSI). The track pointer, lubber line, and altitude capture predictor arc are not displayed when ground speed is less than 60 knots. A pilot-settable heading bug geometrically interacting with the heading pointer appears on the boundary circle. A magenta, star-shaped waypoint pointer displayed on the boundary circle at a point corresponds with the active waypoint. The waypoint pointer turns amber (yellow) in the event of GPS LON caution. Boundary circle symbols are not drawn when in pan mode.

D 2.7. Active Flight Plan Path/Manual Course/Runways

When there is an active flight plan and automatic GPS/SBAS OBS setting, the flight plan path, when selected, is shown in correct relationship to the ownship symbol. The active flight plan path depiction meets all GPS/SBAS path definition requirements and matches the lateral navigation guidance on the PFD (GPS/SBAS CDI in automatic OBS mode, skyway boxes, and mini-map). Active flight plan path fly-over waypoints symbols are distinct from fly-by waypoints and consist of the waypoint symbol within a circle. When there is a parallel offset, the active flight plan path depicts the parallel offset path, and the original flight plan path is shown with haloed gray dashed lines.

When there is an active waypoint and manual GPS/SBAS OBS setting, the course through the waypoint is shown as a pointer centered on the waypoint and matches the lateral navigation guidance on the PFD (GPS/SBAS CDI in manual OBS mode, skyway boxes, and mini-map).

The active flight plan path’s active leg/manual course and active waypoint are magenta but turn amber (yellow) in the event of a GPS LON caution.
The datalink page displays airport runways in correct relationship and scale to the ownship symbol.

D 2.8. Borders

National and United States state borders are drawn in white in correct relationship to the ownship symbol.

D 2.9. Pan Mode

Use the pan mode to change the location of the center of the page away from current location and view weather conditions along the route of flight and at the intended destination or alternate destination. When pan mode is active, a line is drawn from the map center to the aircraft's current position, and bearing and distance to the map center is always displayed above the ownship symbol when the aircraft is more than 0.5 NM away. If referenced to magnetic north, (as specified in Section 3 Display Symbology) when panning, the nearest displayed graphical METAR symbol within the inner range ring is highlighted with a flashing circle. When such a point is highlighted, dedicated buttons are present to allow the pilot to view and hide the waypoint information (including datalink weather information) associated with that point.

D 3. Top-Level Menu Option Descriptions

1. **Knob**: On a PFD or MFD operating in Normal mode, if the bottom area is showing the Datalink page, rotate (CW to increase, CCW to decrease) to change the display scale (or as set in EFIS limits.)

2. **Knob**: On an MFD (IDU #2, #3, or #4) operating in Normal mode, if the top area is showing Datalink page, rotate (CW or CCW to increase/decrease) to change the display scale (or as set in EFIS limits.)

D 4. Top-Level Menu Automatic Pop-Up Function Descriptions

See Section 5 Menu Functions and Step-by-Step Procedures for top-level menu option descriptions. Soft menu tiles appear adjacent to buttons under the specified conditions.

<table>
<thead>
<tr>
<th>Note</th>
<th>Tile Legend and Action in Order of Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1 L5 When Datalink page with pan mode enabled, PN OFF appears. Press to disable pan mode.</td>
</tr>
</tbody>
</table>
Table D-8: Top-Level Auto Pop-Up Function Descriptions

<table>
<thead>
<tr>
<th>Note</th>
<th>Tile Legend and Action in Order of Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>L6 When Map or Datalink page with: (a) pan mode enabled; (b) information for the nearest highlighted waypoint is shown; and (c) airport weather information is present in the information block; WX appears. Press to display textual METAR and TAF data for the airport.</td>
</tr>
<tr>
<td>L3</td>
<td>L7 When Datalink page with pan mode enabled, NORTH appears. Press to shift center of page in the specified direction.</td>
</tr>
<tr>
<td>L4</td>
<td>L8 When Datalink page with pan mode enabled, SOUTH appears. Press to shift the center of the page in the specified direction.</td>
</tr>
<tr>
<td>R2</td>
<td>R6 When ND page or Datalink page with pan mode enabled, INFO or HIDE appears. Press to toggle information for nearest highlighted waypoint.</td>
</tr>
<tr>
<td>R3</td>
<td>R7 When Datalink page with pan mode enabled, EAST appears. Press to shift the center of the page in the specified direction.</td>
</tr>
<tr>
<td>R4</td>
<td>R8 When Datalink page with pan mode enabled, WEST appears. Press to shift the center of the page in the specified direction.</td>
</tr>
</tbody>
</table>

Note 1: Function tied to page in top area.
Note 2: Function tied to page in bottom area or transmit enabled.

D 5. MFD Page First-Level Option Descriptions

WX LGND (ACTV) (L2): Activates datalink weather legend.

D 6. MFD Datalink Format Menu

Upon selecting the MFD format menu **FORMAT (R8)** on Datalink page, a list appears with the following options:

1) **ROUTE ON/ROUTE OFF:** Toggles active flight plan route.

2) **PAN ON/PAN OFF:** Toggles pan mode.

3) **DCLTR:** Only available when Datalink weather products are available for display. Allows the pilot to select individual Datalink weather products for display.
Figure D-10: MFD Datalink Format Menu

D 6.1. MFD DATALINK Page (Step-By-Step)

1) Push 1 (BTM) or 2 (TOP) and rotate to DATALINK and push to enter.

2) Example shows MFD with DATALINK on bottom area.

3) Press MENU (R1), within 10 seconds press FORMAT (R8) to format DATALINK page.
4) Either push 1 to **PAN ON** or rotate to **DCLTR**... Push to enter.

5) If PAN ON is selected, press **NORTH (L7)**, **SOUTH (L8)**, **EAST (R7)**, or **WEST (R8)** to pan to KSJX.

6) Press **INFO (R6)** to view airport information.

7) Press **WX (L6)** to view METAR information for the selected airport.

8) When finished, press **PN OFF (L5)** or press **MENU (R1)**, within 10 seconds press **FORMAT (R8)** and push 1 to turn off the panning and exit menu.

9) Repeat step 4 and select **DCLTR**...
10) Rotate ① to select **ROUTE** confirmed with a check mark.

11) Push ① again to deselect **ROUTE**.

12) Rotate ① to select **G METAR** confirmed with a check mark.

13) Push ① again to deselect **G METAR**.

14) Rotate ① to select **NEXRAD** confirmed with a check mark.

15) Push ① again to deselect **NEXRAD**.

16) Rotate ① to select each option to display all three.
17) To overlay and display datalink information on the map, return to the pap page and press **MENU (R1)**, within 10 seconds, press **FORMAT (R8)**.

18) Rotate ０ to **FNCT DCLTR.** and push to enter.

19) Rotate ０ to **DATALINK** and push to enter.

20) Datalink information is now overlaid on the map page.

 Rotate ０ to **DONE** and push to enter or press **EXIT (R1)** to save changes and exit menu.
D 7. Information (INFO) Menu

With an airport containing WX data, press INFO (L3), select the desired airport, then WX LGND (L2) and EXPND WX (L3) appears for access to the weather legend symbols and METAR or TAF text. (Datalink page on the MFD must have been formatted.)

Figure D-11: Information (INFO) Menu

If INFO is activated from within the ACTV, NRST, or Direct menus, information on the highlighted waypoint is shown. The amount and type of information presented depends upon the type of waypoint as follows. With Datalink enabled, current altimeter setting and wind are provided. See Section 5 Menu Functions and Step-by-Step Procedures for more information.

D 8. Fault Display Menu

Press MENU (R1), then within 10 seconds, FAULTS (L1). Upon selecting the faults menu on either PFD or MFD with ADS-B datalink enabled, an indication of ADS-B position validity (ADSB POSN), indication of whether
ADS-B receiver maintenance is required (ADSB MAINT), and indication the conflict situational awareness algorithm is working (ADSB CSA) appear.

Figure D-12: FAULTS Menu with ADS-B Status

D 9. Menu Synchronization

Section 5 Menu Functions and Step-by-Step Procedures for additional information.

<table>
<thead>
<tr>
<th>Menu Parameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following menu parameters are independent between displays. These are used to support non-PFD display options to give the pilot maximum MFD operating flexibility. Note that some of these parameters are also independent between top and bottom MFD areas as specified in the notes.</td>
<td></td>
</tr>
<tr>
<td>MFD Datalink Page Settings</td>
<td>Independent between top and bottom MFD areas</td>
</tr>
</tbody>
</table>
WX 1. Weather Radar

This Weather Radar appendix is primarily for the Honeywell RDR-2100 installed with no external control panel. The EFIS controls the WX RDR from the EFIS PFD bottom display or MFD with WX RDR displayed in the top area or bottom area. Since there is only one RDR-2100 installed in the aircraft, only one display area at a time can show the WX RDR menu.

WARNING:

This instrument generates microwave radiation.
DO NOT OPERATE UNTIL YOU HAVE READ AND CAREFULLY FOLLOWED ALL SAFETY PRECAUTIONS AND INSTRUCTIONS IN THE OPERATING AND SERVICE MANUALS.
IMPROPER USE OR EXPOSURE MAY CAUSE SERIOUS BODILY INJURY

CAUTION:

Maintain prescribed safe distance when standing in front of operating antenna. (Reference FAA Advisory Circular #20-68)

Never expose eyes or any part of the body to an unterminated wave guide.
Weather radar automatically declutters when weather radar returns are selected for display on the map page in correct relationship to the ownship symbol unless inhibited during active FLTA alerts. When weather radar is
selected, Datalink NEXRAD is automatically deselected. Table WX-1 defines all inhibited factors with display.

<table>
<thead>
<tr>
<th>Weather Radar Inhibited Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>During Active FLTA alerts</td>
</tr>
<tr>
<td>ND Moving Map Pan Mode</td>
</tr>
<tr>
<td>When North Up orientation is selected</td>
</tr>
<tr>
<td>When RDR-2100 is in vertical profile mode</td>
</tr>
<tr>
<td>When screen range is too small to effectively show the weather returns (defined as when the length of the weather radar scan line is longer than 512 pixels given current weather radar scale setting, screen range, and screen mode)</td>
</tr>
</tbody>
</table>

WX 2. Weather Radar Page

WX 2.1. MFD Page Menu

WX-RDR: Shows the Weather Radar page.

WX 2.2. First-Level Menu Option Descriptions

WX RDR (R7): If a Weather Radar page is displayed on the PFD, activates the Weather Radar menu for controlling Honeywell RDR-2000/2100.

WX RDR (R3): If a Weather Radar page is displayed on top area of the MFD, activates the Weather Radar menu for controlling Honeywell RDR 2000/2100.

DCLTR (R8): On the Weather Radar page with declutterable OASIS overlays or in horizontal profile mode, **DCLTR (R8)** activates Weather Radar Declutter menu option. **ROUTE** toggles active flight plan route.

![Figure WX-3: WX RDR Declutter (DCLTR) Menu](image)
WX 2.3. Weather Radar Page Menu

Upon selecting WX RDR menu in the WX RDR page when weather radar type is RDR-2100 without external RCP installed, the following list appears.

1) **OFF (R6)**: Turns Weather Radar off.

2) **CTRL (L6)**: Activates a list to control live parameters as follows:

Applicable only to Honeywell RDR-2100
a) **ACLTR ON/OFF (L6):** Toggles anti-clutter option between on and off.

b) **ASTEP ON (R6):** Toggles auto step scan on or off. Begin by adjusting tilt to +15° or -15°.

c) **ARL ON/OFF (R6):** Toggles automatic range limit option between on and off.

d) **SCTR ON/OFF (L7):** Toggles sector scan option between on and off.

e) **STAB ON/OFF (R7):** Toggles stabilization mode on or off.

f) **ROLL TRIM (L8):** Changes roll trim in increments of 0.125° between +3.875° and -4.000°.

g) **GAIN (R8):** Change radar gain in increments of 0.5 dB between 0-31.5 dB.

h) **TRACK ③:** Rotate CW to increase and CCW to decrease changes in track in increments of 1° in the following limits settings.

 i) Scan width 80° (+/- 40°)

 ii) Scan width 90° (+/- 45°)

 iii) Scan width 100° (+/- 50°)

 iv) Scan width 120° (+/- 60°)

i) **TILT ③:** Toggles tilt mode between auto tilt (RDR-2100 only) and manual tilt. Also toggles auto-step-scan option between on and off. When in manual tilt mode, changes tilt angle in increments of 0.25°.

j) **RNG ①:** See § WX 2.5.

3) **STBY (R7):** Toggles WX RDR to standby mode, press **ON WX/WXA (L8)** to turn on WX RDR.

4) **TEST (R8):** Toggles radar into test mode, press **ON WX (L8)** to return to normal operation.

5) **ON WX/WXA/GMAP (L8):** Toggles WX ON, WXA, or GMAP.

6) **VP ON/OFF (L7):** Toggles vertical profile ON/OFF. (When VP is OFF, horizontal profile is ON. See § WX 2.4.

7) **RNG ①:**
a) On an MFD (IDU #2, #3 or #4) operating in Normal mode, if the top area is showing the Weather Radar page, rotate ₁ to change the display range (direction of rotation is dependent upon EFIS limits settings).

b) ₁: On a PFD or MFD operating in Normal mode, if the bottom area is showing the Weather Radar page, rotate ₁ to change the display range (direction of rotation is dependent upon EFIS limits settings).

NOTE:
The weather radar modes are mutually exclusive and therefore selecting one turns off the other modes with the exception of vertical profile, which appears in the selection box only when the selected weather radar mode is not OFF or STBY.

WX 2.3.1. Managing RDR-2100 Weather Radar Menus (PFD) (Step-By-Step)

1) On PFD, push ₁ and rotate to WX-RDR and push to enter.

2) Press MENU (R1), within 10 seconds press WX RDR (R7).
3) Press **OFF (R6)** to enable OFF mode. (This option is not shown when in OFF mode.)

4) Press **STBY (R7)** to enable standby mode. (This option not shown when in standby mode.)

5) Press **TEST (R8)** to enable test mode. (This option not shown when in test mode.)

6) While in STBY mode, press **ON WX (L8)** to return radar to ON mode.

7) Current mode status is displayed in upper right corner of radar page.

8) Press **VP ON (L7)** to toggle between horizontal and vertical modes.

9) Press **VP OFF (L7)** to toggle back to horizontal profile.

10) Press **ON WXA (L8)** to enable Weather-Alert sub-mode.
11) Weather-alert sub-mode annunciated in upper right corner.

12) Press ON GMAP (L8) to enable ground map sub-mode.

13) Ground map sub-mode annunciated in upper right corner.

14) Press ON WX (L8) to resume normal weather radar mode of operation.

15) Radar mode of operation annunciated in upper right corner.

16) Rotate ⬤ to alter range of weather radar from 5.00 NM to 320.00 NM. Rotation direction dependent upon EFIS limits setting.
17) Range rings are located on the right side of the arc.

18) Press **CTRL (L6)** to enter radar control menu. (Not shown when in OFF or STBY mode.)

19) Press **ACLTR ON (L6)** to toggle anti-clutter option ON and OFF.

20) Press **SCTR ON (L7)** to toggle sector scan option ON and OFF.

21) Press **ROLL TRIM (L8)** and then rotate ① to desired roll trim angle (increments of 0.125°) and push to enter.

22) Push ② to open the tilt menu.

23) Press **ASTEP ON (R6)** to toggle ON and OFF.

24) (Auto step scan is entered initially by adjusting the tilt to +15° or -15°.)
25) Press **MAN (R7)** or **AUTO (R7)** to toggle between either sub-modes.

26) Rotate 2 to set tilt angle between ±15°. Set angle is annunciated above 2 and in upper right corner.

27) When in tilt auto mode, annunciation is above 2 and in upper right corner.

28) Press **ASTEP ON (R6)** or **ASTEP OFF (R6)** to toggle antenna tilt to sequentially step in 4° increments. (Auto step scan is entered initially by adjusting the tilt to +15° or -15°.)

29) Press **BACK (L1)** or **EXIT (R1)** to exit out of TILT sub-mode.

30) Press **WX RDR (R7)** then **CTRL (L6)** to enter the track sub-mode.

31) Push 3 and rotate or begin by rotating to set new track angle in 1° increments between limits set in EFIS limits. Read new track in two places.
32) Press **GAIN (R8)** to open gain menu and rotate ⬇️ to change gain in 1 dB increments. Push to set selected gain value.

WX 2.3.2. Managing RDR-2100 Weather Radar Menus (MFD) (Top Area) (Step-By-Step)

1) MFD with WX RDR in top area. Push ⬆️ and rotate to **WX-RDR** and push to enter.

2) WX RDR appears in top area. Press **MENU (R1)** to open menus.
3) Press **WX RDR (R3)** within 10 seconds to open WX RDR menus for top area.

4) Press **CTRL (L2)** to open WX RDR menus. (Not shown when in OFF or STBY mode.)

5) Press **ACLTR ON (L2)** to toggle anti-clutter option between ON and OFF.

6) Press **SCTR ON (L3)** to toggle Sector Scan option between ON and OFF.

7) Press **ROLL TRIM (L4)** and then rotate to desired roll trim angle (increments of 0.125°) and push to enter.

8) It is a design feature to retain most of the WX RDR menus in the top area with this configuration of the WX radar.

9) Press **ARL ON (R2)** to toggle automatic range limit option between ON and OFF.

10) Press **STAB ON (R3)** to toggle Stabilization mode ON or **STAB OFF (R3)** to toggle OFF.
11) Push 🔄 or rotate to open TILT menu and then press MAN (R7) or AUTO (R7) to toggle between either sub-mode.

12) In manual mode, rotate 🔄 to set tilt angle between ± 15°. Set angle is annunciated above 🔄 and in the upper right corner.

13) Tilt mode was in manual and tilt angle set to 6.00° and annunciated in full IDU image.

14) When in tilt auto mode, annunciation is above and in upper right corner of the top area.
15) Press **ASTEP ON (R6)** or **ASTEP OFF (R6)** to toggle antenna tilt to sequentially step in 4° increments. (Auto step scan is entered initially by adjusting the tilt to +15° or -15°.)

16) Press **BACK (L1)** or **EXIT (R1)** to exit out of tilt sub-mode.

17) Press **GAIN (R4)** to open gain menu and making adjustments with ⚪.

18) Rotate ⚪ to change gain in 1 dB increments between +0.0 dB to -31.5 dB. Push to set selected gain value.
19) Push ⬆️ and rotate or begin by rotating to set new track angle in 1° increments between limits set in EFIS limits. Read new track in two places.

WX 2.3.3. Managing RDR-2100 Weather Radar Menus (MFD) (BTM Area) (Step-By-Step)

1) Push ⬇️ and rotate to WX-RDR and push to enter. Press MENU (R1) and then WX RDR (R7) within 10 seconds to open WX RDR options.
2) Press **OFF (R6)** to enable OFF mode.

3) Press **STBY (R7)** to enable standby mode. (This option not shown when in standby mode.)

4) Press **TEST (R8)** to enable test mode. (This option not shown when in TEST mode.)

5) Press **ON GMAP, ON WX, or ON WXA (L8)** to enable ground map, weather, or weather alert sub-modes.

6) Press **VP ON (L7)** to toggle between horizontal and vertical modes.

7) Press **CTRL (L6)** to open WX RDR menus. (Not shown when in OFF or STBY mode.)

8) Rotate **1** to alter range of weather radar from 5.00NM to 320NM. Rotation direction dependent upon EFIS limits setting. Range rings are on the right side of the arc.

9) Press **STBY (R7)** to enable standby mode. (This option not shown when in standby mode.)

10) Press **ARL ON (R2)** to toggle automatic range limit option between ON and OFF.
11) Push \(\text{②} \) and rotate or rotate to open TILT menu and then press MAN (R7) to place enter tilt mode. This action toggles off AUTO sub-mode.

12) Push \(\text{②} \) and rotate or rotate tilt angle between ± 15°. Set angle is annunciated above \(\text{②} \) and in upper right corner.

13) Press ASTEP ON (R6) or ASTEP OFF (R6) to toggle antenna tilt to sequentially step in 4° increments. (Auto step scan is entered initially by adjusting the tilt to +15° or -15°.)

14) Press BACK (L1) or EXIT (R1) to exit out of tilt sub-mode.
15) In the CTRL menu, push 3 and rotate or begin by rotating to set new track angle in 1° increments between limits set in EFIS limits. Read new track in two places. Push 2 to enter or press BACK (L1) to exit from track sub-mode.

16) Press ROLL TRIM (L8) to enter roll trim sub-mode.

17) Press ROLL TRIM (L8) and then rotate to 1 desired roll trim angle (increments of 0.125°) and push to enter or press BACK (L1) or EXIT (R1) to exit menu.

18) Press SCTR ON (L7) to toggle Sector Scan option between ON and OFF.

19) Press ACLTR ON (L6) to toggle anti-clutter option between ON and OFF.

20) Push 3 and rotate or begin by rotating to set new track angle in 1° increments between limits set in EFIS limits. Read new track in two places.

21) Push to enter and clear track sub-menu or press BACK (L1) or EXIT (R1) to exit menu.
22) Press **MENU (R1)** and then within 10 seconds press **DCLTR (R8)**. Rotate 1 to **ROUTE** and push to toggle ON or OFF and rotate to **DONE** and push to enter or press **EXIT (R1)** to exit DCLTR sub-menu.

23) If the WX-RDR page is opened in both top and bottom areas, the top area is the dedicated priority display for WX-RDR menus.

24) Press **MENU (R1)** and then within 10 seconds press **WX RDR (R3)**.

25) Press **CTRL (L2)** to open WX-RDR menu for mode control and selection.
26) The WX-RDR mode control and selection menu is open for the top area.

27) Bottom area is still showing an uncontrolled WX-RDR display until the top area menu is exited by pressing EXIT (R1).

28) Now the bottom area can be changed to one of the other remaining page options.
WX 2.3.4. Managing RDR-2000 Weather Radar Menus (PFD) (Step-By-Step)

1) Push
and rotate to WX-RDR and push to enter.

2) Press MENU (R1).
3) Press **WX RDR (R7)** within 10 seconds.

4) Press **OFF (R6)** to turn off WX-2000.

5) Press **STBY (R7)** toggles WX RDR to STBY mode, press **ON WX (L8)** to turn on RDR-2000.

6) Press **TEST (R8)** to enable test mode. (This option not shown when in test mode.)

7) Press **ON GMAP (L8)** to enable ground map sub-mode.

8) Press **VP ON (L7)** to toggle between horizontal and vertical modes.

9) Press **CTRL (L6)** to open WX RDR menus. (Not shown when in OFF or STBY mode.)
10) Press **STAB OFF (R7)** to toggle stabilization sub-mode ON and OFF. Annunciation is found in upper right corner.

11) Press **GAIN (R8)** to open gain menu and making adjustments with ①.

12) Press **ROLL TRIM (L8)** and then rotate to ① desired roll trim angle (increments of 0.125°) and push to enter or press **BACK (L1)** or **EXIT (R1)** to exit menu.

13) Press **ACLTR ON (L6)** to toggle anti-clutter option between ON and OFF.

14) Push to enter and clear track sub-menu or press **BACK (L1)** or **EXIT (R1)** to exit menu.
15) Press **ROLL TRIM (L8)** and then rotate to the desired roll trim angle (increments of 0.125°) and push to enter or press **BACK (L1)** or **EXIT (R1)** to exit menu.

16) Push **2** and rotate or rotate to open tilt menu. Rotate to desired tilt angle between ± 15°. Set angle is annunciated above **2** and in upper right corner with “D” for down ° and “U” values. For up push to enter or press **BACK (L1)** or **EXIT (R1)** to exit menu.

17) Push to enter or press **BACK (L1)** or **EXIT (R1)** to exit menu.

WX 2.3.5. Managing RDR-2000 Weather Radar Menus (MFD) (Step-By-Step)

The MFD weather radar menu for the RDR-2000 MFD is the same as for the RDR-2100 with the exception of fewer menu options as described § WX 2.3.4 for the RDR-2000 PFD.

WX 2.4. Horizontal/Vertical Profile Depiction

In a horizontal depiction, the weather page uses an arced format with the ownship symbol centered in the bottom of the display with the weather area depicted as an arc ahead of the ownship symbol.
In vertical profile depiction, the weather page uses an arced format with the ownship symbol centered on the left side of the display and the weather area depicted as an arc to the right of the ownship symbol.

To select vertical profile depiction, use the weather radar control panel EFIS menu (see § WX 2.3). The EFIS ensures at least one weather radar-enabled page is showing the weather radar page prior to entering into profile depiction and disables profile depiction if the pilot sets the pages for no weather radar page on any weather radar-enabled page. The purpose is to maximize the availability of weather radar information on the ND page, which only shows a horizontal depiction and disables profile depiction, if the weather radar mode is set to off or standby via radar control panel.
Weather page screen range is pilot-selectable with either RDR-2000 or RDR-2100 weather radar types or a control panel directly attached to the weather radar receiver-transmitter. Weather page screen range is displayed as a series of equidistant dashed arcs centered upon the ownship symbol to help judge range to the displayed weather radar returns. All distances represent the distance from the ownship symbol to the outer dashed arc: 5NM, 10NM, 20NM, 40NM, 80NM, 160NM, 240NM, and 320NM.

For most screen ranges, there are four equidistant dashed arcs. Each arc is labeled with distance in nautical miles at its right-most point (horizontal depiction) or bottom-most point (vertical profile depiction). In vertical profile
depiction, there are also three horizontal altitude lines drawn relative to the aircraft’s altitude to help judge the vertical distance to the displayed weather radar returns. The center line is level with the ownship symbol to represent the aircraft’s altitude. The other two lines are equally spaced above and below the center line to represent altitude differences above and below the aircraft. The number of feet above and below the aircraft varies with the selected range to compensate for the radar scan width at the different ranges.

WX 2.6. Track Line

When the weather radar type is RDR-2100 and in horizontal depiction, a dashed track line emanates from the ownship symbol to the outer dashed arc. The value of the track line in whole degrees left or right of aircraft heading is displayed adjacent to the outer end of the track line.

![Figure WX-9: Radar Track Line](image)

Figure WX-9: Radar Track Line

![Figure WX-10: Radar Track Line with Menus](image)

Figure WX-10: Radar Track Line with Menus
WX 2.7. Active Flight Plan Path/Manual Course/Runways

The active flight plan path (when selected), waypoints, and manual course appear, when the weather radar page is showing horizontal depiction. The weather radar page displays airport runways, when the weather radar page is showing horizontal depiction.

Figure WX-11: Radar Active Flight Plan

Figure WX-12: Radar Active Flight Plan with Menus
WX 2.8. Weather Radar Return Data

Weather radar return data are displayed in correct relationship to the ownship symbol as colored regions.

<table>
<thead>
<tr>
<th>Color</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyan</td>
<td>Automatic range limit returns. Indicates areas of unreliable returns due to radar power absorption</td>
</tr>
<tr>
<td>Light Gray</td>
<td>Moderate turbulence returns</td>
</tr>
<tr>
<td>White</td>
<td>Severe turbulence returns</td>
</tr>
</tbody>
</table>

The following weather radar-specific warnings appear in a conspicuous area adjacent to weather radar return data so they do not conflict with the weather radar return data. Only one warning appears at any given time, with the following order of precedence:

1) **WX ALRT**: Weather alert condition is active.

2) **TURB ALRT**: Turbulence alert condition is active.

3) **STAB LIMIT**: Aircraft attitude has moved to a point where the weather radar antenna can no longer be effectively stabilized.

4) **ANT FAULT**: Weather radar antenna is temporarily dislodged by turbulence.
WX 2.9. Air Data

Air data is displayed in upper left corner of the weather radar page as specified in Section 3 Display Symbology.

WX 2.10. Waypoint Distance

Displayed as specified in Section 3 Display Symbology.

WX 2.11. Clock/Options

The following are displayed in the upper right corner:

![Zulu Time and Local Time](image)

Figure WX-14: Radar Clock/Options

1) **Zulu or Local Time**: As in Section 3 Display Symbology

2) **Weather Radar Mode Annunciation**: As in Table WX-3 and Table WX-4.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Annunciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>WXR:OFF</td>
</tr>
<tr>
<td>Standby</td>
<td>WXR:STBY</td>
</tr>
<tr>
<td>Weather only</td>
<td>WXR:WX</td>
</tr>
<tr>
<td>Weather alert</td>
<td>WXR:WXA</td>
</tr>
<tr>
<td>Ground map</td>
<td>WXR:GMAP</td>
</tr>
<tr>
<td>Test</td>
<td>WXR:TEST</td>
</tr>
<tr>
<td>Not defined</td>
<td>WXR:----</td>
</tr>
</tbody>
</table>

Table WX-3: RDR 2100 Applicability

<table>
<thead>
<tr>
<th>Annunciation</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlaid with Red X</td>
<td>Weather radar mode is off or not defined.</td>
</tr>
<tr>
<td></td>
<td>Cooling fault condition exists.</td>
</tr>
<tr>
<td></td>
<td>Attitude or range fault condition exists.</td>
</tr>
<tr>
<td></td>
<td>T/R fault condition exists.</td>
</tr>
</tbody>
</table>
Table WX-4: RDR 2100 Mode Annunciation

<table>
<thead>
<tr>
<th>Annunciation</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAB OFF (Stabilization)</td>
<td>Mode annunciation not overlaid with a red “X”;</td>
</tr>
<tr>
<td></td>
<td>Mode not standby or forced standby; and</td>
</tr>
<tr>
<td></td>
<td>Weather radar indicates stabilization is off.</td>
</tr>
<tr>
<td>TGT ALERT (Target Alert)</td>
<td>Mode annunciation not overlaid with a red “X”;</td>
</tr>
<tr>
<td></td>
<td>Mode not standby or forced standby;</td>
</tr>
<tr>
<td></td>
<td>Weather radar presenting horizontal depiction.</td>
</tr>
<tr>
<td>“TLT:UXX.X” or “TLT:AUTO” (TILT)</td>
<td>U = Up or Down (either U or D, but not both, may appear – use “U” for 0°);</td>
</tr>
<tr>
<td></td>
<td>XX.X represents absolute value of the tilt angle in degrees truncated to</td>
</tr>
<tr>
<td></td>
<td>the nearest tenth;</td>
</tr>
<tr>
<td></td>
<td>“TLT:AUTO” used where weather radar reports a value of -16°, representing</td>
</tr>
<tr>
<td></td>
<td>automatic tilt.</td>
</tr>
<tr>
<td></td>
<td>Weather radar tilt annunciation only appears when all following conditions</td>
</tr>
<tr>
<td></td>
<td>are true:</td>
</tr>
<tr>
<td></td>
<td>1) Mode annunciation not overlaid with a red “X”;</td>
</tr>
<tr>
<td></td>
<td>2) Mode not standby or forced standby; and</td>
</tr>
<tr>
<td></td>
<td>3) Radar not in vertical profile depiction.</td>
</tr>
<tr>
<td>TRK:LXX (TRACK)</td>
<td>L = Left or Right (either L or R, but not both, may appear – use “R” for</td>
</tr>
<tr>
<td></td>
<td>0°); and</td>
</tr>
<tr>
<td></td>
<td>XX represents absolute value of the track angle in degrees.</td>
</tr>
<tr>
<td></td>
<td>Weather radar track annunciation only appears when all following conditions</td>
</tr>
<tr>
<td></td>
<td>are true:</td>
</tr>
<tr>
<td></td>
<td>1) Mode annunciation not overlaid with a red “X”;</td>
</tr>
<tr>
<td></td>
<td>2) Mode not standby or forced standby; and</td>
</tr>
<tr>
<td></td>
<td>3) Radar in vertical profile depiction.</td>
</tr>
</tbody>
</table>
Table WX-4: RDR 2100 Mode Annunciation

<table>
<thead>
<tr>
<th>Annunciation</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>“GN:SXXDB,” “GN:CAL,”</td>
<td>S = Sign (either “+” or “-,” but not both, may appear – use “+” for 0°); and XXDB represents the manual gain setting in decibels.</td>
</tr>
<tr>
<td>“GN:MAX” (GAIN)</td>
<td>“GN:CAL” represents the calibrated condition</td>
</tr>
<tr>
<td></td>
<td>“GN:MAX” represents maximum manual gain Weather radar manual gain annunciation only appears when all following weather radar mode conditions are true:</td>
</tr>
<tr>
<td></td>
<td>1) Mode annunciation not overlaid with a red “X”;</td>
</tr>
<tr>
<td></td>
<td>2) Mode not standby or forced standby; and</td>
</tr>
<tr>
<td></td>
<td>3) Mode is ground map.</td>
</tr>
</tbody>
</table>

WX 3. MFD Fault Display Menu

Upon selecting the MFD faults menu, the status of the following system parameters are displayed if weather radar is enabled:

1) Indicates weather radar power/communication status (WXR PWR X or WXR PWR OK). Status failed (WXR PWR X) reflects any one of the following conditions is true:
 a) Loss of weather radar communication.
 b) Weather radar mode is OFF.

2) Indicates weather radar fault status (WXR FAULT –, WXR FAULT X, or WXR FAULT OK). Status failed (WXR FAULT –) indicates it is not possible to determine weather radar faults. Status failed (WXR FAULT X) reflects any of the following conditions is true:
 a) A cooling fault condition exists.
 b) An attitude or range fault condition exists.
 c) A control fault condition exists.
 d) A T/R fault condition exists.

3) If weather radar type is RDR-2000 or RDR-2100, indicates radar control panel status (WXR RCP X or WXR RCP OK). Status failed (WXR RCP X) indicates loss of communication.
NOTE:

When using EFIS menu system for RDR-2XXX control, the weather radar mode received from the offside system is used to update onside weather radar mode as follows. This is to ensure weather radar power on/off is synchronized between both sides.

When offside mode is commanded to STBY, TEST, or ON and if onside mode is OFF, then the onside mode is set to STBY.

When offside mode is commanded to OFF, then the onside mode is also set to OFF.

NOTE:

Manufacturer’s Fault Annunciations

Fault annunciations are a method of alerting the pilot that the radar system is not performing to established standards. Built-in test equipment automatically and constantly tests the radar system. If a fault occurs, the fault annunciation is presented on the display configured for WX-RDR.

See appropriate weather radar pilot guide for descriptions of failure descriptions.
WX 4. Menu Synchronization

See Section 5 Menu Functions and Step-By-Step Procedures for more information.

<table>
<thead>
<tr>
<th>Menu Parameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following menu parameters are synchronized across all displays at all times. These are bugs and fundamental aircraft values that should never have independence.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WX RDR Control Menu parameters</th>
<th>Used to synchronize certain RDR-2XXX modes. See note below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following menu parameters are only synchronized onside. These parameters are usually sensor selections or PFD options used to keep the appearance of any pilot's PFD consistent in the case of PFD reversion. The onside characteristic means that individual pilots can still adjust their PFD settings to their preference.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WX RDR Control Menu parameters</th>
<th>Synchronized onside when Honeywell RDR-2XXX is installed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of Turn Indication flag</td>
<td>Onside due to range being controlled by the weather radar.</td>
</tr>
<tr>
<td>Weather Radar Scale</td>
<td>Onside because range is controlled by the weather radar.</td>
</tr>
</tbody>
</table>

The following menu parameters are independent between displays. These are used to support non-PFD display options to give the pilot maximum MFD operating flexibility.

<table>
<thead>
<tr>
<th>MFD Selected Page</th>
<th>This parameter is transmitted to all other IDUs to support weather radar vertical profile mode selection.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFD Map Page Settings</td>
<td>Map scale is transmitted onside to support weather radar range selection.</td>
</tr>
</tbody>
</table>
V 1. Video Input Page

The video input page is an image of 640 by 480 pixels and accepts video input signals in the RS-170 composite format. The system is configurable to the NTSC, PAL (including the PAL-m and PAL-nc variants), or SECAM versions of RS-170 separately for each video input. In addition, an autodetection mode, which programs the video input chip to process most standard RS-170 formats, is configurable for each video input.

When no video signal is detected, the video input page is black and NO VIDEO IMAGE AVAILABLE is displayed in white on the center of the page. To aid in diagnosing problems with undetected video signals, the following annunciations are also displayed:

1) NO INTERLACED SIGNAL: No interlaced signal detected.
2) NO HORIZ OR VERT SYNC: No horizontal or vertical synchronization detected.
3) NO COLOR SIGNAL: No video chroma signal detected.
4) LOAD ERROR DETECTED: Video chip reports a load error.
5) TRIGGER ERROR DETECTED: Video chip reports a trigger error.
6) PROGRAMMING ERROR DETECTED: Video chip reports a programming error.

V 1.1. Top-Level Menu Option Descriptions

1) 1: On a PFD or MFD operating in Normal mode, if the bottom area is showing a video page, and Zoom is enabled in EFIS limits, rotating the knob changes the zoom level (clockwise = increase, counterclockwise = decrease) or as set in EFIS limits.

2) 2: On an MFD (IDUs other than #1) operating in Normal mode, if the top area is showing a video page, and zoom is enabled in EFIS limits, rotating the knob changes the zoom level (clockwise = increase, counterclockwise = decrease) or as set in EFIS limits.
V 1.2. PFD Page First-Level Option Descriptions

1) **CTRST (**3**): Adjusts the contrast setting for the current video input.**

2) **BRT (**2**): Adjusts the brightness setting for the current video input.**

![Figure V-1: PFD Page First-Level Video Control](image)

V 1.3. MFD Page First-Level Option Descriptions

![Figure V-2: MFD Page First-Level Menu](image)

(a) Shown if more than one video input configured.
(b) Shown if configured, and using configured label, if any.
(c) Shown if setting is not 50%.
(d) Label shows current setting as analog color bar.
1) **CTRST**: Adjusts the contrast setting for the current video input.

2) **BRT**: Adjusts the brightness setting for the current video input.

![Figure V-3: Video Page Contrast and Brightness Setting](image1)

3) **FORMAT (R4) or (R8)**: If showing the Video page, activates the page format menu.
 a) **CONTROLS**: Activates list of video settings to adjust individually.
 i) **SAT**: Adjust chroma saturation (color intensity) setting. **DFLT** resets to nominal default (50%) value.
 ii) **HUE**: Adjust chroma hue (red-green balance) settings. **DFLT** resets to nominal default (50%) value.

![Figure V-4: Video Page Saturation and Hue Setting](image2)

b) **SOURCE**: Displays selected video input, only if more than one video input is enabled.

c) **DCLTR**: Activates list of video input status settings to individually select or deselect which Video Input status settings are displayed in the upper right corner. All declutter settings are common to all video inputs (Figure V-5):
 i) **NAME**: Video input label
 ii) **ZOOM**: Current amount of image expansion
 iii) **BRT**: Current brightness setting
iv) **CTRST**: Current contrast setting

v) **SAT**: Current chroma saturation setting

vi) **HUE**: Current chroma hue setting

vii) Up to 8 declutterable OASIS overlays

![Figure V-5: Video Status](image)

V 1.4. Pan Mode

When enabled in EFIS limits, and the ZOOM level is greater than 1, the Video page has a pan mode for selecting the portion of the video image displayed by replicating pixels. When pan mode is active, controls are present to allow moving the portion displayed up, down, left, and right.

![Figure V-6: Video Pan View](image)

A mini-map of the displayed image's position in the full video image is displayed for 10 seconds after:
1) Entering pan mode;
2) Changing the zoom level to a value greater than 1;
3) Panning the zoomed image.

Exiting pan mode removes pan mode controls and mini-map, if any.

Table V-1: Pan Mode Function Descriptions

<table>
<thead>
<tr>
<th>Top Area</th>
<th>Bottom Area</th>
<th>Tile Legend</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>L6</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>L7</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>R6</td>
<td>LEFT</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>R7</td>
<td>RIGHT</td>
<td></td>
</tr>
</tbody>
</table>

Press to move the section of video image displayed in specified direction.

V 2. Menu Synchronization

Table V-2: Menu Synchronization

<table>
<thead>
<tr>
<th>Menu Parameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following menu parameters are independent between displays. These are used to support non-PFD display options to give the pilot maximum MFD operating flexibility.</td>
<td></td>
</tr>
</tbody>
</table>

MFD Video Page Settings

Independent between top and bottom MFD areas with exception of the following hardware settings:

- Selected Input
- Brightness
- Contrast
- Saturation
- Hue
RD 1. Primary Flight Instrumentation

The following details round dial display symbology used on the PFD and MFD IDU-680 in Normal and Essential modes. The round dials option is only available with pure digital ADC configured. Not all combinations of possible views are represented. See Section 3 Display Symbology for further information on the display symbology.

RD 1.1. Pitch Scale

The white pitch scale and horizon rotates about the large aircraft symbol reference marks according to the aircraft’s roll angle. The pitch scale has 5° with major increments and pitch scale labels every 10°. Pointer bars at the ends of each major increment indicate the direction to the horizon. Pitch scale increments automatically declutter to present the fewest possible increments needed.

RD 1.2. Flight Director Symbology

A pilot-selectable flight director is available through the menu system or integrated autopilot/flight director avionics. When selected, one of the
symbology shown in Figure RD-2 appears when valid steering commands are received. When the aircraft is not equipped with an autopilot, no flight director is available.

![Flight Director Symbology](image1)

Figure RD-2: Flight Director

FD1 Single Cue **FD2 Dual Cue**

RD 1.3. Marker Beacon Indicators

When enabled and valid marker beacon indicators with appropriate coloring and markings are displayed in the lower central portion of the PFD. During a built-in-test, more than one marker beacon can be active. Marker beacons acquired from NAV VLOC1 or VLOC2. Marker beacons are disabled when the NAV source is other than VLOC1 and or VLOC2.

![Marker Beacon Indicators](image2)

Figure RD-3: Marker Beacon Indicators

Middle Marker **Inner Marker**

RD 1.4. Unusual Attitude Mode

Unusual attitude mode is enabled when the pitch attitude exceeds +30° or -30° or bank angle exceeds 65° left or right. Once enabled, unusual attitude mode remains engaged until pitch attitude returns to within 5° of the horizon and bank attitude returns to within 10° of the horizon.
Pitch up 25°
Recovery Chevrons Only

Pitch up 31°
Unusual Attitude Mode

Figure RD-4: Unusual Attitude Mode

RD 1.5. Bank Angle Scale

The bank angle scale and roll pointer are centered upon the waterline. During EFIS limits configuration, a sky pointer is designated as the type of bank angle type configured.

Figure RD-5: Bank Angle Scale Sky Pointer Type
RD 1.6. AGL Indication

AGL altitude is displayed as shown in Figure RD-6 at the bottom of the display or above the CDI. The source for AGL indication is the source being used for the TAWS, which is designated as follows:

\[\begin{align*}
R &= \text{Radar Altitude} \\
G &= \text{GPS/SBAS geodetic height less database found elevation.} \\
B &= \text{Barometric altitude less database ground elevation.}
\end{align*} \]

AGL altitude is not displayed when it is greater than 2,500 feet and is not displayed when it is invalid. This area also includes a decision height set with the PFD bugs menu.

<table>
<thead>
<tr>
<th>Value</th>
<th>Resolution</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td><300'</td>
<td>10'</td>
<td>White</td>
</tr>
<tr>
<td><100' >300'</td>
<td>5'</td>
<td></td>
</tr>
<tr>
<td>>100'</td>
<td>1'</td>
<td>White but turns amber (yellow) and flashes at and below DH.</td>
</tr>
<tr>
<td>Decision Height</td>
<td>10'</td>
<td></td>
</tr>
</tbody>
</table>

RD 1.7. Airspeed Display Normal and with Loss of ADC

The airspeed display digitally displays indicated airspeed in knots, miles, or kilometers per hour (as per aircraft “Speed Units” system limit) and is scaled to show the entire operating range of the aircraft. Clockwise movement indicates increasing speed.
Figure RD-7: Airspeed Display with ADC Failure

Without airspeed bugs
IAS bug set to 80 and indicating 80 KIAS
IAS bug set to 80 and indicating 70 KIAS

Figure RD-8: Round Dials Airspeed Display Limits

1) Gray safe-operating area from bottom of dial to V_{MIN}. Airspeed is gray at 0 (indicating “dead” airspeed) but otherwise green.

2) Green safe operating range area from V_{MIN} to V_{NO}. V_{MIN} refers to the minimum speed for effective airspeed indication (usually 20KIAS, depending on the connected ADC). Airspeed readout is gray at 0 (indicating “dead” airspeed) but otherwise green.

3) Amber (yellow) caution range area from V_{NO} to V_{NE} (power-on). Airspeed readout is yellow.

4) Red radial line at V_{NE} (power-on). Airspeed readout is red at or above the red radial line.

The airspeed dial for Part 27 and Part 29 rotorcraft has additional specific airspeed markings displayed as a red cross-hatched radial line at V_{NE} (power-off).
RD 1.8. Altimeter

The altimeter setting digitally displays the altimeter setting in inches of mercury (inHg) or millibars (mbar) according to the pilot-selected units. (See red-circled areas in Figure RD-9 and Figure RD-10.)

QFE: Barometric setting resulting in the altimeter displaying height above a reference elevation (i.e., airport or runway threshold). Mode is annunciated as “QFE” otherwise, no mode is annunciated.

QNE: Standard barometric setting (29.92 inHg or 1013 mbar) used to display pressure altitude for flight above the transition altitude.

QNH: Barometric setting resulting in the altimeter displaying altitude above mean sea level at the reporting station.

To change altimeter setting:

1) Press **BARO (R2)** to enter BARO mode and view the inches of mercury (inHg) or millibars (mbar) value in the lower right corner.

2) Rotate 1 CW to increase or CCW to decrease QNH. Allowable setting limits are 22.00 inHg (745 mbar) at the lowest and 32.00 inHg (1100 mbar) at the highest setting.

3) Push 1 or press **EXIT (R1)** to enter the new value.

The altimeter setting digitally displays the altimeter setting in either inches of mercury (inHg) or millibars (mbar) according to the pilot-selected units.

Figure RD-9: Altimeter QNH

The mode is annunciated as QFE operations; otherwise, no mode is annunciated

Figure RD-10: Altimeter QFE
RD 2. Altitude Display

The altitude readout digitally displays barometric altitude to the nearest ten feet as adjusted by an altimeter setting and shows a 1000-foot range with labels and graduations every 100 feet. CW rotation of the pointer indicates increasing altitude. All graduations are removed when below sea level.

![Altitude display with labels and graduations](image1)

![Altitude display when below sea level](image2)

Figure RD-11: Altitude Display

![Airspeed and Altitude with Loss of ADC](image3)

Figure RD-12: Airspeed and Altitude with Loss of ADC

Altitude sub-mode user-selectable triangular target altitude bug shown here at 4,400’. The bug is limited to -1,000’ up to the service ceiling and is removed when more than 500’ away from current altitude.

![Target Altitude Bug](image4)

Figure RD-13: Target Altitude Bug
The target altitude bug can be used as a visual reference or when vertically integrated with the Genesys HeliSAS-E or other autopilot, the bug characteristics indicate the following modes:

1) Filled-white when in altitude hold mode.
2) Hollow-white when in a climb or descent mode.
3) Filled-white during altitude hold capture.

When not vertically integrated with the Genesys HeliSAS-E or other autopilot, the target altitude bug is filled-white at all times.

When in VNAV sub-mode, the VNAV altitude bug appears when within 500’ from the current altitude. In this example, the VNAV altitude is 5,100’.

![Figure RD-14: VNAV Sub-Mode](image)

The VNAV bug can be used as a visual reference or when vertically integrated with the Genesys HeliSAS-E or partially integrated through use of the vertical mode discrete input as a control parameter for climbs or descents with another autopilot. The bug characteristics indicate the following modes:

1) Filled-magenta when in altitude hold mode.
2) Hollow-magenta when in a climb or descent mode.
3) Filled-magenta during altitude hold capture.

When not vertically integrated with an autopilot, the VNAV bug is filled-white at all times.

![Figure RD-15: Metric Altitude](image)

Metric altitude values may be selected from within the declutter menu with a resolution of 1 meter.
RD 3. **Vertical Speed Indicator**

The VSI is located below the altitude display with a readout and dial pointer and scale of ±6,000 feet per minute. The integral scale graduations are ±500, ±1,000, ±3,000, and ±6,000 feet per minute. CW (upward) rotation of the pointer indicates increasing vertical speed while CCW indicates decreasing speed.

![Figure RD-16: Vertical Speed Indicator](image)

VSI bug set to +1,000 fpm with HeliSAS enabled
VSI bug set to +1,000 fpm without autopilot enabled.

![Figure RD-17: VSI Bugs](image)

The vertical speed bug is mutually exclusive with the IAS bug and can be used either as a visual reference or when vertically integrated with the HeliSAS-E or other autopilot as a control parameter for climbs or descents. When vertically integrated, the vertical speed bug is filled-white when in VSI climb or descent mode. Otherwise, the vertical speed bug is hollow-white as shown above on the left. When not vertically integrated with an autopilot, the vertical bug is filled-white at all times.

RD 4. **Heading Display**

The heading display appears in a blacked-out area on the bottom to emulate a “Basic-T”. The heading display automatically declutters when a compass rose is shown in the bottom area.
RD 5. Turn Rate Indicator

The turn rate indicator is displayed below the airspeed display. This standard turn needle displays marks representing a standard rate turn. The full scale for the turn needle is beyond the standard rate turn mark. This allows the pilot to fly a standard rate turn. The balance ball is driven from accelerometers within the AHRS.

Figure RD-19: Turn Rate Indicator

RD 6. Timer Indication

A countdown or count-up timer can be displayed above the large aircraft reference marks when selected through the menu as described in Section 3 Display Symbology.

Figure RD-20: Timer Indication
RD 7. Vertical Deviation Indicator (VDI)

Figure RD-21: Vertical Deviation Indicator (VDI)

The vertical deviation indicator (VDI) on the right side displays vertical deviation for the selected vertical navigation source for displaying descent profile but disappears in unusual attitude mode.

1) **LPV Mode and LPV1 or LPV2**: When descending on final approach segment in LPV mode. GPS altitude used to generate VDI; pilot may follow guidance to LPV minima regardless of temperature.

2) **LNAV Mode and VNAV1-G or VNAV2-G**: When descending on final approach segment in LP, LNAV/VNAV, and LNAV or RNP modes when using GPS VNAV. GPS altitude used to generate VDI; pilot may follow guidance to LNAV minima regardless of temperature.

3) **LNAV Mode and VNV1-B or VNV2-B**: Default FMS barometric VNAV mode. Using barometric altitude to generate the VDI, pilot may follow guidance to LNAV minima as long as the specified temperature is within limits.

4) **GS1 or GS2**: Glide slope receiver #1 or #2 as indicated. Pilot follows guidance to published barometric DH.
Search and Rescue (SAR) Patterns

SAR 1. Search and Rescue (SAR) Patterns

When enabled by EFIS system limits, the pilot can create one SAR pattern at an eligible flight plan waypoint and only one waypoint within the active flight plan. The current position of the aircraft is determined relative to the desired path for lateral deviation for display on the GPS/SBAS CDI. In most cases, the IDU auto-sequences from one waypoint to the next similar to all other flight plan sequencing along the flight path.

The SAR option is available for any waypoint except the following:

1) Suppressed waypoint
2) Skipped waypoint
3) Manual termination waypoint
4) Waypoint that is part of an IFR or VFR approach
5) Holding pattern waypoint
6) SAR pattern exit waypoint
7) Waypoint that begins a departure procedure
8) Parallel offset entry or exit waypoint
9) Dynamic termination waypoint (altitude termination, DME termination, radial termination or intercept termination)

SAR patterns can be created in the RUN DEMONSTRATOR/TRAINING PROGRAM Ground Maintenance Page or the EFIS Training Tool. After the SAR pattern is created and saved, that flight plan can be uploaded to any IDU or all IDUs in an aircraft for later use.

The desired flight path is created from a sequence of straight, left, and right turning leg segments to provide smooth skyway, GPS/SBS CDI, and lateral autopilot guidance. SAR patterns are drawn at the lowest of holding or procedure speed.

SAR 1.1. SAR Pattern Step-by-Step Procedures

To select a SAR pattern, follow these step-by-step procedures. Refer to subsequent sections for additional details and examples for the individual patterns.
SAR 2. Expanding Square Pattern

Table SAR-1: Expanding Square Pattern Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Increments (Range)/Direction</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Turn</td>
<td>Left or Right</td>
<td></td>
</tr>
<tr>
<td>Initial Track</td>
<td>Outbound from previous waypoint in 1° increments</td>
<td>Magnetic or True</td>
</tr>
<tr>
<td>Leg Spacing</td>
<td>0.25NM (0.25 to 10NM)</td>
<td></td>
</tr>
<tr>
<td>Number of Legs</td>
<td>1 to 50</td>
<td></td>
</tr>
</tbody>
</table>

Figure SAR-1: Expanding Square Pattern Turn and Leg Spacing

SAR 2.1. Expanding Square Pattern (Step-By-Step) Procedure

1) Press FPL (L1) and rotate 🔄 to CREATE-EDIT.. to create a user waypoint at the search start point.

2) Rotate 🔄 to CREATE USER WPT (LAT-LON) and push to enter.
3) Rotate through each step and create the desired parameters for the USER WPT and push to enter.

4) Press NRST (R2) and rotate to select the recently created USER WPT and push to enter.

5) Select the desired user waypoint and push to enter.

6) The aircraft is now on a direct path to the desired user waypoint.

7) Press ACTV (L2) and rotate to desired eligible waypoint to begin SAR pattern creation process and push to enter.
8) Rotate 1 to one of the five SAR pattern options and push to enter.
 a) Expanding Square*
 b) Rising Ladder*
 c) Orbit
 d) Race Track
 e) Sector Search*

*Pattern includes the option to select individual legs within the SAR pattern for navigation guidance.

9) Rotate 1 through each step and create the desired parameters (e.g., direction, track, leg length, leg spacing, and number of legs) and push to enter.

 See following sub-sections for more details for parameters of each pattern.

10) After SAR pattern is created, it appears on the map page, mini map, and active flight plan.
11) To select a SAR pattern individual legs press **ACTV (L2)** then rotate 1 to SAR pattern exit waypoint as it appears in magenta and push to enter.

12) Rotate 1 to **SAR SGMNT..** and push to enter.

13) Rotate 1 to desired leg for navigation guidance.

14) Control the aircraft to new magenta line for maneuvering to begin following navigation guidance.

See § SAR 3 and SAR 6 for examples of selected segments.

15) To delete existing SAR pattern, Press **ACTV (L2)**.

16) Rotate 1 to SAR pattern and press **DELETE (R3)**.
17) Push ⏯ to confirm.

18) If SAR pattern is saved as the active flight plan, it may be edited and re-saved as a locked flight plan. On the PFD or MFD, press FLP (L1), rotate ⏯ to CREATE-EDIT.., and then push to enter. Rotate ⏯ to EDIT FLIGHT PLAN and then push to enter. EDIT WHICH FPL: Rotate ⏯ to desired flight plan and then push to enter.

19) Edit flight plan if necessary and/or press LOCK (L8) to save as a locked flight plan. Once locked, the flight plan may be found in the menu.

20) If no other flight plan editing is necessary, press EXIT (R1) to exit menu. Future flight plan selections now have a new locked flight plan.

SAR 3. Rising Ladder Pattern

Figure SAR-2: Rising Ladder Pattern
Table SAR-2: Rising Ladder Pattern Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Increments (Range)/Direction</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Turn</td>
<td>Left or Right</td>
<td></td>
</tr>
<tr>
<td>Initial Track</td>
<td>Outbound from previous</td>
<td>Magnetic or True</td>
</tr>
<tr>
<td></td>
<td>waypoint in 1° increments</td>
<td></td>
</tr>
<tr>
<td>Leg Length</td>
<td>0.5 NM (1NM to 100NM)</td>
<td></td>
</tr>
<tr>
<td>Leg Spacing</td>
<td>0.25NM (0.25 to 25NM)</td>
<td></td>
</tr>
<tr>
<td>Number of Legs</td>
<td>1 to 50</td>
<td></td>
</tr>
</tbody>
</table>

Figure SAR-3: Rising Ladder Pattern Parameters

Figure SAR-4: Rising Ladder Pattern-Turn, Leg, and Track
Figure SAR-5: Rising Ladder Pattern-Individual Leg Selected

SAR 4. Orbit Pattern

The SAR exit waypoint is a duplicate of the previous waypoint. This SAR pattern is unique in that the navigation path never goes through the waypoint. The path is a circle around the waypoint intercepted along tangents. With no other menus displayed on the PFD and a waypoint following the active waypoint, CONT (L6) appears to allow for continuing out of the orbit and normal sequencing in the active flight plan.

Figure SAR-6: Orbit Pattern

<table>
<thead>
<tr>
<th>Table SAR-3: Orbit Pattern Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>Turn Direction</td>
</tr>
<tr>
<td>Radius</td>
</tr>
</tbody>
</table>
SAR 5. Race Track Pattern

With no other menus displayed and a waypoint following in the flight plan, **CONT (L6)** appears for continuing out of the racetrack and normal sequencing in the active flight plan.
Table SAR-4: Race Tack Pattern Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Increments (Range)/Direction</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Turn</td>
<td>Left or Right</td>
<td></td>
</tr>
<tr>
<td>Initial Track</td>
<td>Outbound from previous</td>
<td>Magnetic or True</td>
</tr>
<tr>
<td></td>
<td>waypoint in 1° increments</td>
<td></td>
</tr>
<tr>
<td>Leg Length</td>
<td>0.5 NM (1NM to 100NM)</td>
<td></td>
</tr>
<tr>
<td>Leg Spacing</td>
<td>0.25NM (0.25 to 10NM)</td>
<td></td>
</tr>
</tbody>
</table>

Figure SAR-10: Race Track Pattern Parameters

- **INIT TRACK:** 360°
- **LEG LENGTH:** 10.0 NM
- **TURN DIR:** LEFT

Figure SAR-11: Race Track Pattern-Turn, Leg, and Track

- **INIT TRACK:** 360°
- **LEG LENGTH:** 10.0 NM
- **TURN DIR:** LEFT
- Mini Map Orientation
SAR 6. Sector Search Pattern

Table SAR-5: Sector Search Pattern Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Increments (Range)/Direction</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Turn</td>
<td>Left or Right</td>
<td></td>
</tr>
<tr>
<td>Initial Track</td>
<td>Outbound from previous</td>
<td>Magnetic or True</td>
</tr>
<tr>
<td></td>
<td>waypoint in 1° increments</td>
<td></td>
</tr>
<tr>
<td>Leg Length</td>
<td>0.5 NM (1NM to 100NM)</td>
<td></td>
</tr>
</tbody>
</table>

Figure SAR-12: Sector Search Pattern

Figure SAR-13: Sector Search Pattern Parameters
Figure SAR-14: Sector Pattern-Turn and Track

Figure SAR-15: Sector Search Pattern-Individual Leg Selected
ECBU 1. Electronic Circuit Breaker

The EFIS supports interface to electronic circuit breaker unit (ECBU). ECBU replaces conventional thermal mechanical circuit breakers and functions as both a breaker and a switch for controlling loads. Each ECBU comprises of multiple solid-state electronic circuit breaker (ECB) devices that actually control the loads. The breaker page acts as the user interface for controlling individual ECB state and to display tripped, pulled or collared circuit breaker lists.

ECBU 1.1. Top-Level Menu (PFD/MFD Essential Mode/MFD Normal Mode)

![Figure ECB-1: Top-Level Menu (PFD/MFD Essential Mode/MFD Normal Mode)](image)
ECBU 2. First-Level Menu Option Descriptions

Figure ECB-2: ECB Control Menu

NOTE:

ECBU functionality is only available as a prototype version in EFIS software. The functionality is not TSO’d. GMF option is available to either upload or delete the ECBU configuration file.

ECB (R6): On PFD or MFD, activates the ECB control menu option.

The ECBU menu allows the pilot to choose the following options:

1) **ON/OFF (L5):** Toggles the selected ECB switch state between ON and OFF. The button appearance and operation is inhibited when:

 a) Selected ECB is failed; or

 b) Selected ECB is tripped, pulled, or collared.
2) **RESET (L6):** Pressing commands the selected ECB switch to OFF and breaker state to auto. The button appearance and operation is inhibited when:

a) Selected ECB is failed; or
b) Selected ECB is auto or colloared; or
c) Selected ECB cannot be reset in flight.

3) **PULL (L7):** Pressing allows for commanding the selected ECB switch state to **OFF** and the breaker state to **PULL**. The button appearance and operation is inhibited when:

a) Selected ECB is failed or;
b) Selected ECB is already pulled or;
c) Selected ECB is collared and aircraft is in air mode

4) **COLLAR (R5):** (Ground mode only) Pressing displays a “**CONFIRM COLLAR**” prompt. Confirming the collar action commands the selected ECB switch state to **OFF** and breaker state to **COLLAR**. The button appearance and operation is inhibited when:

a) Selected ECB is failed or;
b) Selected ECB is already collared or;
c) Aircraft is in air mode.

5) **TRIP LIST (R6):** Displays tripped circuit breakers list. When no tripped circuit breakers, **NO ECB IN LIST** menu message is displayed.

6) **PULL LIST (R7):** Displays pulled circuit breaker list. When no pulled circuit breakers, **NO ECB IN LIST** menu message is displayed.

7) **Knob:** On a PFD or MFD operating in Normal mode, if the bottom area is showing a breaker page configured with more than one ECB group, rotate **Knob** to select ECB group (CW to select next group, CCW to select previous group).

ECBU 3. PFD Page First Level

ECB (R6): Activates the ECB control menu option.

ECBU 4. MFD Page First Level

ECB (R6): Same function as PFD Page First Level. **SET FUEL (R6)** has precedence over **ECB**.
ECBU 5. Warning/Caution/Advisory Alerts

The following warning, caution, and advisory alerts are only active when ECBU is configured. See Section 2 System Overview for more information on warning, caution, and advisory alerts.

<table>
<thead>
<tr>
<th>Table ECB-1: Warning Alerts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Alert</td>
</tr>
<tr>
<td>CHECK BREAKER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table ECB-2: Caution Alerts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Alert</td>
</tr>
<tr>
<td>CHECK BREAKER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table ECB-3: Advisory Alerts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Alert</td>
</tr>
<tr>
<td>CHECK BREAKER</td>
</tr>
</tbody>
</table>

ECBU 6. Breakers Page

BREAKERS: Shows the Electronic Circuit Breakers page (only available if ECBU devices are configured). Breakers page is not available when in Essential Mode when “Essential EICAS Page (MFD Overlay)” is assigned.
Index

500-Foot Wake-Up Call .. 3-6, 3-14, 5-73, RD-4
ADAHRS ... 2-1, 2-19, 2-24, 3-64, 5-64, 9-2 to 4
ADF ... 2-1, 2-8, 2-12 to 13, 3-43, 3-64, 5-19
ADS-B (ADSB) ... 2-1 to 2, 2-12, 2-34 to 35, 5-76, 5-83, T-2, D-2, D-5,
... D-15 to 16
AGL Indication .. 3-12 to 13, 3-77, RD-4
Air Data ... 2-1, 2-27, 2-39, 3-38, 3-47, 3-68, 3-73, 4-8, 8-14 to 15, 8-19,
... T-13, S-3, D-5, WX-30
Aircraft
 In the Air ... 2-23, 2-50, 5-60, 5-78, 9-15, WX-1
 On the Ground ... 2-17, 2-20, 2-37, 2-43, 2-51, 3-8, 3-27, 3-42, 3-57, 5-60
 Referenced .. 7-18
Airport .. 2-36, 3-8, 3-42 to 44, 3-51, 3-58, 3-76, 5-24, 5-40, 5-43,
.. 5-46 to 48, 5-57 to 61, 5-73, 6-7 to 9, 7-6 to 8, 7-11 to 13, 7-29, 7-36,
.. 7-50, 7-56, 7-59, 7-64, 7-68, 7-78, 7-84, 7-89 to 90, 7-95, 8-16, 9-2,
... D-2 to 3, D-9 to 12, D-15, WX-28, RD-6
Airspace ... 3-53, 4-3, 5-52, 5-75, 6-3, 7-3, 7-45
Depiction .. 3-51 to 53
Airspeed
 Bug ... 3-16 to 17, 5-4, RBP-4, RBP-8, RD-5
 Display .. 3-15, RD-4 to 5, RD-10
 Miscompare Threshold .. 9-5 to 6
 True ... 2-6, 2-10 to 12, 3-48, 4-3 to 4, 7-21 to 22
Airway(s) .. 3-51 to 52, 3-70, 5-24 to 25, 5-28, 5-40, 5-43, 5-83, 7-33
AIU .. 2-14, 5-76
Altimeter
 Menu .. 5-11, 5-72 to 74
 Setting .. 2-43, 3-6 to 7, 5-73, 9-2, D-15, RD-6 to 7
Altitude
 Bug Menu (ASEL) .. 2-1, 3-10, 5-12, 5-55
 Capture Predictor .. 3-59, T-11, D-8
 Display .. 3-6 to 7, 3-10, 3-14, T-3, RD-7 to 9
 Minimum .. 2-47, 3-11, 5-4, 5-66 to 67, 7-69, RBP-4 to 5, RBP-8
 Miscompare Threshold .. 1-3, 9-4 to 5
 Sub-Mode .. 3-9 to 10, 5-14, RD-7
Target 2-1, 3-9 to 10, 3-42, 5-55, 7-16, T-11, RBP-1 to 2, RD-7 to 8
Amber (Yellow) 2-28 to 32, 2-47, 3-11, 3-15, 3-19, 3-25, 3-36, ...
.................. 3-40 to 44, 3-51 to 53, 3-60, 3-64 to 69, 3-74 to 75, 7-7, 7-81, 8-24, ...
... T-12, S-5, D-2, D-6 to 8, RD-4
Analog AGL Indicator (ANLG AGL) 3-14, 5-70, 6-2, T-4
Analog Navigation Symbology 3-53 to 54, 3-57, 3-66
Approach 2-1 to 9, 2-38, 3-35, 3-49, 3-67, 5-32, 6-7 to 9, 7-1, 7-6, ...
.................. 7-12 to 13, 7-19 to 21, 7-35 to 44, 7-47 to 48, 7-51, 7-58, 7-63, 7-67, ...
... 7-72, 7-77, 7-83, 7-89, 7-94, 7-99, 8-1, 8-4 to 5, 8-11, 9-10, D-2
APPR 2-1, 6-8, 7-42, 7-54, 7-59, 7-64, 7-68, 7-73, 7-78, 7-84, 7-92, ...
... 7-95
APV ... 2-1, 7-13
ARM 2-15, 2-46, 3-36, 7-14, 7-60, 7-64, 7-69, 7-73 to 75, 7-80, 7-87, ...
... 7-91, 7-97
Atmospheric Perspective ... 3-2, 3-21 to 26
BACK 3-5, 5-2, 5-34, WX-10, WX-14, WX-17 to 18, WX-23 to 24
Bank Scale (BANK SCL) 3-30, 5-63, 5-70 to 71
BARO 2-2, 2-13, 3-7, 5-11, 5-72 to 75, 6-2, 7-13, 9-2, RD-6
BARO-VNAV ... 7-13
Basic Mode 3-2, 3-8, 3-17, 3-22, 3-27, 3-30 to 34, 5-5, 5-70, 7-15, T-15
Blue 2-28, 3-23 to 26, 3-53 to 55, 7-67, 7-73, 7-77, 7-83, 7-94, 9-1, ...
.......................... D-2 to 3
Borders ... 2-28, 3-55, D-9
Boundary Circle ... 3-50, 3-64, 3-74, T-11, D-5 to 8
Brown ... 2-28, 3-6, 3-24 to 26, 3-55, 5-72
BUGS 2-51, 5-17, 5-65 to 66, 7-54, 7-69, 7-91, 7-96
CENTER/ARC ... 5-82, S-7
Compass Rose 3-2, 3-33 to 34, 3-50, 3-64 to 65, 3-73 to 75, 4-3 to 5, ...
... 7-29, 9-2 to 4, T-10 to 11, D-5, RD-9
CONFIRM DEL .. 5-28, 5-31, 5-35, 5-44, 6-7
CONT 2-2, 2-46, 5-14, 7-14, 7-60, 7-71, 7-82, 7-85, 7-101, SAR-8 to 9
Course Deviation Indicator (CDI) 2-2, 2-27, 3-12 to 14, 3-21, 3-34 to 37, ...
.......................... 3-52, 3-61, 3-65 to 67, 3-75, 4-2 to 4, 5-49, 6-3, 7-14, 7-21, 7-28, ...
...................... 7-35 to 36, 7-39, 7-46, 7-69 to 70, 7-81, 7-91, 9-12, S-5, D-8, RD-4, ...
... SAR-1
Scale ... 7-36
CRS SYNC ... 5-47 to 48, 5-57 to 59
Index

Cyan........2-27, 3-39, 3-43, 3-53, 3-62 to 66, 7-69 to 70, D-2 to 4, WX-29
Database

Jeppesen... 1-3, 2-49 to 51, 3-25, 9-6
NavData®.. 2-21, 2-49, 3-41, 5-5, 7-8, 7-12, 7-22, 9-6, 9-15
Navigation 2-27, 2-45, 2-49 to 51, 3-35, 3-44 to 45, 3-70, 3-76, 7-7,
............... 7-12 to 13, 7-17, 7-22 to 23, 7-26 to 27, 7-33 to 34, 7-43, 7-102,
... 8-17, 9-7 to 8
Obstruction .. 2-25, 2-49 to 51, 7-34
Terrain .. 2-37, 2-51, 8-16 to 18
Update ... 1-2 to 3, 2-51

Datalink .. 1-3, 2-3, 2-12, 2-19, 3-46 to 47, 3-53, 3-68, 5-3, 5-79, D-1 to 16,
... WX-3
Page (DATALINK) .. 5-79, 5-83, D-4, D-11, D-14
DCLTR 2-3, 3-47, 5-17 to 19, 5-69 to 71, 5-80 to 83, 5-86, T-9,
.. T-14 to 15, D-10 to 14, WX-3, WX-19, V-3
DCND .. 2-3, 5-67 to 68, 7-54, RBP-8
Dead Reckoning (DR)......................... 2-3, 2-45 to 47, 4-7 to 8, 7-29 to 30
Decision Height (DEC HT)........... 2-3, 2-47, 3-13 to 15, 5-4 to 5, 5-66 to 67,
... 7-91, RBP-4 to 5, RBP-8, RD-4
DELETE 5-30, 5-35, 5-42 to 44, 6-7, SAR-5, SAR-12
Demonstrator .. 2-50 to 52, 9-15
Density Altitude .. 3-48, 4-3 to 5
Departure 1-3, 2-3, 2-7 to 9, 2-38, 3-35, 3-70, 7-10 to 12, 7-22,
........ 7-34 to 37, 7-44 to 45, 7-48 to 50, 7-102, 8-3 to 5, 8-18, 9-2, 9-6, SAR-1
DESIG ... 2-3, 5-17 to 19, 5-22, 6-6, 7-51
DG Mode 2-3, 2-39, 2-43, 3-18, 3-46 to 48, 3-64 to 65, 3-74, 5-64, 7-29,
.. 9-3 to 4, T-10, T-13, S-2, D-5
Direct 2-3, 3-58, 3-71, 5-11, 5-14, 5-46, 5-59 to 61, 7-23, 7-27 to 28,
.. 7-31 to 32, 7-85, 7-90, D-15
Direct-To 3-58, 3-71, 5-14, 7-23, 7-27 to 28, 7-31 to 32
Discontinuity...... 3-70, 5-42, 5-59, 7-9, 7-23 to 24, 7-27 to 28, 7-31 to 32,
.. 7-43 to 44
DME 2-2 to 4, 2-10, 2-13, 2-28, 2-40, 2-44, 3-52 to 53, 3-58, 3-67, 3-71,
........... 5-64, 6-3, 7-9 to 10, 7-21 to 27, 7-48, 7-67, 7-94 to 97, SAR-1
DONE .. 5-71 to 72, 5-81, 5-86, T-9, D-14, WX-19
Download .. 9-8 to 9
Index

DP2-3, 3-44, 3-70, 3-76, 7-9, 7-12, 7-22 to 24, 7-31, 7-45, 7-48 to 50, ... 8-3, 9-10
EFIS Training Tool (ETT)1-3, 2-3, 2-52, 9-15, SAR-1
EICAS ... 2-14, 2-23 to 25, 2-34, 4-5 to 8, 8-8, ECBU-4
Enroute2-3, 2-38, 3-35, 3-41, 3-52, 3-70, 5-36, 7-1, 7-6, 7-12, 7-22, .. 7-33 to 37, 7-45 to 47, 7-100 to 102, 8-3 to 5, 9-6, 9-13
Enter Identifier ... 5-33, 5-42
Estimated Time Enroute (ETE)2-3, 3-41, 3-50 to 51, 3-68, 3-71 to 72
Estimated Time of Arrival (ETA)2-3, 3-41, 3-50 to 51, 3-68, 3-72, 5-6, .. 5-37, 5-63, 5-83
EXIT2-24, 3-5, 5-12, 5-26, 5-29 to 31, 5-34 to 37, 5-55, 5-68, 5-71 to 74, 5-81, 5-86, 6-2, 6-5 to 6, 7-53, 7-84, T-9, D-14, WX-10, .. WX-14, WX-17 to 20, WX-23 to 24, RD-6, SAR-6
EXPAND CAS .. 2-48, 5-18 to 20
FAF2-3, 3-70, 5-13, 7-16, 7-19, 7-24, 7-60 to 61, 7-64, 7-69, 7-75, ... 7-79 to 80, 7-87, 7-91, 7-97, 7-100 to 102
FAULTS ..4-7, 5-17 to 19, 5-75 to 77, D-15 to 16
FAWP .. 2-3, 2-46, 3-35, 4-8, 7-24, 7-34 to 37, 7-41 to 47
Field of View (FOV)2-4, 2-30, 3-22 to 25, 3-56, 3-61 to 62, 5-17
Zoom2-20, 3-22, 3-61 to 62, 5-17, 7-61 to 62, 7-92
Fixes .. 3-41, 3-52, 3-76, 5-41, 5-56, 5-82, 7-102
Flight Path Marker (FPM)2-4, 3-2, 3-21 to 22, 3-26 to 28, 3-31, 3-34, .. 4-2 to 4, 5-67, 7-81, 9-1, 9-4
Flight Plan1-3, 2-4, 2-19, 2-36, 2-45, 2-51 to 52, 3-10, 3-41, 3-51, .. 3-59 to 60, 3-69 to 72, 3-75, 5-11 to 17, 5-21 to 31, 5-35, ... 5-38 to 46, 5-56 to 63, 6-1, 6-5 to 10, 7-6 to 9, 7-14 to 17, 7-22 to 23, 7-27 to 34, 7-37 to 38, 7-53, 7-72, 7-78, 7-82 to 85, 7-89 to 90, ... 7-99 to 101, 8-16, 9-1 to 2, 9-6 to 11, 9-15, T-13, S-5 to 7, D-8 to 10, ..WX-3, WX-28, SAR-1, SAR-4 to 9
Activate .. 5-29, 6-5
Active (ACTV) 2-1, 2-27, 3-60, 3-75 to 76, 4-3, 5-4, 5-11, 5-38 to 40, 5-43 to 46, 6-6 to 9, 7-6, 7-17, 7-50, 7-53, 7-57 to 59, 7-64, 7-68, .. 7-73 to 74, 7-78, 7-84 to 85, 7-95, 7-99 to 100, 9-10, S-5, D-8 to 10, .. D-15, WX-28, SAR-3 to 5
CREATE-EDIT5-21 to 23, 5-26, 5-29 to 36, 6-5 to 6, 7-52, SAR-2, .. SAR-6
Delete .. 5-30
FPL2-4, 5-11, 5-21 to 23, 5-26, 5-29 to 36, 6-5 to 6, 7-52, 7-84, ... SAR-2, SAR-6
Index

Limits ... 5-21
Path ... 3-59 to 60, 3-75, 5-13, 7-7, S-5, D-8, WX-28
Reverse ... 5-30

FLTA .. 2-4, 2-26, 2-30 to 33, 2-37, 2-41 to 42, 2-46, 3-24 to 25,
... 3-55 to 56, 5-3, 5-13, 8-1 to 7, 8-18, 8-21 to 27, WX-2 to 3
FMS 1-1, 2-4, 2-19, 2-45, 3-31, 3-36 to 38, 3-64 to 66, 3-70, 5-4, 5-14,
... 5-49 to 52, 5-79, 6-3, 6-7, 7-6, 7-11, 7-37 to 38, 9-8, 9-12 to 13, T-16,
... RBP-5 to 7, RD-11
FORMAT 3-76, 5-19, 5-82, 5-85 to 86, 7-51, T-7 to 9, T-13, S-7,
.. D-10 to 14, V-3
FROM/TO Operation .. 3-39, 5-14, 7-14, 7-28
Fuel Remaining .. 3-51, 3-69, 3-72
Geodesic Path .. 7-26 to 27, 7-30
Geo-Referenced .. 7-18
Glide Slope....... 2-5, 2-14, 2-26, 2-33, 2-38, 2-42 to 44, 3-38 to 39, 7-65,
................................. 7-79, 7-90 to 91, 8-1, 8-13 to 15, 8-18 to 19, 8-22
GPS 1-2, 2-4, 2-13 to 14, 2-22, 2-25 to 27, 2-36 to 40, 2-44 to 47,
..... 3-12 to 13, 3-19, 3-28, 3-35 to 44, 3-47, 3-50 to 51, 3-57, 3-60 to 61,
...... 3-64 to 66, 3-69, 3-74 to 77, 4-1 to 32, 5-36 to 37, 5-49, 5-75 to 77,
......... 7-1 to 7, 7-13 to 15, 7-21, 7-29, 7-34 to 38, 7-41 to 43, 7-48, 7-72,
.. 7-75 to 79, 7-91 to 92, 7-97, 7-102, 8-3 to 5, 8-11, 8-14 to 19, 9-3 to 6,
.. 9-9, T-12, RBP-3 to 9, S-5, D-8, RD-4, RD-11, SAR-1
Aiding ... 2-27
ALMANAC ... 5-76
Altitude ... 3-13, 3-38, 7-29
EQPMNT ... 5-75
FDE .. 5-75
HFOM ... 5-75
HPL .. 5-75
LOI .. 5-75
LON 3-36, 3-40 to 41, 3-51, 3-60, 3-64 to 65, 3-69, 3-74 to 75, 7-7,
... T-12, S-5, D-8
PWR .. 5-75
SATLT ... 5-75
TRK .. 4-5
VFOM .. 5-75
VPL .. 5-75
GPS/SBAS........... 1-2, 2-25, 2-36 to 40, 2-44 to 47, 3-12 to 13, 3-35 to 40,
........ 3-43 to 44, 3-47, 3-57, 3-60 to 61, 3-65 to 66, 3-75 to 77, 4-1 to 3,
........ 4-12 to 32, 5-36 to 37, 5-75 to 76, 7-1 to 6, 7-13 to 15, 7-21, 7-29,
7-34 to 36, 7-43, 7-48, 8-3 to 5, 8-11, 8-14 to 19, T-12, S-5, D-8, RD-4,
... SAR-1

Navigation Mode .. 7-34 to 35, 8-3
GPWS Modes 2-30 to 33, 2-41 to 44, 8-1, 8-8 to 14, 8-18, 8-21 to 22
Gray .. 2-27 to 28, 3-6, 3-29, 3-43 to 45, 3-61 to 63, 3-70, 3-74 to 76, 7-64,
... 7-73, 7-78, D-2 to 3, D-8, WX-29, RD-5
Green.................. 2-28, 3-9 to 13, 3-17 to 18, 3-34, 3-40, 3-43, 3-53, 3-59,
3-62 to 67, 3-74, 6-2, 7-4, 7-65, 7-70, T-4, T-11, S-4, D-2 to 3, D-6 to 8,
... V-3, RD-5
Ground Speed2-5, 2-26 to 27, 2-36 to 38, 3-18, 3-27 to 30, 3-47, 3-51,
...... 3-60, 3-64, 3-68 to 76, 4-3, 4-6 to 8, 7-15, 8-2 to 5, 8-8, 8-15, 8-18,
... T-11 to 13, S-3, D-5, D-8

Heading
Display ... 3-18 to 19, RD-9 to 10
Heading Up (HDG UP) ... 3-50, 4-4, 5-82, 5-85, 8-7
North Up (N UP) ... 5-82, 5-85, WX-3
Pointer ... 3-18, 3-57, 3-64, 3-74, T-11, D-8
Heading Bug .. 3-19, 3-37, 3-64, 3-74, 5-4, 5-13 to 14, 5-53 to 57, 6-1, 6-9,
... 7-11, T-11, RBP-2, D-8

Hidden Surface Removal Techniques .. 7-15
Highway in the Sky (HITS).... 1-1, 2-5, 3-2, 3-21, 3-40, 4-2 to 4, 7-13 to 21,
... 7-91, 7-96 to 97, 9-12
Skyway (SKYWAY) .. 2-20, 2-28, 3-40 to 41, 3-61, 3-75, 5-5, 5-42, 5-59,
............................... 5-70, 7-15 to 16, 7-21, 7-28, 9-1, S-5, D-8, SAR-1
HOLD ... 3-67, 3-70, 5-45, 7-9, 7-59 to 60, 7-71, 7-99
Holding Pattern ... 2-46, 3-71, 5-14, 5-43, 7-9 to 14, 7-22 to 23, 7-26, 7-36,
... 7-85, 7-100 to 101
Hover 3-28 to 29, 3-73 to 77, 4-2, 5-5 to 6, 5-12, 5-19, 5-79
Page (HOVER) ... 5-79
Vector ... 3-28 to 29, 3-73 to 77, 4-2
IAP ... 2-5, 7-43
IAS .. 2-5, 2-34, 2-39, 2-51, 3-16, 5-66 to 68, RD-5, RD-9
IFR
APPR 6-8, 7-59, 7-64, 7-68, 7-73, 7-78, 7-84, 7-95, 8-16, 9-11
Procedures ... 3-41, 3-58, 3-64, 5-38, 7-1, 7-12
ILS2-5, 5-47, 5-57 to 59, 6-9, 7-4, 7-13, 7-43, 7-48, 7-56 to 59, 7-63, 7-89 to 91, 7-99 to 101, 8-1, 8-13 to 15, 8-18 to 19, 9-10 to 14
NRST ILS ... 5-57 to 59, 6-9, 7-48, 7-89 to 90
INFO2-5, 3-58, 5-11, 5-14, 5-33, 5-36 to 37, 5-40 to 43, 5-46 to 48, .. 5-56 to 60, 7-53, D-3, D-10 to 12, D-15
inHg/mbar ... 2-5 to 7, 2-45, 3-6 to 8, 5-73 to 75, 9-2, RD-6
Initialization 1-2, 2-17 to 19, 2-24, 3-53, 5-51, 5-74, 6-1, 8-16 to 17, RBP-2
International Standard Atmosphere (ISA) 2-6, 2-12, 3-48, 4-3
Latitude/Longitude 2-6, 2-19, 2-36, 3-23 to 24, 5-31, 5-47, 5-72, 5-83, .. 5-86, 7-29, 7-33
LNAV2-6 to 7, 2-45, 3-19, 3-36 to 38, 3-66, 3-70, 4-7 to 8, 5-13, 5-54, 7-1, 7-4, 7-13 to 15, 7-33 to 43, 7-47, 7-68, 7-76, 7-92, 7-102, RBP-1 to 2, RD-11
Approach .. 2-45, 7-33 to 35, 7-39, 7-47
Sub-Mode .. 5-13, RBP-2
LNAV/VNAV 2-45, 3-38, 3-66, 4-7 to 8, 7-1, 7-13, 7-34 to 37, .. 7-41 to 42, 7-47, RD-11
Approach .. 2-45, 4-7 to 8, 7-34 to 35, 7-47
Log Files .. 2-52, 9-7
Loss of Integrity (LOI) 2-6, 2-47, 3-19, 4-6, 5-75, 7-45 to 47, 8-14
Loss of Navigation (LON) 2-6, 2-11, 2-47, 3-19, 3-61, 3-65, 4-6, .. 5-75 to 76, 7-45, 8-14
LP/LPV2-6, 2-45, 3-35, 3-38 to 40, 3-66, 7-1, 7-13, 7-34 to 35, 7-38, 7-41 to 42, 7-47 to 48, 7-72, 7-75, 7-102, 9-13, RD-11
LPV/LPV 2-6, 2-46, 3-35 to 38, 3-66, 7-1, 7-4, 7-13, 7-34 to 38, 7-41 to 42, 7-47 to 48, 7-77 to 79, 7-102, 9-13, RD-11
Lubber Line ... 3-57 to 59, T-11, D-8
Magenta 2-27, 3-11, 3-36 to 38, 3-41 to 43, 3-60 to 69, 3-74 to 75, 6-2, 7-7, 7-62, 7-66, 7-70, 7-91, 7-96 to 98, 9-10 to 12, T-12, S-5, D-2 to 3, .. D-8, RD-8, SAR-5
Map
Mini ... 3-22, 3-42 to 43, 4-2, S-5, D-8, V-4 to 5
Moving .. 3-46 to 49, WX-3
Page (MAP)2-26, 3-24 to 26, 5-3, 5-13, 5-19, 5-82, 7-51, 7-56, 8-21, .. T-3, D-14, WX-2, SAR-4
Marker Beacon(s) .. 2-27, 3-31 to 32, 3-67, RD-2
Index

MENU 1-3, 5-11, 5-16, 5-22, 5-63, 5-66, 5-70 to 71, 5-77, 5-81 to 82, 5-85 to 86, 6-5, 6-10, 7-51, 7-54, 7-61 to 62, 7-69, 7-91, 7-96, T-7 to 9, D-11 to 15, WX-6, WX-11, WX-15, WX-19 to 21

Metric (METERS) .. 3-7, 5-70, RD-8

MFD 1-3, 2-7, 2-11 to 12, 2-16 to 18, 2-23 to 28, 3-1 to 5, 3-29, 3-46, 3-62 to 64, 4-5 to 32, 5-3 to 22, 5-29 to 30, 5-36, 5-77 to 86, 6-3 to 9, 7-22 to 24, 7-52 to 53, 7-84, 7-90, 9-12, 9-15, T-4 to 7, T-13 to 16, S-2 to 3, S-7 to 9, D-4 to 11, D-15 to 16, WX-1 to 3, WX-6, WX-11, WX-15, WX-24, WX-32 to 34, V-1 to 2, V-5, RD-1, SAR-6, ECBU-1 to 4

Fault Display .. T-15, S-9, WX-32

Page (PAGE) 5-9, 5-13, 5-19, 5-78 to 79, 5-85, T-4 to 6, S-2, D-4, ... D-10, WX-3, V-1 to 2, ECBU-3

Minima .. 7-48, 7-72, 7-77

Minimums (MINS) 2-47, 3-11, 5-66 to 69, 7-76, 7-81, 7-91, 7-96, D-2

MISS .. 2-46, 5-13, 7-14, 7-69, 7-80, 7-87, 7-91, 7-97

Navigation Display (ND) 2-7, 3-26, 3-46 to 47, 3-51 to 53, 3-56, 3-60 to 61, 3-66, 4-3, 6-6, 7-61, 7-84, 7-100 to 102, 8-7, 8-19, S-2, D-2, .. D-10, WX-3, WX-25

Navigation Log (NAV LOG) 3-46, 3-69 to 72, 5-79, 5-82, 7-7 to 8, 7-50, 7-57, 9-10

NDB 2-7, 3-42, 3-51, 3-58, 5-23, 5-26 to 27, 5-41, 5-46, 5-57, 6-5 to 6

Nearest (NRST) Menu 2-7, 5-11, 5-23 to 27, 5-41, 5-45 to 46, 5-55 to 59, 6-5 to 6, 6-9, 7-48, 7-89 to 90, 9-2, D-3, D-15, SAR-3

NO RESULTS .. 5-41, 5-55

OASIS 2-7, 2-11, 2-14 to 15, 2-21 to 25, 2-34, 4-5 to 8, 5-3 to 6, 5-12 to 13, 5-18 to 21, 8-8, S-8, WX-3, V-4

Obstacle Departure Procedure (ODP) ... 2-7, 7-12

Obstruction(s) 2-21, 2-25, 2-30 to 33, 2-42, 2-49 to 51, 3-2, 3-21 to 25, 3-57, 7-12, 7-34, 8-2, 8-22, 8-25 to 26

OFF 5-13 to 17, 5-32, 5-40, 5-57, 5-62 to 63, 5-66 to 69, 5-85, T-13, RBP-2, RBP-8 to 9, S-7, D-9 to 12, WX-4 to 19, WX-22 to 23, WX-30 to 33, ECBU-2 to 3

Olive .. 2-28, 3-24, 3-55, 5-72

Omnibearing Selector (OBS) 2-7, 2-19, 2-46, 3-37, 3-41, 3-60, 3-64, 3-75, 5-4, 5-11, 5-49 to 53, 5-57 to 59, 6-7 to 9, 7-14 to 15, 7-67 to 69, 7-90, 7-96, 9-11 to 12, RBP-3 to 7, S-5, D-8

AUTO ... 5-49

Manual ... 6-7

Menu .. 5-49 to 51
<table>
<thead>
<tr>
<th>Index</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNC</td>
<td>5-49, 6-7</td>
</tr>
<tr>
<td>Outside Air Temperature (OAT)</td>
<td>2-7, 2-27, 2-39, 3-48, 4-3 to 5</td>
</tr>
<tr>
<td>Ownship Symbol</td>
<td>3-43, 3-46, T-2, D-5</td>
</tr>
<tr>
<td>Pan Mode</td>
<td>3-57 to 58, 5-13 to 14, 5-82, 5-85, D-5, D-8 to 10, V-4 to 5</td>
</tr>
<tr>
<td>PAN ON/PAN OFF</td>
<td>5-82, D-10</td>
</tr>
<tr>
<td>Parallel Offsets</td>
<td>3-71, 7-6, 7-30 to 32</td>
</tr>
<tr>
<td>Parallel Track</td>
<td>2-8, 3-60, 7-31 to 32</td>
</tr>
<tr>
<td>PFD</td>
<td>1-3, 2-8, 2-11 to 12, 2-15, 2-18 to 28, 2-32 to 34, 2-43, 3-1 to 2, 3-5 to 6, 3-13, 3-20 to 32, 3-41 to 44, 3-56, 3-59 to 62, 3-66, 3-75, 4-2, ...4-5 to 9, 4-12, 4-15, 4-18, 4-21, 4-24, 4-27, 4-30, 5-4 to 7, 5-10 to 23, 5-29, 5-36, 5-64 to 66, 5-69 to 70, 5-77, 5-80 to 82, 6-2, 6-5 to 10, 7-12,7-15 to 16, 7-22, 7-43, 7-52 to 53, 7-72, 7-84, 7-90, 7-102, 8-1, 8-7,8-14, 8-19, 8-22 to 27, 9-3, 9-10, T-4 to 7, T-15 to 16, S-1, S-5 to 9,D-8 to 9, D-15 to 16, WX-1 to 3, WX-6, WX-21, WX-24, WX-34, ..V-1 to 2, V-5, RD-1 to 4, SAR-6 to 8, ECBU-1 to 3</td>
</tr>
<tr>
<td>Background</td>
<td>3-22</td>
</tr>
<tr>
<td>Declutter</td>
<td>5-17, 5-69 to 70, T-15</td>
</tr>
<tr>
<td>Essential Mode</td>
<td>2-25</td>
</tr>
<tr>
<td>Normal Mode</td>
<td>2-23</td>
</tr>
<tr>
<td>Symbology</td>
<td>3-5 to 6</td>
</tr>
<tr>
<td>Pitch Scale</td>
<td>3-20 to 21, 3-32, 4-2, 9-1, RD-1</td>
</tr>
<tr>
<td>Nadir Symbol/Zenith Symbol</td>
<td>3-20</td>
</tr>
<tr>
<td>Pop-Up</td>
<td>2-26, 5-2 to 3, 5-13, 8-7 to 8, 8-21, T-3</td>
</tr>
<tr>
<td>Primary Flight Information (PFI)</td>
<td>2-8 to 9, 2-23 to 26, 2-32 to 33, 2-45, ...3-18, 3-22, 3-25 to 26, 3-31, 3-42, 3-67, 4-5, 5-3, 5-15, 5-63, 5-67, ...5-71 to 72, 6-2 to 6, 7-24, 7-61 to 62, 8-14, 8-21, T-3 to 4</td>
</tr>
<tr>
<td>Procedure Turn</td>
<td>2-8, 3-71, 7-11, 7-23 to 26</td>
</tr>
<tr>
<td>Projected Path</td>
<td>3-60, 3-76 to 77, 4-3</td>
</tr>
<tr>
<td>PTK</td>
<td>2-8, 2-46, 3-70, 5-40, 7-31 to 33</td>
</tr>
<tr>
<td>PTR</td>
<td>3-64 to 65, 5-80 to 83</td>
</tr>
<tr>
<td>QFE</td>
<td>2-8, 2-21, 2-45, 3-8, 5-73, RD-6</td>
</tr>
<tr>
<td>QNE</td>
<td>2-8, 3-8, 5-73, RD-6</td>
</tr>
<tr>
<td>QNH</td>
<td>2-8, 3-7 to 8, 5-73 to 75, 8-15 to 16, 9-11, RD-6</td>
</tr>
<tr>
<td>RAIM</td>
<td>2-2, 2-8, 5-22, 5-36 to 37, 7-1, 7-4 to 5</td>
</tr>
<tr>
<td>Range</td>
<td>2-1, 2-12, 2-36, 3-23, 3-51, 3-62, 3-73, 8-5, T-10, S-3, D-3, D-7,WX-9, WX-16, WX-26, SAR-2, SAR-7 to 11</td>
</tr>
<tr>
<td>Re-Centered</td>
<td>5-42, 5-59</td>
</tr>
</tbody>
</table>
Red ... 2-28 to 30, 2-39, 3-7, 3-11 to 12, 3-16 to 17, 3-24, 3-53 to 56, 3-65, 4-4 to 5, 8-19 to 24, T-4, T-12, S-4, D-2 to 7, WX-30 to 32, V-3, RD-5 to 6
Red-X ... 2-39, 4-4 to 5
Remote Bugs Panel (RBP) .. 1-3, RBP-1 to 2, RBP-5 to 9
Required Navigation Performance (RNP) 1-2, 2-9, 3-35 to 38, 3-66, 5-50 to 52, 5-75, 7-2 to 6, 7-24, 7-33 to 38, 7-43 to 48, 7-83 to 88, 9-10, RD-11
Automatic (AUTO) .. 3-35, 7-46
Manual (MAN) .. 2-20, 3-35, 5-50 to 52, 7-46
Reversionary Modes (Failure Modes) 4-1, 4-5, 4-8 to 32
RNAV .. 2-2, 2-9, 3-36, 7-1 to 6, 7-12 to 13, 7-23, 7-33, 7-43, 7-48, 7-72 to 74, 7-77, 7-83 to 85, 9-9 to 10
Runway 2-9, 2-28, 3-8, 3-35, 3-44 to 45, 3-52, 3-76, 5-41, 5-47, 5-56, 5-73, 6-7 to 8, 7-11 to 12, 7-22 to 23, 7-35 to 37, 7-43 to 45, 7-50 to 53, 7-56 to 59, 7-64, 7-68 to 70, 7-73, 7-77 to 78, 7-81 to 85, 7-88 to 89, 9-9 to 10
SAVE .. 2-52, 5-25, 5-29, 5-32 to 34, 5-40, 6-5 to 7, 7-52, 9-15
SBAS 2-9, 2-45 to 47, 3-75, 4-6 to 8, 5-36 to 37, 5-75 to 76, 7-1, 7-13 to 14, 7-29, 7-41 to 42, 7-75, 8-3, 8-15, 8-19, S-5, D-8
HLTH ... 5-76
MSG .. 5-76
Search and Rescue Pattern (SAR) 2-9, 2-12, 2-46, 3-70 to 71, 5-43, 7-9 to 14, 7-22 to 24, SAR-1 to 12
Search Envelope .. 8-2 to 7
SID .. 2-9, 7-8, 7-12, 7-22
Slip Indicator .. 1-2, 2-50, 3-18
STAR 2-9, 3-44, 3-70, 3-76, 7-8 to 12, 7-22, 7-48, 7-55 to 56, 8-3, 9-10
START OVER .. 5-36 to 37
STD ... 2-9, 5-73 to 75
SYMB DCLTR .. 5-82
SYNC .. 2-9, 5-17, 5-54 to 55, 5-66, V-1
Terminal 2-9 to 10, 2-38, 3-35, 3-52, 5-82, 7-6, 7-35 to 37, 7-47 to 48, 7-55 to 56, 8-4 to 5
Terrain 2-4, 2-10 to 11, 2-21, 2-25 to 33, 2-37, 2-41, 2-51, 3-2, 3-5, 3-21 to 26, 3-41 to 44, 3-47, 3-55 to 57, 4-2 to 3, 5-3 to 5, 5-13, 5-71 to 72, 5-86, 7-13 to 15, 7-98, 8-1 to 12, 8-16 to 24, 8-27, 9-1
Index

Terrain and Obstruction Rendering 3-21, 3-24 to 26, 3-41, 3-44, 3-57, 7-15, 8-7

Time
 Clock/Timer 2-22, 2-45, 2-48, 3-31, 4-7, 5-3 to 4, 5-62 to 63, RD-10
 COUNT DN/COUNT UP ... 5-63
 FLT TIME .. 5-63
 Local 2-6, 3-46 to 47, 3-68 to 69, 5-63, T-12, S-4, D-5, WX-30
 Menu ... 5-17 to 19, 5-45, 5-62 to 63
 STORE ... 5-62
 Zulu 3-46 to 47, 3-68 to 69, 5-63, 9-7, T-12, S-4, D-5, WX-30
Top of Descent 2-10, 3-39, 3-59, 7-54, 7-79, 7-97, T-11
Top-Level Menu .. 5-7 to 13, D-9, V-1, ECBU-1
 Automatic Pop-Up .. 5-13, D-9
Track Pointer .. 3-18, 3-57, 3-64, 3-67, 3-74, T-11, D-8
Traffic 1-3, 2-1 to 2, 2-8 to 12, 2-20, 2-26, 2-30 to 33, 2-42, 3-22, 3-46 to 47, 3-68, 4-2 to 3, 5-3 to 5, 5-12, 5-17 to 19, 5-79, T-1 to 16, S-4
Page (TRAFFIC) .. 5-70, 5-79, 5-83, T-4, T-7
 TRFC .. 5-70, 6-2, T-12, T-15
TRANS ALT ... 5-73 to 74
Transmit Enabled 2-48, 5-11 to 14, 5-17, 7-46, D-10
TSO 2-10, 2-26, 3-35, 5-3, 7-1 to 6, 7-13 to 15, 8-1 to 3, ECBU-2
Unusual Attitude Mode 2-35 to 39, 2-45 to 48, 3-2, 3-14, 3-21 to 23, 3-27 to 31, 3-37, 3-41 to 42, 7-15, T-4, RD-2 to 3, RD-11
Upload .. 9-9, 9-15, ECBU-2
USB ... 1-2, 2-10, 2-50 to 51, 9-7 to 9, 9-15 to 16
Vertical Deviation Indicator (VDI) 2-10, 3-21, 3-37 to 40, 3-65 to 66, 7-14, 7-37 to 38, 7-75, 7-79, 7-87, 7-90 to 91, RD-11
Vertical Speed Indicator (VSI) 2-6, 2-11, 2-27, 2-34, 2-48, 3-11 to 12, 4-2, 5-4, 5-66 to 69, 6-3, 8-6, 8-19, 9-6, T-3 to 4, T-11, RBP-4, RBP-8, D-8, RD-9
VFR 2-11, 2-27, 2-38, 2-46, 3-44, 3-52, 3-70, 3-76, 5-32, 5-82 to 83, 6-7 to 8, 7-1, 7-8 to 12, 7-19, 7-22, 7-31, 7-34 to 36, 7-43 to 44, 7-48, 7-51 to 53, 8-3, 8-16 to 18, 8-21, 9-8, D-2 to 3, SAR-1
APPR ... 6-8, 7-53, 8-16
Video ... 2-11 to 13, 2-25, 5-3, 5-12, 5-79, V-1 to 5
Page (VIDEO) .. 2-13, 5-79, V-1

VNAV 2-2, 2-11, 2-27, 2-47 to 48, 2-51, 3-10 to 11, 3-37 to 42, 3-59,
........... 3-66, 3-70 to 72, 5-3 to 4, 5-14, 5-44, 5-66 to 67, 7-1, 7-6 to 9,
........... 7-15 to 20, 7-32, 7-37, 7-42, 7-47, 7-54, 7-96, 7-102, 9-1, T-11,
.. RBP-1 to 2, D-8, RD-8, RD-11

CDA .. 5-66 to 67, 7-54

Sub-Mode.. 3-10 to 11, RBP-2, RD-8

VOR 2-11 to 13, 2-19, 2-27 to 28, 3-42 to 43, 3-52 to 53, 3-58, 3-62,
.3-67, 4-4, 5-19, 5-23 to 28, 5-41, 5-46, 5-57, 6-5 to 6, 7-28, 7-33, 7-48,
.. 7-94 to 97, 9-9, 9-12 to 14, RBP-3 to 8

VOR1/VOR2....3-36 to 37, 3-53, 3-62 to 66, 5-50, 5-80 to 83, 6-3, 7-97,
.. 9-12 to 14, RBP-6 to 8

VTF .. 2-11, 3-35, 5-59, 7-35 to 44, 7-73

Warnings, Cautions, and Advisories

ADC FAIL Caution.. 2-34
ADC INIT Advisory ... 2-43
ADS-B FAIL Caution .. 2-34
AHRS DG Advisory .. 2-43
AHRS FAIL Caution .. 2-35
ALT MISCOMP Caution .. 2-36
ANP Advisory ... 2-45
ATT MISCOMP Caution ... 2-37
AUX SENSOR Caution ... 2-35
BARO MISCOMP Advisory ... 2-43
CHECK BREAKER Advisory .. ECBU-4
CHECK BREAKER Caution ... ECBU-4
CHECK BREAKER Warning ... ECBU-4
CHECK GEAR Caution ... 2-41
CHECK GEAR Caution Time-Critical Alert 2-31
CHECK IDU Caution .. 2-42
CHK BARO Advisory ... 2-45
COOLING FAN Caution .. 2-37
CPLT MISCOMP Caution ... 2-35
CPLT OVRTMP Caution ... 2-35
CPLT PWR Advisory .. 2-43
CPLT RANGE Caution ... 2-36
CPLT SCC Caution ... 2-37
CPLT TAWS Caution ... 2-37
CREW CALL Advisory ... 2-43
DR Advisory ... 2-45
FLTA INHBT Advisory .. 2-46
FPM INHBT Advisory ... 2-43
FUEL SPLIT Caution ... 2-37
GLIDE SLOPE Caution ... 2-42
GLIDE SLOPE Caution Time-Critical Alert 2-31
GLIDE SLOPE Warning ... 2-33
GLIDE SLOPE Warning Time-Critical Alert 2-30
GPS FAIL Caution ... 2-36
GPS MISCOMP Caution .. 2-38
GS MISCOMP Caution ... 2-38
HDG FAIL Caution ... 2-39
HDG MISCOMP Caution ... 2-39
HRZ SYNC Caution Time-Critical Alert 2-31
IAS MISCOMP Caution .. 2-39
LNAV APPR Advisory ... 2-45
LNV/VNV APPR Advisory .. 2-45
LOC MISCOMP Caution ... 2-39
LOW FUEL Caution ... 2-38
LOW FUEL Warning ... 2-33
LP APPR Advisory ... 2-45
LPV APPR Advisory ... 2-46
OAT FAIL Caution ... 2-39
OBSTRUCTION Caution ... 2-42
OBSTRUCTION Caution Time-Critical Alert 2-31
OBSTRUCTION Warning .. 2-33
OBSTRUCTION Warning Time-Critical Alert 2-30
PLT MISCOMP Caution ... 2-35
PLT OVRTMP Caution ... 2-35
PLT PWR Advisory ... 2-43
PLT RANGE Caution ... 2-36
PLT SCC Caution.. 2-37
PLT TAWS Caution.. 2-37
PTK Advisory .. 2-46
PULL UP Warning... 2-33
PULL UP Warning Time-Critical Alert .. 2-30
RALT FAIL Caution.. 2-40
RALT MISCOMP Caution ... 2-39
RNP Advisory .. 2-45
SAME ADC Advisory... 2-43
SAME ADC Caution.. 2-40
SAME AHRS Advisory .. 2-44
SAME AHRS Caution .. 2-40
SAME DME Advisory... 2-44
SAME DME Caution.. 2-40
SAME GPS Advisory... 2-44
SAME GPS Caution.. 2-40
SAME NAV Advisory... 2-44
SAME NAV Caution.. 2-40
SAME RALT Advisory ... 2-44
SAME RALT Caution ... 2-40
SINK RATE Caution.. 2-41
SINK RATE Caution Time-Critical Alert .. 2-31
SUSPEND Advisory.. 2-46
TA ONLY Advisory .. 2-44
TAS INHBT Advisory... 2-44
TAWS AUTOROT Caution ... 2-40
TAWS GS CNX Advisory .. 2-44
TAWS INHBT Caution ... 2-40
TAWS LOW ALT Advisory .. 2-43
TCAS FAIL Caution.. 2-40
TCAS STBY Advisory .. 2-44
TCAS TEST Advisory.. 2-44
TERMINAL Advisory .. 2-46
TERRAIN Caution.. 2-41
Index

TERRAIN Warning ... 2-33
TERRAIN Warning Time-Critical Alert 2-30
TOO LOW Caution .. 2-41
TOO LOW Caution Time-Critical Alert 2-31
TOTALZR QTY Caution ... 2-41
TRAFFIC Caution ... 2-42
TRAFFIC Caution Time-Critical Alert 2-31
TRAFFIC Warning .. 2-33
TRAFFIC Warning Time-Critical Alert 2-30
TRUE NORTH Advisory ... 2-46
VECTORS Advisory ... 2-46
VFR APPR Advisory ... 2-46
XFILL ARM Advisory ... 2-44
XFILL FAIL Caution ... 2-41
XFILL INHBT Advisory .. 2-44
XPDR FAIL Caution ... 2-41

Water .. 2-28, 3-24, 3-55

Waypoint ... 2-1 to 7, 2-10 to 11, 2-27, 2-36, 2-46 to 48, 3-19 to 21, 3-39 to 42, 3-50 to 52, 3-57 to 58, 3-61, 3-64 to 76, 4-2 to 3, 5-14, 5-17, 5-21 to 28, 5-31 to 48, 5-56 to 61, 6-2 to 8, 7-7 to 36, 7-43 to 45, 7-48 to 56, 7-60, 7-63 to 66, 7-70 to 73, 7-76, 7-80 to 82, 7-91 to 95, 7-99 to 102, 8-3, 8-16, 9-1, 9-8 to 11, T-12 to 13, S-5, D-8 to 10, D-15, S-6 to 8, WX-30, SAR-1 to 11

Active .. 2-46, 3-10, 3-13, 3-18 to 19, 3-41 to 42, 3-50 to 51, 3-60, 3-64, 3-67 to 69, 3-72 to 75, 5-32 to 33, 5-46 to 49, 5-52, 5-56, 5-59 to 61, 6-2 to 8, 7-7 to 10, 7-14, 7-21, 7-35 to 36, 7-53, 7-66 to 68, 7-78, 7-91, 7-96, T-4, T-12, RBP-3, S-5, D-8, SAR-8

ADD .. 5-23 to 25, 5-40, 6-5 to 7

APP ... 2-1, 3-70, 7-11

Create User .. 5-31 to 32

Create User (LAT-LON) ... 5-31

Create User (RAD-DST) ... 5-32

Delete User .. 5-35

Edit User .. 5-34

Fly-By .. 3-41, 3-75, 7-14, 7-21 to 22, 7-24 to 25, 7-70, D-8

Fly-Over .. 3-41, 3-75, 5-42, 5-59, 7-14, 7-21 to 27, 7-43, D-8
INSERT .. 5-26 to 27, 5-40, 5-45, 5-56 to 58, 6-6, 7-99
MAHWP .. 2-6, 7-34
MAWP .. 2-7, 7-34 to 35, 7-41, 7-44 to 45, 7-65, 7-70, 7-82
NO RADIUS .. 7-11
OFLY/AUTO ... 7-11
OVERFLY ... 7-11
Overfly User ... 5-22
Phantom ... 5-40 to 42, 5-59 to 61, 7-24, 7-27
Pointer .. 3-57, 3-64, 3-74, T-12, D-8
Routes and User ... 1-3, 9-8 to 9, 9-15
Sequencing 2-46, 3-72, 5-14, 6-3 to 7, 7-11, 7-14, 7-21, 7-28, 7-60,
............................... 7-63 to 66, 7-80 to 82, 7-91, 7-101
Skipped ... 3-72, 7-8
Suppress .. 3-69, 3-72, 7-8, 7-28, 7-53
USER WPT .. 5-17, 5-31 to 35, 6-6, 7-52, SAR-2 to 3
USER WPTS FULL ... 5-17
Weather Radar (WX RDR) 2-12 to 13, 5-18 to 19, 5-83, WX-1 to 6,
................................. WX-10 to 12, WX-15 to 16, WX-19, WX-22, WX-34
Page (WX-RDR) 3-47, 5-79, WX-3, WX-6, WX-11, WX-15,
... WX-19 to 21, WX-33
WGS-84 ... 7-1, 7-25 to 30, 7-33
White......... 2-27, 3-9 to 12, 3-16 to 20, 3-29, 3-40, 3-43 to 44, 3-51, 3-55,
... 3-58, 3-62, 3-70, 7-62, 7-85, D-3, D-8 to 9, WX-29, V-1, RD-1, RD-4,
................ RD-8 to 9
Wind ... 3-47 to 48, 4-3, 9-3, T-13
WX-500 Lightning Strikes ...1-3, 2-11 to 12, 2-35, 3-5, 3-46 to 47, 4-3, 5-3,
... 5-12, 5-17 to 19, 5-83, S-1 to 9
Page (STRIKES) .. 2-12, 5-19, 5-79, S-2 to 4
XFILL SYNC ... 5-16, 6-10
AGL Indication (Rad Alt, GPS Alt, Baro Alt) – Display of altitude above the ground, with designation of the altitude source as R (radio altitude), G (GPS WAAS geodetic altitude less local ground elevation), or B (barometric altitude less local ground elevation, when Baro AGL is enabled in EFIS limits).

Air Data and Ground Speed – Display of density altitude, outside air temperature, ISA temperature deviation, true airspeed, and ground speed.

Airspeed Information – Display of airspeed is the indicated airspeed tape and airspeed readout with associated data. The airspeed function includes color-coded caution bands for minimum and maximum speeds based on V-speeds set in the EFIS limits.

Altitude Information – Display of altitude information is the altitude tape and altitude readout.

Approach Mode Signal Output – Conventional autopilot approach mode signals are course error output, the left/right deviation signal (localizer output) and the up/down deviation signal (glide slope output). Signals are based on the selected ILS source.

Attitude Information – Display of attitude information includes pitch and roll. The bank angle scale may be set to auto-declutter by the pilot when the bank angle is less than 2.8°. The pitch ladder is limited to ±10° from the flight path marker or aircraft waterline, whichever is greater. The unusual attitude display appears when the aircraft pitch exceeds ± 30° or bank angle exceeds 65°.

Autoset – Automatically selects features or settings.

Azimuth – Angle between the north vector and the perpendicular projection of the star down onto the horizon. Usually measured in degrees (°).

Barometric Altimetry – Measurement of altitude based on the atmosphere (pressure and temperature).

Barometric Correction – Display and altitude correction for local barometric pressure.

Bezel – Faceplate of the IDU comprised of pushbuttons along the sides and rotary knobs along the bottom.

Chroma – Colorfulness relative to the brightness.

Clock, Timers – Display of Zulu time (based on GPS data) or Local time (based on UTC Offset) and pilot-selected timers.
Conformally – Angle-preserving. Example: Traffic appears conformally on the PFD.

Course Deviation Indicator – Display of course deviation from selected course, including a To-From indicator.

Critical Flight Phase – Phase(s) of flight where the failure mode would result in a hazard condition using flight phases. For example, failure of ILS would only be a hazard condition during approach and landing.

Crossfill – Transfer of data and information between IDUs in a dual-sided system with two PFDs configured.

Cross-linked – Synchronized across both EFIS sides.

Datalinked – Display of received data such as weather or traffic from peripheral systems such as ADS-B.

dBZ – Decibel relative to radar reflectivity (Z). Composite reflectivity shows the highest dBZ (strongest reflected energy) at all elevations. Unlike base reflectivity, which only shows reflected energy at a single elevation scan of the radar, composite reflectivity displays the highest reflectivity of ALL elevations scans. If there is heavier precipitation in the atmosphere over an area of lighter precipitation (i.e. rain has yet to reach the ground), the composite reflectivity displays the stronger dBZ level.

Deadband – A space between software parameters or setpoints where no action or changes are made.

Directional Scale (Compass Rose or Arc) and Ownship Symbol – Display of general directional information. All MFD pages include a form of the compass rose with current heading pointer and aircraft “ownship” symbol.

Discrete – A logic input or output that identifies a condition or status of or for an ancillary system. Discretes are defined by the operating software or settings programmed specifically for the aircraft.

Display of ADF – Display of single ADF bearing information in the form of an RMI pointer.

Display of Glide slope – Display of Glide slope 1 or Glide slope 2 in the form of vertical deviation dots and deviation on PFD or MFD HSI page.

Display of Lightning Cell Information – Display of lightning information from a WX-500 system and shown in the form of lightning cells. The pilot may show individual lightning strike data by selecting the dedicated WX-500 page.
Display of Localizer – Display of VLOC1 or VLOC2 in the form of horizontal deviation dots and deviation.

Display of Marker Beacon – Display of outer, middle, and inner marker beacons in the form of a color-coded circle with the corresponding letter.

Display of Traffic Information – When integrated with an appropriate traffic system, the PFD and MFD display traffic information in two formats. One format is via traffic symbols as shown on the PFD and MFD Map page and Traffic page. The second format is with the traffic pop-up thumbnail display showing traffic position in a full 360° format in the PFI area.

Display of VOR RMI – Display of VOR1 and VOR2 bearing in the form of RMI pointers.

Dot – (CDI scale referenced) represents an additional 2° for VOR and 1.25° for Localizer.

EFIS-Coupled – The EFIS is coupled to an autopilot and controls the lateral and/or vertical modes of the autopilot.

Failure Condition Hazard Description – A description of the failure mode to be analyzed.

Flight Director (Selectable Function) – Display of flight director in a single or dual cue format when selected for display on the PFD.

Flight Path Marker (Velocity Vector) – Display of aircraft’s actual flight path, showing where the aircraft is going as opposed to where the aircraft is pointed.

Flight Plan and Navigation Display – Display of the active GPS WAAS/SBAS-based flight plan, including course line, waypoints, ground track, glide range, projected path, altitude capture predictor, approach procedure, missed approach procedure, and the aircraft present position on the active leg.

Geodetic – Set of reference points used to locate places on the earth.

Geodesic – A generalization of the notion of a straight line to curved spaces. The shortest route between two points on the Earth’s surface.

Geoid – Global mean sea level.

Glide slope Sidelobes – False glide slope signals.
GPS/SBAS (WAAS) Course Deviation Indicator (CDI) – Display of CDI relative to selected course, either automatic based on active flight plan or manual based on pilot-selected OBS.

GPS/SBAS Functions – The EFIS meets the GPS WAAS navigation and flight planning/management requirements of TSO-C146c (RTCA/DO-229D) for Class Gamma 3 equipment. These functions include navigation, flight planning (function select, flight plan generation and editing, selected waypoints, user waypoints, etc.), path definition including approach and departure paths, GPS altitude, dead reckoning, navigation modes with automatic mode switching, loss of navigation monitoring, loss of integrity monitoring, etc. The database used with the GPS/SBAS (WAAS) functions meets the integrity requirements of RTCA/DO-200A.

Heading Bug – Display and control of selected heading using a bug. May be used to drive heading bug output to autopilot for HSI-based heading mode.

Heading Display – Display of heading with directional scale is provided at the top of the PFD. This is the same heading information provided on the MFD.

Heading Mode Signal Output – Conventional autopilot heading mode signal is a heading error output based on the difference between the EFIS desired heading and the actual aircraft heading. The EFIS desired heading is either the pilot-selected heading bug or a heading designed to achieve and maintain the active GPS-based flight plan.

Hectopascal (hPa) – International System of Units (SI) unit measure of pressure, equals one millibar (mbar).

HeliSAS – Genesys Aerosystems’ helicopter autopilot and stability augmentation system.

Horizontal Situation Indicator (Selectable Function) – Display of Navigation Source or localizer and glide slope deviation when selected for display on the PFD, ND or MFD.

HOTAS – Hands On Throttle And Stick

Hover Vector Display – Display of hover drift in a rotorcraft installation when the helicopter is traveling less than 30 knots ground speed.

Inches of Mercury (inHg) – Unit of atmospheric pressure used in the United States. Named for the use of mercurial barometers, which equate height of a column of mercury with air pressure.
Inhibit – Prevention of activity or occurrence. Examples are: \[\text{XFill INHBT} \quad \text{FLTA INHBT} \quad \text{and TAWS INHBT}\].

Integrated Peripherals – Internal devices of the essential unit.

Ionosphere – Region of the atmosphere between the stratosphere and exosphere, 50 to 250 miles (80 to 400 km) above the surface of the earth.

International Standard Atmosphere (ISA) – Standard model of the change of pressure, temperature, density, and viscosity over a wide range of altitudes or elevations.

Landing Gear Indication – When enabled on retractable landing gear aircraft, PFD shows indication of landing gear extended.

Level of Service – Standard Positioning Service (SPS) for general civil use. With Selective Availability (SA), SPS provides predictable accuracies of 100m in the horizontal plane and 146m in the vertical plane 95% of the time. Without (SA) SPS, accuracy would be approximately 25m in the horizontal plane and 43m in the vertical plane 95% of the time. ARINC-424 “Level of Service” indicates a particular type approach minimum is approved, e.g. \[\text{LP APPR} \quad \text{LPU APPR} \quad \text{RNP: 0.10A} \quad \text{RNP: 15.0A}\].

Lubber Line – Green dashed line marked on the compass showing the direction straight ahead.

Magnetic Declination (MAGVAR) – Sometimes called magnetic variation; the angle between magnetic north and true north.

Map Data – Display of map data, including airspace, VFR/IFR airports, VHF navaids such as VOR/NDB/DME, jet/victor airways, and display range rings.

Menu Functions – The EFIS includes menus to access functions on both the PFD and the MFD.

Mesocyclonic – Contains a vortex of air within a convective; air rises and rotates around a vertical axis, often in the same direction as low-pressure systems.

Millibar (mbar) – Metric (not SI) unit of pressure, one thousandth of a bar, which is about equal to the atmospheric pressure on Earth at sea level - 1013 millibars.
Glossary

Miscompare – Disparity of data or information. Examples are:

- ALT MISCOMP
- ATT MISCOMP
- GS MISCOMP
- HDG MISCOMP
- IAS MISCOMP
- LOC MISCOMP
- FLT MISCOMP
- CPLT MISCOMP

and **BARO MISCOMP**.

NavData® – Jeppesen's aeronautical database to navigate the global airspace system.

Navigation Data Display – Display of active waypoint, bearing to waypoint, and ground track based on active flight plan. The pilot may also select flight plan information as a mini map (thumbnail map). These functions are analyzed as part of the GPS/SBAS WAAS functions not the PFD functions.

Navigation Log – Display of navigation information based on active flight plan, including next waypoint, destination, estimated time remaining, and fuel totalizer-based range and endurance. This function may be deselected by a setting in the IDU configuration (limits) file. These functions are analyzed as part of the GPS/SBAS (WAAS) functions not the MFD functions.

Navigation Mode Signal Output – Conventional autopilot Navigation mode signals are the course error output and the left-right deviation signals. Course error output is based on the difference between the EFIS selected course (OBS) and the actual aircraft heading. These signals are based on the selected navigation signal (VOR, GPS).

Nondirectional – Functions in all directions.

Noodle – Navigation Display (ND) projected path; curving path based upon the aircraft bank angle and ground speed used effectively to assist in course interception and making small adjustments to bank angle for proper roll out.

Nanoteslas (nT) – A unit of measurement of the strength of the magnetic field. Earth’s strongest magnetic field is located at the poles, and the weakest field is near the equator.

Obstructions Display – Display of obstructions identified in the embedded obstruction database which are within 8.5 NM of the aircraft present position. Non-threatening obstructions are displayed by color to identify altitude relative to the aircraft’s current altitude (amber [yellow] < 2000’ below, deep red = at or above aircraft). Threatening obstructions, defined as those that pierce the TAWS envelope, are identified by highlight when producing a caution and identified by flashing highlight...
when producing a warning. The database used with the obstruction functions meets the integrity requirements of RTCA/DO-200A.

Omnibearing – Magnetic bearing of an omni-range station.

Offset – When referring to parallel track of an active flight plan, “offset” implies the distance paralleling the original track. When referring to VNAV altitudes, “offset” refers to the distance before or after the waypoint the VNAV altitude must be reached.

Ownship – Principal eye-point; referring to icon of aircraft represented on display.

Q-Routes – Published RNAV routes, including Q-Routes and T-Routes, can be flight planned for use by the Genesys EFIS, subject to any limitations or requirements noted on enroute charts, in applicable advisory circulars, or by NOTAM. RNAV routes are depicted in blue on aeronautical charts and are identified by the letter “Q” or “T” followed by the airway number, e.g., Q35, T-205. Published RNAV routes are RNAV-2 except when specifically charted as RNAV-1.

QFE – Barometric setting that results in the altimeter displaying height above a reference elevation (e.g., airport or runway threshold).

QNE – Standard barometric setting (29.92 inHg or 1013 mbar) used to display pressure attitude for flight above the transition attitude.

QNH – Barometric setting that results in the altimeter displaying altitude above mean sea level at the reporting station.

Recency – State of occurrence, appearance, or origin.

Selection and Display of Selected Course – Omni-Bearing Select (OBS) function for the pilot to select the course for navigation. Selected course is displayed for reference.

Side in Command – Side of aircraft control responsible for its operation.

Skipped Waypoint – A skipped waypoint is a waypoint associated with a dynamic termination leg with a zero length. These are either:

1) An altitude termination leg when current aircraft altitude is above the termination altitude; or

2) System-created (i.e., not NavData® specified) intercept to a “Course to a Fix” leg where there is insufficient distance to calculate an intercept heading.

Skyway VNAV/LNAV Guidance (Synthetic Vision) – Display of GPS-based active navigation route, flight plan, procedure, or OBS course in
a three-dimensional series of skyway boxes. Also known as Highway in the Sky (HITS).

Slip Indicator – Display of aircraft lateral accelerations via an integral slip/skid indicator function. The slip indicator is a rectangle just below the heading pointer that moves left and right to indicate the lateral acceleration sensed by the AHRS in the same manner as the ball in a mechanical slip indicator.

Strikefinder – Lightning detector system (WX-500) connected to EFIS and enabled through factory program settings.

Suppressed Waypoint – A suppressed waypoint (designated by brackets) is an airport associated with an IFR or VFR approach procedure.

Symbology – Use of symbols.

T-Routes – T-Routes are available for use by GPS or GPS/SBAS equipped aircraft from 1,200 feet above the surface (or in some instances higher) up to but not including 18,000 feet MSL. T-Routes are depicted on enroute low altitude charts and considered to include the same attributes of Low altitude airways in the Genesys Aerosystems EFIS declutter menus.

Talker – IDU providing data to external sensors and generating aural alerts. IDUs depend upon intra-system communications to determine which IDU on a side takes over “talker” responsibilities. Only one talker (transmit enabled) per side, two talkers in a dual-sided system, and a master talker PFD when considering aircraft limits. Any IDU may become a talker through auto reversionary means in the event of the PFD failing.

Terrain Display (PFD Artificial Horizon) – Conformal display of surrounding terrain presented with the artificial horizon, shown in the correct scale and perspective for the aircraft’s current position and altitude. Includes conformal display of known runway locations, direction, scale, and perspective based on aircraft’s current position and altitude.

Terrain Display and TAWS/HTAWS (PFD Artificial Horizon) – Display of terrain, including identification and annunciation of threatening terrain in accordance with Terrain Awareness Warning System (TAWS) requirements. Coloring scheme for SVS-TAWS PFD and MAP has been simplified as follows:

- Non-alerting Terrain below aircraft – Olive Shades
- Non-alerting terrain above aircraft – Brown Shades
Glossary

TAWS FLTA Caution Terrain – Amber (Yellow)

TAWS FLTA Warning Terrain – Red

Obstacles below aircraft – Amber (Yellow)

Obstacles above aircraft – Red

When over water – Deep Blue

Threatening terrain is determined by the requirements of and TSO-C194 HTAWS. Threatening terrain is shaded amber (yellow) for caution situations or shaded red for warning situations per TSO-C194. TAWS cautions and warnings are accompanied by an amber (yellow) or red flag and an aural annunciation. Enhanced HTAWS, or HTAWS functions may be activated in the system prior to installation. The database used with the TAWS functions meets the integrity requirements of RTCA/DO-200A.

Time Indication – Pilot-selected function for a count-up timer, countdown timer, flight time, and local time.

Traffic Display – When integrated with an appropriate traffic system, traffic is shown using standard TCAS symbology showing relative position, altitude, climb/decent, and color. The pilot may also show traffic information by selecting the dedicated traffic display page.

Vertical Speed Display – Display of altitude rate of change (vertical speed or climb rate).

VPROC (Procedure Speed) – The aircraft’s normal speed (in airspeed units and configured in EFIS limits) for flying instrument approaches (DPs, IAPs, STARs). This value is used for calculating the turn radius used for instrument procedure legs. This speed is not seen on the airspeed tape and only found in the aircraft speed settings inside the limits.

Warning, Caution, and Advisory Flags – Time-Critical Warning and Caution Alerts in the primary Field of View remain present until acknowledged by pressing master caution switch. Display of, warning, caution, and advisory indications accompanied by aural indications. The flags are stacked in the lower left corner of the PFD. Warnings are always shown at the top of the flag stack, followed by cautions and then advisories. These flags remain in view for as long as the situation exists.

Waterline – Indication of the aircraft’s longitudinal axis or waterline (attitude).

Wide Area Augmentation System (WAAS) – Developed by Federal Aviation Administration to provide accurate positioning part of the
Satellite Based Augmentation System (SBAS). Other countries have similar systems: Europe: European Geostationary Overlay System (EGNOS); Japan: MTSAT Satellite-based Augmentation System (MSAS); India: GPS Aided GEO Augmented Navigation system (GAGAN).

Wind Information – Display of wind direction, wind speed, and cross wind component.
To stay up to date with current Genesys product news and information, visit https://genesys-aerosystems.com/support/warranty-information.